Advanced Artificial Intelligence
- Typ: Lecture (V)
-
Lehrstuhl:
KIT-Fakultäten - KIT-Fakultät für Informatik - Institut für Anthropomatik und Robotik - IAR Niehues
KIT-Fakultäten - KIT-Fakultät für Informatik - Institut für Anthropomatik und Robotik - IAR Waibel - Semester: SS 2024
-
Zeit:
Mon 2024-04-15
14:00 - 15:30, weekly
30.21 Christian-Gerthsen-Hörsaal
30.21 Gerthsen-Hörsaalgebäude (EG)
Wed 2024-04-17
11:30 - 13:00, weekly
30.22 Wolfgang-Gaede-Hörsaal
30.22 Physik-Flachbau (1. OG)
Mon 2024-04-22
14:00 - 15:30, weekly
30.21 Christian-Gerthsen-Hörsaal
30.21 Gerthsen-Hörsaalgebäude (EG)
Wed 2024-04-24
11:30 - 13:00, weekly
30.22 Wolfgang-Gaede-Hörsaal
30.22 Physik-Flachbau (1. OG)
Mon 2024-04-29
14:00 - 15:30, weekly
30.21 Christian-Gerthsen-Hörsaal
30.21 Gerthsen-Hörsaalgebäude (EG)
Mon 2024-05-06
14:00 - 15:30, weekly
30.21 Christian-Gerthsen-Hörsaal
30.21 Gerthsen-Hörsaalgebäude (EG)
Wed 2024-05-08
11:30 - 13:00, weekly
30.22 Wolfgang-Gaede-Hörsaal
30.22 Physik-Flachbau (1. OG)
Mon 2024-05-13
14:00 - 15:30, weekly
30.21 Christian-Gerthsen-Hörsaal
30.21 Gerthsen-Hörsaalgebäude (EG)
Wed 2024-05-15
11:30 - 13:00, weekly
30.22 Wolfgang-Gaede-Hörsaal
30.22 Physik-Flachbau (1. OG)
Mon 2024-05-27
14:00 - 15:30, weekly
30.21 Christian-Gerthsen-Hörsaal
30.21 Gerthsen-Hörsaalgebäude (EG)
Wed 2024-05-29
11:30 - 13:00, weekly
30.22 Wolfgang-Gaede-Hörsaal
30.22 Physik-Flachbau (1. OG)
Mon 2024-06-03
14:00 - 15:30, weekly
30.21 Christian-Gerthsen-Hörsaal
30.21 Gerthsen-Hörsaalgebäude (EG)
Wed 2024-06-05
11:30 - 13:00, weekly
30.22 Wolfgang-Gaede-Hörsaal
30.22 Physik-Flachbau (1. OG)
Mon 2024-06-10
14:00 - 15:30, weekly
30.21 Christian-Gerthsen-Hörsaal
30.21 Gerthsen-Hörsaalgebäude (EG)
Wed 2024-06-12
11:30 - 13:00, weekly
30.22 Wolfgang-Gaede-Hörsaal
30.22 Physik-Flachbau (1. OG)
Mon 2024-06-17
14:00 - 15:30, weekly
30.21 Christian-Gerthsen-Hörsaal
30.21 Gerthsen-Hörsaalgebäude (EG)
Wed 2024-06-19
11:30 - 13:00, weekly
30.22 Wolfgang-Gaede-Hörsaal
30.22 Physik-Flachbau (1. OG)
Mon 2024-06-24
14:00 - 15:30, weekly
30.21 Christian-Gerthsen-Hörsaal
30.21 Gerthsen-Hörsaalgebäude (EG)
Wed 2024-06-26
11:30 - 13:00, weekly
30.22 Wolfgang-Gaede-Hörsaal
30.22 Physik-Flachbau (1. OG)
Mon 2024-07-01
14:00 - 15:30, weekly
30.21 Christian-Gerthsen-Hörsaal
30.21 Gerthsen-Hörsaalgebäude (EG)
Wed 2024-07-03
11:30 - 13:00, weekly
30.22 Wolfgang-Gaede-Hörsaal
30.22 Physik-Flachbau (1. OG)
Mon 2024-07-08
14:00 - 15:30, weekly
30.21 Christian-Gerthsen-Hörsaal
30.21 Gerthsen-Hörsaalgebäude (EG)
Wed 2024-07-10
11:30 - 13:00, weekly
30.22 Wolfgang-Gaede-Hörsaal
30.22 Physik-Flachbau (1. OG)
Mon 2024-07-15
14:00 - 15:30, weekly
30.21 Christian-Gerthsen-Hörsaal
30.21 Gerthsen-Hörsaalgebäude (EG)
Wed 2024-07-17
11:30 - 13:00, weekly
30.22 Wolfgang-Gaede-Hörsaal
30.22 Physik-Flachbau (1. OG)
Mon 2024-07-22
14:00 - 15:30, weekly
30.21 Christian-Gerthsen-Hörsaal
30.21 Gerthsen-Hörsaalgebäude (EG)
Wed 2024-07-24
11:30 - 13:00, weekly
30.22 Wolfgang-Gaede-Hörsaal
30.22 Physik-Flachbau (1. OG)
-
Dozent:
Prof. Dr. Jan Niehues
Prof. Dr.-Ing. Tamim Asfour - SWS: 4
- LVNr.: 2400141
- Hinweis: On-Site
Content | AI systems are increasingly integrated into our everyday lives. These are, for example, systems that can understand and generate language or analyze images and videos. In addition, AI systems are essential in robotics in order to be able to develop the next generation of intelligent robots.
Based on the knowledge of the lecture “Einführung in der KI”, the students learn to understand, develop and evaluate these systems. In order to bring this knowledge closer to the students, the lecture is divided into 4 parts. First, the methods of perception using different modalities are treated. The second part deals with advanced methods of learning that go beyond supervised learning. Then methods are discussed that are required for the representation of knowledge in AI systems . Finally, methods are presented that enable AI systems to generate content.
Requirements: None Recommendations: - “Einführung in der KI” - Good basic knowledge of mathematics Workload : approx. 180 hours, of which approx. 45 hours lecture attendance approx. 15 hours exercise visit approx. 90 hours post-processing and processing of the exercise sheets approx. 30 hours exam preparation Learning goals:
success control: See the module manual!
|
Language of instruction | English |