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Abstract

Translation procedures involving attribute control face significant challenges, particularly
regarding ambiguity and multiple interpretations. While attributes such as tone and sentiment
are inherently subjective, others like gender and formality vary across languages. Additionally,
fine-grained attribute data remains scarce.

This study examines Large Language Models’ (LLMs) potential for context-aware translation.
We conducted experiments comparing standard translation, LLM-based translation, and post-
editing approaches to assess LLMs’ impact on translation quality. Additionally, we evaluate
LLMs’ ability to detect missing attributes, particularly in cases of ambiguous or unambiguous
gender references.

LLM-based translation includes zero-shot and few-shot setups, incorporating clear instruc-
tions and desired attributes in the prompt. The few-shot setup provides additional translation
pairs as examples, allowing LLMs to learn patterns and improve performance. In the multilin-
gual translation module, we follow the few-shot approach but use third-language examples for
prompting. Post-editing involves refining candidate translations.

Our findings show that LLMs enhance both translation quality and attribute control, except
in the counterfactual gender dataset, where standard translation achieves better quality control.
However, LLMs consistently outperform standard translation in attribute control. Few-shot
setups surpass zero-shot in both quality and attribute control, except for gender accuracy
in the counterfactual dataset, possibly due to synonym mismatches. In post-editing, LLMs
significantly improve attribute control while maintaining original translation quality. In
multilingual translation, we observe a trade-off between quality and attribute control. Lastly,
LLMs demonstrate limited accuracy in detecting missing attributes in the source text.






Kurzfassung

Ubersetzungsverfahren mit Attributkontrolle stehen vor erheblichen Herausforderungen,
insbesondere im Hinblick auf Mehrdeutigkeiten und Mehrfachinterpretationen. Wahrend
Attribute wie Ton und Stimmung grundsatzlich subjektiv sind, variieren andere wie Geschlecht
und Formalitat zwischen Sprachen. Zudem sind detaillierte Attributdaten nach wie vor rar.

Diese Studie untersucht das Potenzial von Large Language Models (LLMs) fiir kontextsensi-
tive Ubersetzung. Wir haben Experimente durchgefiihrt, in denen wir Standardiibersetzung,
LLM-basierte Ubersetzung und Post-Editing-Ansatze verglichen haben, um den Einfluss von
LLMs auf die Ubersetzungsqualitit zu bewerten. Dariiber hinaus bewerten wir die Fahigkeit
von LLMs, fehlende Attribute zu erkennen, insbesondere bei mehrdeutigen oder eindeutigen
Geschlechtsreferenzen.

LLM-basierte Ubersetzung umfasst Zero-Shot- und Few-Shot-Setups, die klare Anweisungen
und gewiinschte Attribute in die Eingabeaufforderung integrieren. Das Few-Shot-Setup bietet
zusatzliche Ubersetzungspaare als Beispiele, sodass LLMs Muster lernen und ihre Leistung
verbessern konnen. Im mehrsprachigen Ubersetzungsmodul verfolgen wir den Few-Shot-
Ansatz, verwenden jedoch Beispiele aus Drittsprachen fiir die Eingabeaufforderung. Post-
Editing umfasst die Verfeinerung von Ubersetzungskandidaten.

Unsere Ergebnisse zeigen, dass LLMs sowohl die Ubersetzungsqualitit als auch die Attri-
butkontrolle verbessern, mit Ausnahme des kontrafaktischen Gender-Datensatzes, wo die
Standardiibersetzung eine bessere Qualitatskontrolle erreicht. LLMs iibertreffen die Stan-
dardibersetzung jedoch durchweg bei der Attributkontrolle. Few-Shot-Setups tibertreffen
Zero-Shots sowohl in der Qualitit als auch in der Attributkontrolle, mit Ausnahme der Ge-
schlechtsgenauigkeit im kontrafaktischen Datensatz, moéglicherweise aufgrund von Synonym-
Fehlpaarungen. Im Post-Editing verbessern LLMs die Attributkontrolle deutlich, wihrend
die urspriingliche Ubersetzungsqualitit erhalten bleibt. Bei mehrsprachigen Ubersetzungen
beobachten wir einen Kompromiss zwischen Qualitat und Attributkontrolle. Schliefilich zeigen
LLMs eine eingeschrankte Genauigkeit bei der Erkennung fehlender Attribute im Quelltext.
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1. Introduction

1.1. Motivation

Attribute-controlled translation involves generating translations that respect specific character-
istics or constraints, such as formality, gender, tone, sentiment, or domain-specific vocabulary.
While this approach offers a more customized translation experience, several challenges emerge.
The most fundamental challenge is ambiguity and multiple interpretations involved in transla-
tion procedure. While attributes like tone or sentiment can be subjective, attributes like gender
and formality are language dependent. Different languages express these attributes in varied
ways. Managing this ambiguity while preserving the original intent can lead to inconsistent
or inaccurate translations. The other noticeable challenge we encounter is data scarcity for
fine-grained attributes. The lack of high-quality, attribute-annotated data poses a challenge
for training models to handle nuanced translation requests.

One of the solutions to the above challenges is the integration of large language model
(LLMs) into translation workflows. We will mainly focus on attribute-control translation tasks
in gender and formality. We want to investigate whether LLM can offer the potential for more
precise and context-aware translations and perform well in terms of attribute-control. We
will run experiments on standard translation, LLM-based translation and post-editing tasks to
observe the impact of LLM in improvement of translation.

1.2. Research Questions

Our research question focuses on conducting an analysis of quality and attribute control of
translation from large language models (LLMs).

RQ 1: How well can current state-of-the-art LLMs (e.g., Llama 3.1) achieve attribute-
controlled translation into diverse target languages? How much does the performance
differ under zero-shot and few-shot setups?

By providing additional examples in prompts, LLMs may identify grammatical patterns and
adjust translations based on learned knowledge. Comparing zero-shot and few-shot setups
allows us to assess the model’s ability to handle different scenarios.

RQ 2: To what extent can LLM-based post-editing improve the output of standard
translation models (in both quality and attribute control)?

With specific instructions in the prompt, LLMs can focus on attribute control, potentially
improving translation quality. The study aims to evaluate performance in both quality and
attribute control under this setup.

RQ 3: To what extent can attribute-controlled translation examples from different
languages help?
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This research evaluates how the inclusion of few-shot translation examples from different
languages, especially those from the same language root, can help LLMs detect attribute control
changes and apply them to new translation tasks.

RQ 4: How can we detect from the input sentence alone whether the model needs
additional attribute information?

The study explores whether LLMs can identify the necessity for additional attribute infor-
mation before translation. The model may be asked to rate the need for additional attribute
information on a 0-10 scale, providing insights into its awareness and confidence in its transla-
tion task.



2. Background and Related Works

This chapter introduces the concepts presented in this thesis. The first part will focus on NLP
models. We start with transformer model and transformer-based architectures. Then we move
to state of the art models for translation such as NLLB and LLM-based MT models. Next we
will explain the attributed controlled translation and challenges involved. The second part is
related work in attributed controlled translation with LLMs. We highlight the main differences
between this thesis and prior works.

2.1. Language Modeling

2.1.1. Formal Definition

A formal definition of language modeling task is “to learn the joint probability function of
sequences of words in a language” (Bengio et al., 2003).

P(x) = ]_[ P(xi|x1s oo Xie1) (2.1)
i=1

x is a sequence which is composed of words {x;, xz, ...x, }.
P(x) is the probability of generating this sequence.
P(x) = P(x1,x2,...,xy,) is factorized as P(x1) X P(x3 | x1) X --- X P(x, | X1,...,Xn-1).

This allows models to predict the probability distribution of the next token given previous
tokens, which is the fundamental operation underlying text generation, completion, and other
NLP tasks.

2.1.2. Transformer Model

The Transformer model (Vaswani et al., 2017) is built based on the sophisticated architecture
where multi-head attention plays a significant role. Other models like RNNs (Recurrent neural
networks) (Werbos, 1990) process data sequentially, one token at a time, carrying a hidden
state forward, which causes a bottleneck for efficiency, especially for long sequences. The
mutli-attention mechanism enables Transformer to perform parallelization by processing the
entire sequence at once.

To start with, a text input is tokenized, mapped into a sequence of embedding tokens, and
then encoded using positional encoding. Positional encoding injects the information of relative
or absolute positions of the tokens, so Transformer can be aware of the order of the sequence.
Then the tokens are passed into encoder.

The encoder is composed of stacks of layers. Each layer includes two sub-layers: a multi-
head attention mechanism, followed by a fully connected feed-forward network. After each
sub-layer a normalization is applied. After multiple encoder layers, the final representation of
each token is passed to the decoder.
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Figure 2.1.: Multi-head attention

Like the encoder, decoder has multiple layers, but with an additional attention mechanism.
Decoder started with positional encoding and then enter into a layer composed with three
sub-layers: Masked multi-attention, multi-head attention and feed-forward network. After
each sub-layer normalization is applied. Masked self-attention is autoregressive, which means
that the decoder can only attend to past tokens in the sequence to prevent "seeing the future
The multi-head attention mechanism in decoder performs over the encoder’s output, which
helps the decoder attend to relevant encoder states. The output of the final layer will be
converted into predicted next-token probabilities through learned linear transformation and
softmax function.

Multi-head attention mechanism divides its processing into multiple parallel heads.
Each head independently performs its own attention computation on different parts of the
input representation. These separate attention outputs are then concatenated together and
linearly transformed before moving to the next layer. This multi-head approach allows the
model to simultaneously attend to information from different representation spaces at different
positions, capturing various aspects of the input data in parallel.

For each layer in multi-head attention we map a query and a set of key-value pairs to an
output, where the query, keys, values, and output are all vectors. The output is computed
as a weighted sum of the values, where the weight assigned to each value is computed by a
compatibility function of the query with the corresponding key.

In each layer, we have a Scaled Dot-Product Attention. The input consists of queries and
keys of dimension dy, and values of dimension d,. We compute the dot products of the query
with all keys, divide each by Vdy, and apply a softmax function to obtain the weights on the
values.

In practice, we compute the attention function on a set of queries simultaneously, packed
together into a matrix Q. The keys and values are also packed together into matrices K and V.
We compute the matrix of outputs as:
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Attention(Q, K, V) ft (QKT) \%4 (2.2)
ention(Q, K, V) = softmax .
Vi

Feed-forward networks (FFN) consists of two linear transformations with a ReLU (Rec-
tified Linear Unit) activation in between. The input vector is denoted as x, while W; and W;
represent the weight matrices for the hidden and output layers, respectively. Similarly, b,
and b, are the corresponding bias terms for these layers. The function max(0, -) represents
the ReLU activation, which is applied to the hidden layer to introduce non-linearity into the
network.

FFN(x) = max(0,xW; + by)W, + b, (2.3)

2.1.3. Architectures
2.1.3.1. Encoder-only

An encoder-only model focuses on processing the input data to create a contextual representa-
tion of it. It encodes the entire input before producing any output. Due to the lack of decoding
mechanism, it cannot convert its representations back into text in a target language. Thus it is
not suitable for translation tasks.

An example of Encoder-only model is BERT (Devlin, 2018)(Bidirectional encoder repre-
sentations from transformers). BERT learns to represent text as a sequence of vectors using
self-supervised learning. BERT is trained by masked token prediction and next sentence
prediction. As a result of this training process, BERT learns contextual, latent representations
of tokens in their context.
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2.1.3.2. Encoder-Decoder

Encoder-Decoder model is particularly effective for tasks like machine translation, where
understanding the source language is crucial for producing an accurate and fluent translation
in the target language.

T5 (Text-to-Text Transfer Transformer) (Raffel et al., 2020) is an example of Encoder-Decoder
model. It use a standard encoder-decoder Transformer (Vaswani et al., 2017). The underlying
idea is to formulate every text processing problem into a “text-to-text” problem, i.e. taking
text as input and producing new text as output. Every task, including translation, question
answering, and classification, will be cast as text and fed into the model. Then the model will
generate the target text as output.

2.1.3.3. Decoder-only

Decoder-only models are designed to generate output sequences based solely on the preceding
context and are trained using supervised learning techniques on large corpora of text data.
The training objective often involves maximizing the likelihood of the correct token given the
previous tokens, commonly using loss functions such as cross-entropy loss. The examples of
Decoder-only model include LLaMA.

LLaMA 3.2 introduces a family of language models with varying capabilities: text-only
models at 1B and 3B parameters, and multimodal models handling both text and images at
11B and 90B parameters. These models were derived from LLaMA 3.1(Dubey et al., 2024),
which was originally trained with 405B parameters and 126 layers. The development of
LLaMA 3.2 included a multi-stage training process starting with LLaMA 3.1 as the base. Image
adapters were added to the larger models for multimodal tasks, and the smaller models were
optimized through structured pruning and knowledge distillation to retain performance while
reducing model size. In post-training, techniques such as supervised fine-tuning (SFT), rejection
sampling (RS), and direct preference optimization (DPO) were applied to further align these
models for robust, real-world applications.

2.2. Machine Translation

2.2.1. Formal Definition

Machine Translation (MT) is defined as "The automatic translation of text from one human
language into another" (Kenny, 2018) or "Conceived as computational systems that translate
texts from one language to another" by NLLB team (Costa-jussa, Cross, et al., 2022). It has
evolved from Statistical Machine Translation(SMT) (Lopez, 2008) towards encoder-decoder
Neural Machine Translation (NMT) (Sutskever, Vinyals, and Le, 2014; Bahdanau, Cho, and
Bengio, 2014). In recent years there exists more development of LLM-based MT models.

NMT is defined as "an end-to-end learning approach for automated translation, with the
potential to overcome many of the weaknesses of conventional phrase-based translation
systems." (Wu et al., 2016). Traditional machine translations such as Deep Neural Networks
(DNNs) work well with large labeled training sets, but they cannot be used to map sequences to
sequences. NMT typically consists of two recurrent neural networks (RNNs), one to consume
the input text sequence and one to generate translated output text.

In NMT we use this method in 2.4 is for tasks like language modeling and text generation,
where the likelihood of the next word is determined by the previous words and relevant context
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c. The probability of a word sequence x given a condition c, denoted as P(x, c¢), is calculated
by multiplying the probability of each word appearing in order, conditioned on the preceding
words and c.

n
P(x.e) = | | P | x1, o xicn0) (24)
i=1

x is a sequence which is composed of words {x1, x3, ...x, }.
¢ is a condition.
P(x, c) is the probability of generating this sequence with c as condition.
P(x,c) = P(x1,%3,...,Xp,c) is factorized as P(x1,¢) X P(x2 | x1,¢) X+ X P(xp | X1,...,%Xn_1,C).

2.2.2. State-of-the-Art Models
2.2.2.1. Dedicated Models

NLLB-200 (Costa-jussa, Cross, et al., 2022) (No Language Left Behind) currently has 1.3B,
3.3B, distilled 600M and distilled 1.3B models. NLLB-200 uses an encoder-decoder model for
translation over 200 languages. Since some low-resource languages (Joshi et al., 2020) lack data
availability, a many-to-many multilingual human-translated dataset FLORES-200 (Costa-jussa,
Cross, et al., 2022) was built based on FLORES-101 (Goyal et al., 2022), whose coverage capped
at 100 languages. Flores-200 covers 204 languages and consists of translations from 842 distinct
web articles, totaling 3001 sentences. These sentences are divided into three splits: dev, devtest,
and test.

To collect highly accurate parallel texts in more languages, sentence encoder LASER3 (Costa-
jussa, Cross, et al., 2022) (Language-agnostic sentence representations) was developed from
the earlier version LASER (Heffernan, Celebi, and Schwenk, 2022). LASER3 used Transformer
model and teacher-student training and language-group-specific encoders to boost performance.
This enables LASER3 to scale language coverage identifying aligned bitext for 148 languages.

2.2.2.2. LLM-based MT models

The examples of LLM-based MT model include Tower (D. M. Alves et al., 2024), ALMA (Xu
et al., 2023) and Aya-101 (Ustiin et al., 2024).

TOWER was extended from Llama 2 (Touvron et al., 2023) and through continued pretraining
on a multilingual mixture of monolingual and parallel data, creating TOWERBASE model.
The training dataset comprises 20 billion tokens for 10 languages : English (en), German (de),
French (fr), Dutch (nl), Italian (it), Spanish (es), Portuguese (pt), Korean (ko), Russian (ru),
and Chinese (zh). Then the dataset to specialize LLMs for translation-related tasks called
TOWERBLOCKS is created. TOWERBLOCKS focuses on both data diversity and quality.
It collects records from various existing datasets, reformulating them into question-answer
pairs, emphasizing zero-shot and few-shot instructions to enhance multilingual understanding.
For quality, the dataset uses human-annotated records, avoids data from 2023 onwards, and
filters out low-quality translations and translationese. TOWERBLOCKS is used for finetuning
TOWERBASE model, creating TOWERINSTRUCT model.

ALMA (Advanced Language Model-based trAnslator) is based on LLaMA-2 7B model. The
development of ALMA model comprises two stages: continuous monolingual data fine-tuning
and high-quality parallel data fine-tuning. To address conventional LLMs’ bias towards English-
dominated corpora, ALMA incorporated monolingual data from non-English languages.
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Aya-101 covers 101 languages, 53% of which are lower-resourced. It is built on mT5
model (Xue et al., 2021). The mT5 model consists of 13 billion parameters, with 1 billion
parameters allocated to token embeddings. Aya-101 is fine-tuned using the Adafactor opti-
mizer (Shazeer and Stern, 2018), with a learning rate of 3 X 104 and a batch size of 256.

2.2.3. Attribute-controlled translation

Attribute-controlled translation (ACT) (Sarti et al., 2023) is a subtask of machine translation
that involves controlling stylistic or linguistic attributes (such as formality and gender) in
translation outputs. ACT takes three inputs: a sentence x , a condition ¢ and a desired target
attribute a. The goal is to produce a translation y that is chosen from the highest probability
that aligns with the specified attribute. This can be formulated as:

n
P(x,c,a) = 1_[ P(xi|x1, ..., xi—1, ¢, a) (2.5)
i=1

x is a sequence which is composed of words {x1, x3, ...x, }
P(x, ¢, a) is the probability of generating output y with condition ¢ and attribute a.
P(x,c,a) = P(x1,x2,...,Xn ¢, a) is factorized as P(xy,c,a) X P(xy | x1,¢,a) X -+ X P(x, |
X1y s Xn_1,C Q).

2.3. Related Work
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Related work Focus Method Model Relevance to this
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Fine-grained Gender = Gender-of-Entity Checks LLM’s abil- Llama 2 70B, RQ4: Ambiguity de-
Control with LLMs (GoE) prompting ity toderive correct ChatGPT 3.5 tection; LLM as Gen-
(Section 2.3.1) for LLMs gender of ambigu- der Evaluator met-
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Generating Gender Generating gender Creates a mapping M2M 1.2B, RQ1and RQ2: Trans-
Alternatives in Ma- alternatives for am- from gender- GPT-3.5- lation with ambigu-
chine Translation biguous entities ambiguous entities  turbo ous entities
(Section 2.3.2) to gender struc-
tures
Gender-specific Using in-context Runs LLM in few- NLLB 3B, RQ1: Comparison
Machine Transla- examples to trans- shot to output two Llama-2 70B  of standard transla-
tion with Large late gender-neutral sentences with dif- tion and LLM perfor-
Language Models source to gender- ferent genders mance
(Section 2.3.3) specific targets
Leveraging GPT-4 Using LLM for Post-editing with GPT-4, GPT- RQ2: Comparison of
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lation Post-Editing editing to improve of Thought (CoT) and  Post-editing
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on Pretrained Multi-
lingual Translation
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vations to adjust
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trained from
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translation quality

Models (Section OPUS-100)
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Controlled Trans- tion using LLMsin Attribute Marking GPT-NEOX  tion and LLM perfor-
lation (Section few-shot and zero- mance

2.3.6) shot

Table 2.1.: Summary of Related Work
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2.3.1. Fine-grained Gender Control with LLMs

Lee(Lee et al., 2024) investigated the Gender-of-Entity(GoE) (Lee et al., 2024) prompting method
for LLMs where LLMs are explicitly instructed to translate the source text with additional
entity-level gender information. More specifically, the prompt includes "Gender Annotation:
for [ENT_1], use [GENDER_1];...; for [ENT_n], use [GENDER_n]" where ENT_i refers to the i-th
entity and GENDER_1i refers to the i-th entity’s correct gender.

The input sentences are divided into four various scenarios: sentences with single am-
biguously gendered entity, multiple ambiguously gendered entities, mixed gendered entities,
and complex unambiguous entities. For assessment, single ambiguous entity is selected from
MuST-SHE (Bentivogli et al., 2020), multiple ambiguous entities are from GATE (Rarrick et al.,
2023), mixed entities are from WinoMT (Stanovsky, Smith, and Zettlemoyer, 2019) and dataset
from Saunder (Saunders, Sallis, and Byrne, 2020), and complex unambiguous entities are from
MT-GenEval (Currey et al., 2022). The author uses NLLB as comparison to investigate the
performance of LLMs Llama 2 70B and ChatGPT 3.5.

The author further creates three baseline methods based on NLLB-200 600M: gender prefix-
ing, gender-specific fine-tuning (FT), and inference-time classifier guidance (CG). For LLM
models, author executes experiment with baseline and GoE prompting setup. For scenario with
mixed entities, it is discovered that the specified gender of ambiguous gender entity in prompt
will interfere the gender of the other entity that are gender unambiguous. The author thus
created two GoE prompts: GoE_amb and GoE_full, where the former specifies only the gender
of the ambiguous gender entity, while the latter gives out all entity genders. For scenario
with complex entities, author applies Gender-Aware Contrastive Learning(GACL) method on
NLLB to further improve gender-debiasing. For scenario with complex entities which runs
on MT-GenEval’s contextual dataset, to solve the lack of entity annotation, author uses the
Spacy 3 dependency parser to extract the noun phrase of the second sentence while using the
gendered word list (Zhao et al., 2017) to extract the gender of the entity in the first sentence(the
first sentence is context that should be used to infer the gender of the entity).

In this work, because the automated gender accuracy metric is dependent on the annotated
gender terms, which poses problems with synonyms or grammatical structures, the author
also evaluated the gender-controlled performance by using LLM as Gender Evaluators (LGE).

The key difference between this study and my work lies in the Gender-of-Entity (GoE)
prompting method. Unlike GoE, my approach doesn’t extract nouns or map entities to specific
genders. Instead, my prompts use general wording to indicate the presence of a human and
the desired feminine or masculine gender form. This aims for a broader gender understanding
by the LLM rather than an entity-specific one.

Specifically, when dealing with complex entities in MT-GenEval’s contextual dataset (where
gender isn’t explicitly provided), my prompts instruct the LLM to infer the correct gender form
logically from the surrounding context. This tests the LLM’s ability to deduce gender from
context.

Furthermore, my experiments use the standard NLLB baseline without any fine-tuning,
allowing for a direct performance comparison between the LLM and a traditional NMT model.

2.3.2. Generating Gender Alternatives in Machine Translation

When the MT system is not able to disambiguate gender through context, this study (Garg
et al., 2024) suggests providing multiple translation alternatives that cover all valid gender
choices. The entity-level alternatives are grouped into a single structured translation with
embedded gender structures.
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The study uses test sets from GATE’s gender-ambiguous dataset and MT-GenEval’s con-
textual dataset where the gender can be inferred from the sentence context. Theses datasets
are later post-edited to include marked entities and gender-marked head words. Head word
is representative of words that are referring to the same entity. For training data, the study
uses train sets from Europarl (Koehn, 2005), WikiTitles (Tiedemann, 2012), and WikiMatrix
(Schwenk et al., 2021) corpora. The train data is split into G-Tag and G-Trans, the former
contains gender-marked headwords and the latter contains gender-ambiguous entities in the
source sentences, gender structures in the translations and gender alignments.

It also developed a semi-supervised approach that leverages pre-trained MT models (fine-
tuned M2M 1.2B (Fan et al., 2020) model using fairseq (Ott et al., 2019)) or LLMs (gpt-3.5-turbo
model) for data augmentation.

This study addresses attribute ambiguity by generating all possible translations, whereas
my thesis aims to produce a single, definitive translation. This single-output approach is more
practical for users unfamiliar with the target language, eliminating the need to choose among
alternatives. Furthermore, while this study focuses on data augmentation and model training,
my thesis centers on analyzing the inherent behavior of existing LLM models in response to
varied prompt designs.

2.3.3. Gender-specific Machine Translation with Large Language Models

This study (Sanchez et al., 2023) focuses on using in-context examples (ICEs) to translate
from a gender-neutral source sentence to two gender-specific target sentences. It evaluates
translation in gender control and quality control. For gender control, it uses coreference
resolution accuracy and for quality control it uses BLEU. It uses FLoRes to prove the reliance
on coreference resolution of the gender-specific translation method.

This study uses MULTILINGUAL HOLISTIC BIAS (MHB) (Costa-jussa, Andrews, et al., 2023)
dataset as gender-focused dataset, BUG’s (Levy, Lazar, and Stanovsky, 2021) gold set for gender
bias analysis, and FLoRes devtest set as general translation dataset. It uses NLLB 3B model and
Llama-2 70B model with both ICEs and standard MT template to execute translation tasks.

A key difference from this study is that my thesis focuses on single-output generation per
input, rather than producing both masculine and feminine translations. The study’s dual-
gender outputs allow for an investigation into coreference resolution using gender-specific
(MHB) and general (FLoRes) datasets by analyzing BLEU score differences, which is not a focus
of my thesis.

2.3.4. Leveraging GPT-4 for Automatic Translation Post-Editing

Raunak(Raunak et al., 2023) demonstrated that GPT-4 (Achiam et al., 2023) is adept at translation
post-editing, producing meaningful edits to translations that help improve its general quality
and remove major errors in the text. This study focuses on four research questions: Nature of
the Post-Edited Translation, General Quality Improvements, Edits On Human Annotated Error
Spans and Trustworthiness of the Proposed Edits.

The experiment used WMT-22 General MT translation task datasets (Kocmi et al., 2022)
as well as WMT-20 and WMT-21 News translation task submissions annotated with MQM
(Multidimensional Quality Metrics Framework) errors (Freitag et al., 2021). For LLMs, author
uses GPT-4 and gpt-3.5-turbo in the experiments. For initial translation, the author uses
Microsoft-Translator and other NMT systems. The post-edit prompts are set under three
settings: (i) post-editing with a Chain of Thought (CoT), (ii) post-editing without CoT and
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(iii) post-editing with Structured-CoT (SCoT). Apart from instructions for translation task,
CoT here specifically means that LLM is asked to give proposed improvement steps and then
provide the improved translations. Structured-CoT (SCoT) is defined as CoT in the form of an
MQM annotation.

For RQ1, the author investigates whether LLM is translating directly from source sentence
even though it produces steps of proposed improvement. For RQ2 the author investigates
the quality of improved translation from post-editing tasks. For RQ3 the author investigates
whether LLM is capable of discovering the errors in text and modifying them. For RQ4 the
author investigates whether proposed improvement exists in the improved translation.

In contrast to this study, my thesis does not employ Chain-of-Thought (CoT) prompting. As
this study acknowledges the potential for LLMs to disregard provided CoT and the risk of CoT
diverting focus from translation quality, my work prioritizes a post-editing task with minimal
distractions, excluding CoT. Furthermore, my thesis does not evaluate the LLM’s ability to
identify and correct specific errors, but rather focuses on improvements in overall translation
quality control and attribute manipulation.

2.3.5. Transferability of Attribute Controllers on Pretrained Multilingual
Translation Models

Liu (Liu and Niehues, 2023) explored inference-time control using gradient-based classifier
guidance on a pretrained model to assess the transferability of the attribute controller across
multiple languages. The experiment begins by training classifiers for various attributes on
decoder activations, utilizing their predictions to adjust model activations at inference time to
align with the desired attributes. The experiment used COCOA-MT (Nadejde et al., 2022) and
MuST-SHE (Bentivogli et al., 2020) respectively for formality and gender controlled translation.
For the translation task directions, Transfer to New Target Languages and Transfer to New
Source Languages are both tested. The NLLB-200 distilled 600M model (Costa-jussa, Cross,
et al., 2022) served as the pretrained model, while the OPUS-100 (Zhang et al., 2020) model
was used as a Transformer-based model.

For gender-controlled experiments, this study utilized the MuST-SHE dataset, available for
English-French, English-Italian, and English-Spanish. In contrast, this thesis employed the MT-
GenEval test and development datasets, encompassing 8 and 9 language directions, respectively.
Our multilingual experiments specifically examined English to Spanish, Portuguese, German,
and Dutch translations, incorporating third-language translation pairs as prompt examples,
thus covering both Latin and Germanic branches of the Indo-European language family.
Furthermore, while this study centers on extending a pretrained NLLB-200 model for attribute
control using classifier guidance, my thesis primarily focuses on prompting LLM models to
analyze their performance in attribute-controlled translation tasks.

2.3.6. Enhanced Prompting for Attribute-Controlled Translation

Sarti (Sarti et al., 2023) proposed RAMP (Sarti et al., 2023) (Retrieval and Attribute-Marking En-
hanced Prompting) method that enhances Attribute-Controlled Translation by utilizing LLMs
models in few-shot and zero-shot settings. RAMP improves generation accuracy compared to
standard prompting by incorporating two key components: (1) a Semantic Similarity Retrieval
system that selects relevant in-context examples that will be used in a descending order in
terms of similarity to the source sentence and (2) Attribute Marking which uses annotations to
specify words that is related to attribute, allowing the model to better understand and apply
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the desired attributes during translation. Specifically for one prompt, after the translation
instruction, an extra sentence will be added that specifies the text spans that convey the desired
attribute. For instance, the prompt for formality control is written as :" Given a sentence x, its
translation y can be generated in a specific style. The translated sentence conveys the desired
style by incorporating words such as w; and w,." Here w; and w, will indicate the formality
label.

The experiment used COCOA-MT (Nadejde et al., 2022) and MT-GenEval (Currey et al.,
2022) respectively for formality and gender controlled translation. For LLMs, it used XGLM
(Lin et al., 2022), BLOOM (Le Scao et al., 2023) and GPT-NEOX (Black et al., 2022).

Different from this study, my thesis does not assess the similarity between example trans-
lations and the source sentence, resulting in no similarity-based ordering of examples. All
examples in my prompts are selected randomly. Furthermore, my prompts do not include
explicit attribute marking, requiring the LLM to identify attribute-related words without any
direct cues.
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3. Approaches

We propose to implement three modules: the translation module, the post-editing module, and
the module for detecting missing attribute information.

In the context of investigating translation and post-editing performance, comparing NLLB’s
encoder-decoder approach with the autoregressive decoding of LLMs will help to highlight
the strengths and limitations of both architectures in producing accurate, attribute-controlled
translations across various languages.

For detecting missing attribute information, we aim to assess the ability of LLMs to identify
ambiguous entities that are crucial to the translation task.

3.1. Dedicated model

3.1.1. NLLB

NLLB (No Language Left Behind) is a conventional neural machine translation (NMT) model
that employs the traditional encoder-decoder architecture. In this setup, encoder transforms
the source token sequence into a sequence of token embeddings. The decoder attends to the
encoder output and autoregressively generates the target sentence token by token. NLLB is
trained on large-scale multilingual datasets and is capable of translating between 202 languages,
with a focus on underrepresented ones.

3.2. LLM-based translation module

NMT models like NLLB are traditionally designed to process an input sequence and generate
its translation without explicit attribute control. However, translation can be ambiguous when
the target language depends on attributes such as formality or gender that are absent in the
source language. Unlike standard NMT models, LLMs enable attribute-conditioned translation
through prompt design, allowing users to specify desired output characteristics.

LLMs typically follow a decoder-only architecture and generate text in an autoregressive
manner, meaning they produce one token at a time based on previous tokens. This differs from
the encoder-decoder paradigm, where input and output sequences are processed in parallel.
Despite this difference, LLMs have shown strong performance in translation tasks when guided
by the prompts.

We explore two prompting strategies: zero-shot and few-shot translation. In the zero-shot
setup, the model receives only task instructions and attribute specifications, without seeing any
example translations. In the few-shot setup, the prompt includes a small number of example
translations from a development dataset. This approach is defined as in-context learning
(Brown et al., 2020), where a pre-trained LLM generalizes patterns from provided examples
at inference time, without requiring fine-tuning. Previous work (Brown et al., 2020) has
demonstrated that LLMs such as GPT-3, can effectively perform effective translation through
few-shot learning without updating their parameters.
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3.2.1. Zero-shot

The Llama prompt consists of the system prompt and the user prompt. System prompt provides
initial instructions and constraints for the model, defining its behavior and role. User prompt
provides the actual input from the user, specifying the request or task for the model to respond
to.

In the zero-shot setup, the system prompt S includes clear instructions about the translation
task, the target language [, and the desired attribute a. The source sentence x is placed in the
user prompt. The LLM then generates the hypothesis sentence h/MM7eroshot haged on these
instructions. The function f(), parameterized by an LLM, represents this process as:

hLLM-zero-shot — f(S, l,a,x) (3.1)

3.2.2. Few-shot

In the few-shot setup, we provide a sequence of k labeled translation pairs from the development
or training dataset. The system prompt (S used in the zero-shot setup remains the same, and
the translation pairs (x;, y;) are appended directly after the system prompt. Each translation
pair is represented as (x;, y;), where x; is the i-th source sentence, and y; is the corresponding
translation from the reference set. The language [ and attribute a remain the same for all
translation pairs.

For the translation task, the source sentence xy.1 is placed in the user prompt, and the LLM
is expected to generate the hypothesis hkL?A'feW'ShOt. This process can be expressed as:

pEHewsshot — (5 {(x1, 41, -, (%6 Yk 1, 1, @ Xper1) (3.2)

3.2.3. Multi-lingual

Given the scarcity of supervised pre-trained models for low-resource languages and the even
greater shortage of attribute-controlled datasets, we propose investigating the potential of
using a third language as an exemplar. Through in-context learning, we aim to enable LLM to
recognize patterns from this third language examples and transfer this knowledge to target
translation.

We aim to investigate how the inclusion of translation examples in a third language influences
the translation quality in the target language. Similar to the Translation few-shot module
above, right after the system prompt S, where we indicate the target language ! and the desired
attribute a, we insert a sequence of k labeled translation pairs (x;, y;) where the target language
is in the third language. Then, we place the source sentence xj; in the user prompt. The LLM

is then expected to output the hypothesis hiﬁullti. This process can be expressed as:
R = £ (S { (e ¥ (o YD 1 L @, X ) (3.3)

3.3. Post-editing module

We aim to investigate the extent to which the post-editing module can enhance translation
quality and enforce attribute control.
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3.4. Identify of missing attribute

3.3.1. Post-editing Zero-shot

In a zero-shot setting, we give LLM an instruction in system prompt S that details the desired
attribute a and target language I. The LLM’s task is to refine the grammar of a given translation
pair (x, h). Specifically, we ask it to improve the translation by ensuring accurate gender usage
and consistent gender-related grammatical agreement. The original pair (x, h) comes from
standard translation, and the LLM is expected to generate a better translation, pPost-edit zero-shot
This process can be expressed as:

hPost-edit zero-shot _ f(S, (x,h),1,a) (3.4)

3.3.2. Post-editing Few-shot

The post-editing few-shot approach employs a prompt S structure similar to the zero-shot
setup, but extends it by including k input-output translation pairs in the form of (x;, y;) from
training or development set. These pairs serve as demonstrations of the desired grammatical
transformations, emphasizing gender accuracy and alignment. We insert the to-be-improved
hypothesis pairs (xk+1, hx+1) in user prompt. The LLM is expected to generate an improved

: « lPost-edit few-shot ; .
hypothesis h, . This process can be expressed as:

pPosteditfewsshot — £(g £ (xy, y1), ..., (o6 i) 1o L @ (X, Brsr)) (3.5)

3.4. Identify of missing attribute

To assess the LLM’s ability to identify missing gender attributes, we initially used a binary
"Yes"/"No" classification for determining whether additional attribute information was needed
for translation. While accuracy averaged 97.62% across all language directions for ambiguous
datasets, we suspect LLMs might be overly cautious, frequently defaulting to requesting
additional information when faced with uncertainty.

To gain more nuanced insights into detection confidence, we switched to a 0-10 scale.
In our instructions, we ask the LLM to rate whether a source sentence requires additional
gender specification, focusing on human references and grammatical indicators like pronouns,
gendered terms, and possessive adjectives. The source sentence xies; from the test set is
provided in the user prompt, and the model outputs a rating i from 0 to 10.

This process can be expressed as:

Ftest_amb_m = f (I, Xtest_amb_m) (3.6)
F'test unamb n = f (L xtest_unamb_n) (3~7)
Fdev_amb_i = f (I, Xdev_amb_i) (3.8)
Tdev_unamb_j = f (I, Xdev_unamb_j) (3.9)

Ttest amb_m 1S the rating for the m-th ambiguous sentence from the test set.
Ttest unamb_n 1S the rating for the n-th unambiguous sentence from the test set.
Tdev amb, i is the rating for the i-th ambiguous sentence from the development set.

Tdev_unamb_j is the rating for the j-th unambiguous sentence from the development set.
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For evaluation, we need to run ambiguous Xgey amb i and unambiguous Xgev unamb_j Source
sentences from the development set. We then use the rating results 74ey amb i and 7dey unamb j
to calculate the accuracy for each threshold t4e, from 0 to 10 per language direction. This
accuracy measures how many ambiguous sentences receive scores above the threshold and
how many unambiguous sentences receive scores below or equal to it. The optimal threshold
toptimal i the one that maximizes this accuracy.

The accuracy Agey for a threshold t4e, can be computed using Accuracy function:

Adev = Accuracy(tdey)

1 Namb Nunamb

- TN D ey amb i > taer) + . I(Fdey unamb j < taev) (3.10)
am unam

i=1 j=1

where [ is the indicator function, which is 1 if the condition is true, and 0 otherwise. Ny,
and Nynamp are the total number of ambiguous and unambiguous sentences in this language
direction, respectively.

The optimal threshold t,p; is the value of #4ey that maximizes the accuracy:

topt = arg max Accuracy (fdev) (3.11)
tdev

Once the optimal threshold is determined, we apply it to the test dataset. The accuracy Agest
is calculated by comparing the LLM’s ratings against the optimal threshold t.p;, which gives:

Atest = TestAccuracy (test)

1 Ntestiamb Ntestiunamb
= Z I[(r test amb_m > topt) + Z I( rtest_unamb_n < topt)
Ntest_amb + N test_unamb m=1 =1

(3.12)
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4. Experimental Setup

In our experiments, we explore attribute-controlled translation, post-editing, and attribute
detection using the Llama (Dubey et al., 2024) model. For translation and post-editing, we focus
on quality control and attribute control, specifically targeting formality and gender control. In
the attribute detection task, our primary objective is to determine an optimal threshold and
assess the accuracy rate in identifying ambiguity. These experiments provide a structured
evaluation of the model’s ability to control attributes and detect ambiguity effectively.

4.1. Dataset

In this work, we consider three types of tasks: translation tasks, post-editing tasks, and
identifying missing attribute tasks. For translation tasks, we will conduct standard machine
translation using NLLB, as well as translation with Llama in both zero-shot and few-shot
settings, including multi-lingual translation. Post-editing tasks will involve refining translations
using Llama in zero-shot and few-shot modes. For identifying missing attribute tasks, we will
focus on detecting missing attributes in translated text using a contextual dataset. All tasks will
be evaluated on CoCoA-MT (Nadejde et al., 2022) for formality-control and MT-GenEval for
gender-control, with the missing attribute detection task specifically utilizing the contextual
dataset from MT-GenEval (Currey et al., 2022).

4.1.1. Overview of CoCoA-MT (Contrastive Controlled MT)

CoCoA-MT covers formality-controlled translation in the conversational domain, where the
source sentences lack explicit formality markers, but the translations need to include formality
annotations (formal or informal).

The dataset consists of contrastive translations with phrase-level annotations of formality
and grammatical gender in eight diverse language pairs: English (EN) — French (FR), German
(DE), Hindi (HI), Italian (IT), Japanese (JA), Spanish (ES), Portuguese (PT) and Dutch (NL).

CoCoA-MT Test set CoCoA-MT Train set
# Directions 8 8
# Sent. per direct. per att. 600 400 (except for JA: 1000)
Avg sentence length 110 106
Domain Topical-Chat, Telephony,  Topical-Chat and

and Call Center Telephony

Table 4.1.: Formality control dataset statistics
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4.1.2. Overview of MT-GenEval (Machine Translation Gender Evaluation)

MT-GenEval covers translations in two genders (female and male) from English (EN) into nine
diverse and widely-spoken target languages: Arabic (AR), French (FR), German (DE), Hindi
(HI), Italian (IT), Portuguese (PT), Russian (RU), Spanish (ES) and Dutch(NL).

Built from Wikipedia sources, it consists of two distinct subsets: a counterfactual sub-
set and a contextual subset. The counterfactual subset features gender-specific sentences
paired with their gender-flipped counterparts, comprising 600 test segments and 2400 devel-
opment segments across multiple language pairs including English-Hindi, English-Italian,
and English-Spanish. The contextual subset introduces profession-based sentences that are
inherently gender-ambiguous but become disambiguated through preceding context, covering
stereotypical female, male, and neutral professions.

MT-GenEval
Counterfactual Counterfactual Contextual Contextual
test dataset dev dataset test dataset dev dataset
# Directions 8 8 9 (new direction: 9
Dutch)
# Sent. per direct. 300 1200 between between
per gender 1078-1100 397-792
Avg sentence 141 127 255 (context 256 (context
length only: 143; src only: 143; src
only: 109) only: 110)
Domain Refers to Same as test set From Wikipedia Same as test set
individuals of a related to
single gender professions

(female or male)

Table 4.2.: Grammatical gender control dataset statistics

4.2. Evaluation Metrics

In this work, for quality control, we use BLEU (Papineni et al., 2002) (Bilingual Evaluation
Understudy) and COMET (Rei, Stewart, et al., 2020) (Cross-lingual Optimized Metric for
Evaluation of Translation) for evaluation. For attribute control, we use M-ACC (Nadejde et al.,
2022) (Matched-Accuracy), Gender Accuracy (Currey et al., 2022) and LLM as Gender Evaluator
(Raunak et al., 2023) as evaluation methods. The former two methods we use their original
methods without editing. For the latter we created our own prompts for evaluation.

4.2.1. Quality Control
4.2.1.1. BLEU

To evaluate the quality of translation result, BLEU calculates n-gram precision and penalizes
overly short translations. We will use SacreBLEU!(Post, 2018) to compute BLEU score.

!SacreBLEU signature: nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.4.3
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4.2.1.2. COMET

COMET (wmt22-comet-da|version:2.0.0) (Rei, Stewart, et al., 2020; Rei, C. de Souza, et al., 2022)
is a machine translation evaluation metric that uses a pre-trained neural network model to
predict the quality of translations. COMET is designed to correlate well with human judgments
of translation quality. It uses contextual embeddings from models BERT (Devlin et al., 2019),
XLM (Conneau and Lample, 2019) and XLM- RoBERTa (Conneau, Khandelwal, et al., 2019),
which captures deeper semantic information.

4.2.2. Attribute Control
4.2.2.1. M-ACC (Matched-Accuracy)

Matched-Accuracy is used to assess formality-controlled machine translation systems by
quantifying how well system-generated translations align with the desired level of formality
(formal or informal). It compares outputs against annotated reference translations that include
formality-marking phrases, calculating the percentage of correctly classified translations. A
translation is labeled as formal if it contains markers from the formal reference and none from
the informal reference, and vice versa.

4.2.2.2. Gender Accuracy

Gender Accuracy is an automated evaluation method that leverages an reference set containing
both correct translations and contrastive/counterfactual references that differ solely in gender-
specific words. To quantify accuracy, words that are unique to the contrastive reference are
identified by calculating the set difference between words in the contrastive reference and those
in the correct reference (unique_con = weo, \ Wref). This technique isolates gender-specific
words since the correct and contrastive references are identical except for gender-related terms.

A translation is deemed incorrect if it contains any words from this contrastive-only set
(unique_con N wyyp, # 0), indicating that the translation system has used vocabulary specific
to the incorrect gender. This straightforward metric enables automatic evaluation of gender
accuracy in machine translation systems.

4.2.2.3. LLM as Gender Evaluator

The Gender Accuracy metric (from section 4.2.2.2) depends on overlap with the reference,
meaning it may not be reliable when gendered words in translations use synonyms that do
not appear in the reference. Previous research by (Lee et al., 2024) explored using ChatGPT-4
as an evaluator, finding a high correlation with human judgments. Based on these findings, we
plan to use an LLM as the evaluator for gender-controlled translation. In our experiment, we
will use Llama 3.1 as the evaluator and configure the prompt to classify the translation result
as binary.

4.2.3. Multilingual translation

We explore how third-language translation examples influence target language quality. Our
experiments include EN-ES with Portuguese examples, EN-PT with Spanish examples, EN-DE
with Dutch examples, and EN-NL with German examples, using the Counterfactual Gender
dataset. Since the CoCoA dataset lacks a Dutch direction, we run only the first two experiments
for the Formality dataset.
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4.2.4. Ambiguity Detection Evaluation
4.2.4.1. Arrangement on Dataset

For ambiguity detection, we need a dataset that contains both ambiguous and unambiguous
texts within the same domain. However, such datasets are scarce. To address this, we use
the contextual dataset from MT-GenEval, where each entry consists of two parts: a context
sentence that clearly indicates the gender of the main sentence, followed by a <sep> symbol,
and then the main sentence, which is gender ambiguous. This structure allows us to evaluate
how well an LLM perceives ambiguity by leveraging cases where gender information is either
explicitly provided or remains uncertain.

To effectively analyze ambiguity, we divide the dataset into two subsets. The first subset
consists of unambiguous sentences—cases where the context provides sufficient information
to resolve any gender-related uncertainty. The second subset consists of ambiguous sentences,
where even with the given context, gender remains unclear. By structuring the data this way,
we ensure that the LLM is tested on both clear-cut and uncertain cases.

To obtain results, we run an LLM on both subsets and have it rate each sentence on a scale
from 0 to 10, where the score reflects how sure LLM thinks that additional attribute information
is needed to produce a correct translation. Ideally, unambiguous sentences should receive low
scores (close to 0), indicating that no extra information is required. In contrast, ambiguous
sentences should receive high scores (close to 10), signifying that the LLM recognizes the need
for additional details.

4.2.4.2. Evaluation

For evaluation, we first process the development dataset (dev set) to determine an optimal
threshold, which serves as the decision boundary for distinguishing between ambiguous and
unambiguous sentences. To find the best threshold, we iterate over possible values from 0 to
10 and, for each, calculate the classification accuracy. This accuracy is calculating how many
ambiguous sentences receive scores above the threshold and how many unambiguous ones
receive scores below or equal to it. The optimal threshold is the one that maximizes accuracy.

Once the best threshold is established, we apply it to the test dataset. By comparing the
LLM’s ratings against this threshold, we compute the final accuracy. This approach allows us to
assess how well an LLM distinguishes between cases requiring additional attribute information
and those that do not.

4.3. Model

In our experiments, we primarily use Llama 3.1 (Dubey et al., 2024) as our LLM. Based on
the Transformer architecture, Llama 3.1 features 405 billion parameters, 126 layers, a token
representation dimension of 16,384, and 128 attention heads. It is pre-trained on a 15 trillion-
token multilingual corpus, a significant increase from the 1.8 trillion tokens used for Llama 2
(Touvron et al., 2023).
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5. Results

In this chapter, we will evaluate the quality of zero-shot and few-shot results for attribute-
controlled translation and post-editing modules, comparing them with conventional machine
translation model. Additionally, we will examine findings from the ambiguity detection
evaluation using the contextual dataset.

5.1. Overall Comparison

5.1.1. Formality Control

BLEU COMET M-ACC
NLLB Llamazs Llama fs NLLB Llamazs Llama fs NLLB Llamazs Llama fs
1 DE 23.59 33.82 38.25 76.44 82.94 83.55 0.49 0.72 0.97
2 ES 31.64 36.00 39.94 81.18 84.40 84.79 0.29 0.33 0.67
3 FR 28.21 36.28 38.04 75.98 81.73 82.82 0.75 0.94 0.99
4 HI 23.39 22.49 24.49 73.15 76.62 77.46 0.92 0.91 0.97
5 IT 28.05 34.20 38.13 79.72 84.62 84.95 0.09 0.13 0.68
6 JA 7.46 21.10 22.89 75.65 83.70 84.99 0.45 0.53 0.67
7 NL 18.22 27.44 33.00 78.23 84.25 84.88 0.11 0.26 0.87
8 PT 28.58 36.98 40.11 80.03 85.14 85.41 0.48 0.98 0.96
9 Average 23.64 31.04 34.36 77.55 82.93 83.61 0.45 0.60 0.85
10 Avg_both 24.11 31.09 34.27 77.69 82.94 83.62 0.50 0.59 0.83

Table 5.1.: Comparison of NLLB and Llama in Formal dataset

BLEU COMET M-ACC
NLLB Llamazs Llama fs NLLB Llamazs Llama fs NLLB Llamazs Llama fs
1 DE 24.16 34.25 37.96 76.35 82.73 83.40 0.51 0.69 0.90
2 ES 35.45 41.55 42.85 81.80 85.19 85.49 0.71 0.89 0.95
3 FR 24.58 31.49 34.43 75.76 81.81 82.50 0.25 0.32 0.69
4 HI 19.16 19.26 22.58 72.83 76.01 77.17 0.08 0.23 0.63
5 1T 33.70 41.34 42.06 80.86 85.54 85.93 0.91 0.96 0.98
6 JA 7.76 17.68 19.36 76.16 83.89 84.39 0.55 0.52 0.69
7 NL 23.28 32.66 34.33 78.97 84.55 85.02 0.89 0.92 0.95
8 PT 28.59 30.86 39.82 79.84 83.84 85.18 0.52 0.06 0.77
9 Average 24.58 31.14 34.17 77.82 82.95 83.64 0.55 0.57 0.82

Table 5.2.: Comparison of NLLB and Llama in Informal dataset
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Figure 5.1.: Comparison between NLLB, Llama zero-shot (zs), and Llama few-shot (fs) across
different metrics in Formality Dataset

The comparison across different metrics in Figure 5.1 shows that the Llama few-shot setup
achieves the best performance in both quality and attribute control, while NLLB performs the
worst across all evaluation metrics. In terms of quality control, as seen in the BLEU comparison
in Figure 5.1 (a), NLLB scores 24.11, which is 10 percentage points lower than Llama few-shot
at 34.27. In the COMET comparison in Figure 5.1 (b), NLLB scores 77.69, which is 5 percentage
points lower than Llama few-shot at 83.62. One possible reason for NLLB’s poor quality control
is the undertranslation issue, where it may skip sentences or words to avoid contradictions
with the main context, resulting in a less accurate translation.

For attribute control in Figure 5.1 (c), the M-ACC score for NLLB is 0.5, which lags 33
percentage points behind Llama few-shot’s 0.83, demonstrating that the few-shot setup sig-
nificantly improves attribute control compared to conventional machine translation model.
Additionally, Llama few-shot with M-ACC of 0.83 is 24 percentage points higher than the
zero-shot setup with M-ACC of 0.59, which indicates that LLMs can learn and apply patterns
to improve translations.

As can be seen in Table 5.1 and Table 5.2, all models perform relatively worse for Japanese
(sixth row) and Hindi (fourth row) in terms of BLEU scores, with Japanese receiving the worst
scores across all directions.

Regarding formality control, we observe that all models tend to translate French and Hindi
into a formal tone, while Italian and Dutch are translated in an informal tone. As seen in the
third and fourth rows of Table 5.2, both NLLB and Llama zero-shot models have low informal
M-ACC scores for French and Hindi, with NLLB having the lowest informal M-ACC score of
0.08 for Hindi. The opposite pattern is seen in the formal dataset. As shown in the fifth and
seventh rows of Table 5.1, both NLLB and Llama perform poorly with formal Italian and Dutch,
with formal M-ACC scores below 0.26. NLLB, in particular, has the worst formal M-ACC score
of 0.09 for Italian. However, we also observe that the few-shot setup significantly improves
attribute control for all these languages.

We also observed that the Llama model tends to translate Portuguese in a formal tone, as
seen in the eighth row of Table 5.1 with an M-ACC of 0.98 and in Table 5.2 with an M-ACC of
0.06. We will explore this language direction in more detail in Section 5.3 with the Multilingual
model.
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5.1. Overall Comparison

5.1.2. Grammatical Gender Control

5.1.2.1. Counterfactual gender dataset

BLEU COMET LLM as Evaluator
NLLB Llamazs Llama fs NLLB Llamazs Llamafs NLLB Llamazs Llama fs
1 AR 25.46 17.54 19.16 82.09 78.45 79.50 0.86 0.81 0.83
2 DE 43.95 38.66 39.26 85.19 83.57 84.59 0.91 0.93 0.92
3 ES 53.60 48.77 49.65 86.32 85.02 85.65 0.79 0.88 0.87
4 FR 41.04 34.67 38.61 83.82 79.72 82.43 0.85 0.89 0.87
5 HI 30.34 21.26 21.91 78.27 72.88 73.97 0.85 0.87 0.88
6 IT 40.90 35.63 36.41 86.44 85.10 85.58 0.75 0.80 0.77
7 PT 51.44 45.44 46.13 87.93 86.79 87.15 0.86 0.93 0.89
8 RU 37.15 30.71 31.37 86.66 85.63 86.26 0.83 0.87 0.87
9 Average  40.48 34.08 35.31 84.59 82.14 83.14 0.84 0.87 0.86
10 Avg_both 41.30 34.57 35.82 84.90 82.28 83.41 0.87 0.88 0.87

Table 5.3.: Comparison of NLLB and Llama in Counterfactual feminine dataset

BLEU COMET LLM as Evaluator
NLLB Llamazs Llama fs NLLB Llamazs Llama fs NLLB Llamazs Llama fs
1 AR 25.74 17.85 18.77 82.37 78.46 79.50 0.87 0.81 0.81
2 DE 45.12 39.54 40.76 85.95 83.49 85.40 0.87 0.89 0.87
3 ES 54.90 49.23 50.05 87.15 85.93 86.40 0.86 0.88 0.88
4 FR 42.54 34.69 38.76 84.66 78.53 82.98 0.88 0.86 0.88
5 HI 32.60 22.18 23.11 79.37 73.32 74.45 0.93 0.91 0.90
6 IT 42.78 37.82 37.41 86.96 86.25 86.32 0.90 0.92 0.91
7 PT 53.72 47.48 49.04 88.26 87.46 87.81 0.91 0.90 0.90
8 RU 39.51 31.68 32.79 87.04 85.93 86.57 0.91 0.93 0.93
9 Average 42.11 35.06 36.34 85.22 82.42 83.68 0.89 0.89 0.89

Table 5.4.: Comparison of NLLB and Llama in Counterfactual masculine dataset

Gender Accuracy
NLLB Llamazs Llama fs

1 AR 0.71 0.84 0.83
2 DE 0.69 0.77 0.73
3 ES 0.65 0.74 0.70
4 FR 0.64 0.77 0.68
5 HI 0.58 0.73 0.71
6 IT 0.61 0.68 0.66
7 PT 0.65 0.71 0.65
8 RU 0.73 0.83 0.80
9  Average 0.66 0.76 0.72

Table 5.5.: Comparison of NLLB and Llama for Gender Accuracy in Counterfactual dataset
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Figure 5.2.: Comparison between NLLB, Llama zero-shot (zs), and Llama few-shot (fs) across
different metrics in Counterfactual Dataset

As shown in the BLEU comparison in Figure 5.2 (a) for the Counterfactual Gender dataset,
NLLB performs better than the Llama models with a BLEU score of 41.3, which is 5 percentage
points higher. In the COMET comparison in Figure 5.2 (b), all models perform similarly, with
scores around 83.

For gender control in Figure 5.2 (c), we observe two key points: Llama few-shot has a
gender accuracy of 0.72, which is 4 percentage points lower than the zero-shot model (0.76),
contradicting the assumption that few-shot should improve attribute control. Additionally,
NLLB performs worse than both Llama models, with a gender accuracy of 0.66, which is 6
percentage points lower. However, in the LLM as Evaluator metric in Figure 5.2 (d), all models
achieve comparable scores. This could be due to the word-level nature of gender accuracy
metrics, which may introduce challenges related to synonymy.

Regarding translation directions, all models struggle with Arabic and Hindi in terms of
BLEU scores. As seen in the first and fifth rows of Table 5.3 and Table 5.4, all models score
below 33 in BLEU score.

26



5.1. Overall Comparison

5.1.2.2. Contextual gender dataset

BLEU COMET Gender Accuracy
NLLB Llamazs Llama fs NLLB Llamazs Llama fs NLLB Llamazs Llama fs
1 AR 8.43 9.41 12.48 66.60 69.91 74.66 0.87 0.89 0.87
2 DE 21.92 27.95 29.12 73.56 80.92 82.73 0.79 0.83 0.82
3 ES 25.61 43.18 45.57 72.92 83.22 84.73 0.76 0.80 0.80
4 FR 17.95 36.00 38.25 64.70 81.03 82.79 0.78 0.78 0.79
5 HI 19.96 14.93 19.80 68.07 67.53 70.58 0.68 0.74 0.78
6 IT 12.91 30.48 32.31 63.16 82.07 83.86 0.81 0.75 0.77
7 NL 23.74 30.51 33.08 74.85 82.60 84.47 0.78 0.77 0.80
8 PT 20.14 35.03 38.33 68.86 83.18 84.94 0.78 0.80 0.82
9 RU 25.10 23.49 26.63 79.57 81.05 83.53 0.84 0.87 0.88
10 Average 19.53 27.89 30.62 70.25 79.06 81.37 0.79 0.80 0.81
Table 5.6.: Comparison of NLLB and Llama in Contextual dataset
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Figure 5.3.: Comparison between NLLB, Llama zero-shot (zs), and Llama few-shot (fs) across
different metrics in Contextual Dataset

As shown in the BLEU comparison in Figure 5.3 (a), for the Contextual Gender dataset, Llama
outperforms NLLB in both zero-shot and few-shot setups, with scores of 27.89 and 30.62,
respectively, surpassing NLLB’s 19.53 by more than 8 percentage points. In the COMET metric
in Figure 5.3 (b), the results are consistent, with Llama models outperforming NLLB by 8
percentage points. The few-shot setup slightly outperforms the zero-shot setup by an average
of 2 percentage points.

Additionally, the few-shot setup consistently outperforms the zero-shot setup, indicating
that including more translation examples in the prompt helps the LLM recognize patterns and
improve its translations. In terms of gender accuracy, all models perform similarly.

Regarding translation directions, as shown in the first row of Table 5.6, all models (NLLB,
Llama zero-shot, Llama few-shot) perform suboptimally with Arabic in the BLEU metric, with
their worst scores in Arabic at 8.43, 9.41, and 12.48, which are less than half of their average
BLEU scores (19.53, 27.89, and 30.62, respectively). However, in all directions, the few-shot
setup outperforms the zero-shot setup, indicating that the additional in-context examples help
improve performance.
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5. Results

5.2. Impact of Post-editing

5.2.1. Formality Control

5.2.1.1. Formality dataset

BLEU COMET M-ACC

NLLB PEzs PEfs NLLB PEzs PEfs NLLB PEzs PEfs
1 DE 23.59 29.15 31.63 76.44 81.25 82.54 0.49 0.86 0.95
2 ES 31.64 35.68 37.08 81.18 83.37 84.21 0.29 0.70 0.65
3 FR 28.21 32.89 33.78 7598 80.41 81.54 0.75 0.98 0.95
4 HI 23.39 23.68 25.21 73.15 78.28 78.63 0.92 0.98 0.98
5 IT 28.05 31.89 35.37 79.72 83.31 84.62 0.09 0.29 0.53
6 JA 7.46 18.02 19.10 75.65 83.71 84.39 0.45 0.58 0.68
7 NL 18.22 24.56 30.07 78.23 82.94 83.86 0.11 0.54 0.95
8 PT 28.58 32.56 35.16 80.03 83.82 84.36 048 0997 0.934

9 Average 23.64 28.55 30.92 77.55 82.13 83.02 0.45 0.74  0.83
10 Avg_both 24.11 27.69 30.13 77.69 81.75 82.74 0.50 0.75  0.86

Table 5.7.: Comparison of NLLB, Post-edit zero-shot (PE zs) and Post-edit few-shot (PE fs) in
Formal dataset

BLEU COMET M-ACC

NLLB PEzs PEfs NLLB PEzs PEfs NLLB PEzs PEfs
1 DE 24.16  28.21 30.21 76.35 80.72 81.41 0.51 089 0.94
2 ES 3545 3485 36.69 81.80 82.61 84.10 0.71 097  0.97
3 FR 24.58 2893 30.81 75.76  79.62 81.21 0.25 0.78  0.84
4 HI 19.16  20.75 23.56 72.83 77.58 78.33 0.08 049 0.74
5 IT 33.70 36.69 38.02 80.86 84.12 85.00 0.91 099 098
6
7
8
9

JA 7.76  12.69 14.05 76.16 8196 83.17 0.55 0.79  0.86
NL 23.28 25.70 27.73 78.97 82.04 83.30 0.89 0.99 0.98
PT 28.59 26.76 33.60 79.84 82.24 83.22 0.52 0.23 0.79
Average 24.58 26.82 29.33 77.82 8136 82.47 0.55 0.77  0.89

Table 5.8.: Comparison of NLLB, Post-edit zero-shot (PE zs) and Post-edit few-shot (PE fs) in
Informal dataset
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5.2. Impact of Post-editing
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Figure 5.4.: Comparison between NLLB, Post-edit zero-shot (PE zs) and Post-edit few-shot (PE
fs) across different metrics in Formality Dataset

Overall, as shown in Figure 5.4, Post-editing models outperform NLLB across all metrics, with
the Post-editing few-shot setup delivering the best performance. In the BLEU comparison in
Figure 5.4 (a), Post-editing zero-shot improves quality control by over 3 percentage points,
from 24.11 to 27.69, and in the COMET comparison in Figure 5.4 (b), it shows an improvement
of over 4 percentage points, from 77.69 to 81.75. For formality control, as seen in the M-ACC
comparison in Figure 5.4 (c), Post-editing boosts NLLB’s M-ACC score from 0.5 to 0.75 in
zero-shot and 0.86 in few-shot, representing an improvement of more than 25 percentage
points.

Regarding translation directions in Tables 5.7 and 5.8, both Post-editing models perform
similarly to NLLB in quality control. While all models perform worse for Japanese in BLEU
(sixth row of both tables), Post-editing still outperforms NLLB by over 10 percentage points
in the formal dataset and 4 percentage points in the informal dataset: In the formal dataset,
zero-shot and few-shot Post-editing score 18.02 and 19.10, while NLLB reaches only 7.46. In
the informal dataset, Post-editing achieves 12.69 (zero-shot) and 14.05 (few-shot), compared to
NLLB’s 7.76.

For attribute control, Post-editing models generally improve M-ACC significantly. For
example, as seen in the second, fifth, and seventh rows of Table 5.7, in formal directions,
zero-shot Post-editing raises scores from 0.29 to 0.70 (Spanish), 0.09 to 0.29 (Italian), and 0.11 to
0.54 (Dutch). As seen in the fourth row of Table 5.8, in informal directions, it increases M-ACC
of Hindi from 0.08 to 0.49. In these directions, Post-editing zero-shot improves M-ACC by at
least 20 percentage points. Post-editing few-shot further improves the score, except in formal
Spanish (second row) and formal Portuguese (eighth row), where the score drops by roughly 5
percentage points but still outperforms NLLB.

However, as observed in the eighth row of both tables, Portuguese is an outlier. The informal
M-ACC score for Post-editing in informal Portuguese (in Table 5.8) is 0.23, lower than NLLB’s
0.52. In contrast, the formal M-ACC score for formal Portuguese (in Table 5.7) is 0.997, close to
1. This suggests that Post-editing favors a formal tone in Portuguese.
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5. Results

5.2.2. Grammatical Gender Control

5.2.2.1. Counterfactual dataset
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Figure 5.5.: Comparison between NLLB, Post-edit zero-shot (PE zs) and Post-edit few-shot (PE
fs) across different metrics in Counterfactual Dataset

Gender Accuracy

NLLB PEzs PEfs
1 AR 0.71 0.86 0.87
2 DE 0.69 0.84 0.81
3 ES 0.65 0.82 0.81
4 FR 0.64 0.77 0.78
5 HI 0.58 0.77 0.75
6 IT 0.61 0.75 0.76
7 PT 0.65 0.80 0.78
8 RU 0.73 0.91 0.90
9  Average 0.66 0.81 0.81

Table 5.9.: Comparison of NLLB, Post-edit zero-shot (PE zs) and Post-edit few-shot (PE fs) for
Gender Accuracy in Counterfactual dataset
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5.2. Impact of Post-editing

BLEU COMET LLM as Evaluator
NLLB PEzs PEfs NLLB PEzs PEfs NLLB PEzs PEf{fs

1 AR 25.46 2496 26.19 82.09 82.40 82.77 0.86 0.90  0.90
2 DE 4395 44.08 45.35 85.19 85.45 85.99 0.91 095 0.94
3 ES 53.60 53.06 54.88 86.32 85.93 86.56 0.79 0.87  0.89
4 FR 41.04 41.23 42.34 83.82 82.62 84.31 0.85 0.88  0.90
5 HI 30.34 28.85 31.59 78.27 76.65 78.63 0.85 091 0.93
6 IT 40.90 39.80 42.01 86.44 85.12 86.91 0.75 0.85 0.86
7 PT 51.44 50.88 51.34 87.93 87.69 87.99 0.86 091 0.92
8 RU 37.15 37.13 37.64 86.66 87.12 87.39 0.83 0.90 0.91
9 Average 4048 40.00 41.42 84.59 84.12 85.07 0.84 0.90 0.91

10 Avg_both 4130 40.38 41.87 84.90 84.40 85.33 0.87 0.90 0.91

Table 5.10.: Comparison of NLLB, Post-edit zero-shot (PE zs) and Post-edit few-shot (PE fs) in
Counterfactual feminine dataset

BLEU COMET LLM as Evaluator

NLLB PEzs PEfs NLLB PEzs PEfs NLLB PEzs PEfs
1 AR 25.74 24.66 25.84 82.37 82.63 83.26 0.87 0.89 0.89
2 DE 45.12 4417 45.75 8595 85.81 86.43 0.87 0.90 0.89
3 ES 5490 53.74 5542 87.15 86.26 87.34 0.86 0.88 0.89
4 FR 42.54 42.23 42.85 84.66 83.47 84.87 0.88 0.88 0.90
5 HI 32.60 30.06 32.35 79.37 77.54 79.26 0.93 0.95 0.94
6
7
8
9

IT 42.78 41.07 43.04 86.96 86.38 87.26 0.90 091 0.93
PT 53.72  52.10 53.28 88.26 87.78 88.32 0.91 0.90 091
RU 39.51 38.13 40.08 87.04 87.57 87.92 0.91 092 0.94
Average 42.11 40.77 4232 85.22 84.68 85.58 0.89 0.90 091

Table 5.11.: Comparison of NLLB, Post-edit zero-shot (PE zs) and Post-edit few-shot (PE fs) in
Counterfactual masculine dataset

As shown in BLEU and COMET metrics in Figure 5.5 (a) and (b), NLLB and Post-editing models
perform similarly in terms of quality control, as Post-editing maintains the quality of the
original NLLB translation.

For attribute control in Figure 5.5 (c) and (d), Post-editing outperforms NLLB, with an average
improvement of over 15 percentage points in gender accuracy and 3 percentage points in the
LLM as Evaluator metric. This demonstrates that Post-editing is highly effective in enhancing
attribute control.
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5. Results

5.2.2.2. Contextual dataset

BLEU COMET LLM as Evaluator

NLLB PEzs PEf{s NLLB PEzs PEf{s NLLB PEzs PEfs
AR 8.43 7.74 7.96 66.60 69.02 68.73 0.87 0.84 0.90
DE 21.92 20.75 22.60 73.56 7596 76.86 0.79 0.71 0.80
ES 25.61 2447 27.89 7292 72.46 74.60 0.76 0.71 0.78
FR 17.95 18.15 20.93 64.70 67.86 70.20 0.78 0.80 0.83
HI 19.96 18.83 17.79 68.07 68.42 67.38 0.68 0.77 0.79
IT 12.91 12.62 14.90 63.16 6698 69.46 0.81 0.82 0.83
NL 23.74 23.06 25.24 74.85 77.85 78.96 0.78 0.75 0.81
PT 20.14 19.11 20.60 68.86 72.09 73.35 0.78 0.84 0.79
RU 25.10 25.03 25.22 79.57 81.66 82.22 0.84 0.79 0.90
10 Average 19.53 18.86 20.35 70.25 72.48 73.53 0.79 0.78 0.83
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Table 5.12.: Comparison of NLLB, Post-edit zero-shot (PE zs) and Post-edit few-shot (PE fs) in
Contextual dataset
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Figure 5.6.: Comparison between NLLB, Post-edit zero-shot (PE zs) and Post-edit few-shot (PE
fs) across different metrics in Contextual Dataset

For the Contextual dataset in Figure 5.6 (a) and (b), Post-editing performs similarly to or
slightly better than NLLB, as the LLM is instructed to maintain translation quality. In BLEU all
models perform around 19.6. In COMET metric Post-editing zero-shot and few-shot improve
NLLB’s score by 2 and 3 percentage points, raising it from 70.25 to 72.48 and 73.53, respectively.

For attribute control in Figure 5.6 (c), NLLB and Llama zero-shot achieve comparable scores
of 0.79 and 0.78, respectively. Post-editing few-shot further improves NLLB’s translation by 4
percentage points, increasing from 0.79 to 0.83.

Regarding translation directions in Table 5.12, Post-editing closely mirrors NLLB in BLEU
since it refines the given translation.
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5.3. Impact of multilingual prompts

5.3. Impact of multilingual prompts

5.3.1. Formality dataset

Directions
Model EN—DE EN—NL EN—ES EN—PT | Average Avg Both
1 Multi-ling 32.45 24.68 37.05 31.39 31.39 31.88
2 NLLB 23.59 18.22 31.64 28.58 25.51 26.69
3 BLEU Llama zs 33.82 27.44 36.00 36.98 33.56 34.19
4 Llama fs 38.25 33.00 39.94 40.11 37.83 38.28
5 PE zs 29.15 24.56 35.68 32.56 30.49 29.68
6 PE fs 31.63 30.07 37.08 35.16 33.49 32.54
7 Multi-ling 82.08 81.86 84.47 83.36 82.94 83.03
8 NLLB 76.44 78.23 81.18 80.03 78.97 79.11
9 COMET Llama zs 82.94 84.25 84.40 85.14 84.18 84.13
10 Llama fs 83.55 84.88 84.79 85.41 84.66 84.72
11 PE zs 81.25 82.94 83.37 83.82 82.85 82.37
12 PE fs 82.54 83.86 84.21 84.36 83.74 83.38
13 Multi-ling 0.96 0.74 0.65 0.99 0.84 0.79
14 NLLB 0.49 0.11 0.29 0.48 0.34 0.50
15 M-ACC Llama zs 0.72 0.26 0.33 0.98 0.57 0.61
16 Llama fs 0.97 0.87 0.67 0.96 0.87 0.88
17 PE zs 0.86 0.54 0.70 1.00 0.77 0.77
18 PE fs 0.95 0.95 0.65 0.93 0.87 0.90

Table 5.13.: Comparison of Multi-lingual with all models in formal dataset

Directions
Model EN—DE EN—NL EN—ES EN—PT | Average
1 Multi-ling 30.34 32.35 39.01 27.76 32.36
2 NLLB 24.16 23.28 35.45 28.59 27.87
3 BLEU Llama zs 34.25 32.66 41.55 30.86 34.83
4 Llama fs 37.96 34.33 42.85 39.82 38.74
5 PE zs 28.21 25.70 34.85 26.76 28.88
6 PE fs 30.21 27.73 34.85 33.60 31.60
7 Multi-ling 80.92 84.27 84.39 82.86 83.11
8 NLLB 76.35 78.97 81.80 79.84 79.24
9 Llama zs 82.73 84.55 85.19 83.84 84.08
10 COMET Llama fs 83.40 85.02 85.49 85.18 84.77
11 PE zs 80.72 82.04 82.61 82.24 81.90
12 PE fs 81.41 83.30 84.10 83.22 83.01
13 Multi-ling 0.95 0.98 0.98 0.09 0.75
14 NLLB 0.51 0.89 0.71 0.52 0.66
15 Llama zs 0.69 0.92 0.89 0.06 0.64
16 M-ACC Llama fs 0.90 0.95 0.95 0.77 0.89
17 PE zs 0.89 0.99 0.97 0.23 0.77
18 PE fs 0.94 0.98 0.97 0.79 0.92

Table 5.14.: Comparison of Multi-lingual with all models in informal dataset
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Figure 5.7.: Comparison between Multilingual, NLLB, Llama zero-shot (Llama zs), Llama few-
shot (Llama fs), Post-edit zero-shot (PE zs), and Post-edit few-shot (PE fs) across
different metrics in Formality Dataset

For quality control in the CoCoA formality dataset, Llama models perform best overall as seen
in Figure 5.7 (a) and (b). The Multilingual model surpasses NLLB, with BLEU scores increasing
from 26.69 to 31.88 and COMET scores rising from 79.11 to 83.03.

For attribute control in Figure 5.7 (c), the Multilingual model achieves a M-ACC of 0.79,
significantly outperforming NLLB (0.5) and Llama zero-shot (0.61) by over 18 percentage points.
However, Llama few-shot (0.88) and Post-editing few-shot (0.9) perform best, exceeding the
Multilingual model by more than 9 percentage points.

In specific translation directions, Portuguese remains an outlier. As shown in the thirteenth
row in Table 5.14, the Multilingual model scores low M-ACC of 0.09 for informal Portuguese
but achieves a high M-ACC of 0.99 for formal Portuguese in thirteenth row in Table 5.13.
Meanwhile, Llama few-shot (eighteenth row) performs well for informal Portuguese at 0.77.
These results suggest that third-language examples are less effective than same-language
examples for formality control.
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5.3. Impact of multilingual prompts

5.3.2. Counterfactual gender dataset

For quality control, the Multilingual model underperforms compared to NLLB, with BLEU
dropping 5 percentage points from 53.42 to 47.74 in Figure 5.8 (a). However, COMET scores in
Figure 5.8 (b) show comparative performance across all models.

For gender control in Figure 5.8 (c), the Multilingual model achieves 0.75 accuracy, surpassing
all models except Post-editing (0.81 for zero-shot, 0.79 for few-shot). This suggests that third-
language examples help the LLM learn patterns and improve gender control. But Post-editing
will be more effective in gender control.
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Figure 5.8.: Comparison between Multilingual, NLLB, Llama zero-shot (Llama zs), Llama few-
shot (Llama fs), Post-edit zero-shot (PE zs), and Post-edit few-shot (PE fs) across
different metrics in Counterfactual Dataset
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5. Results

Feminine source Masculine source
Model EN—ES EN—PT Average EN—ES EN—PT Average Avg_Both

1 Multi—ling 49.01 45.01 47.01 50.05 46.90 48.48 47.74
2 NLLB 53.60 51.44 52.52 54.90 53.72 54.31 53.42
3 BLEU Llama zs 48.77 45.44 47.10 49.23 47.48 48.36 47.73
4 Llama fs 49.65 46.13 47.89 50.05 49.04 49.55 48.72
5 PE zs 53.06 50.88 51.97 53.74 52.10 52.92 52.45
6 PE fs 54.88 51.34 53.11 55.42 53.28 54.35 53.73
7 Multi-ling 85.33 86.76 86.04 86.46 87.37 86.91 86.48
8 NLLB 86.32 87.93 87.12 87.15 88.26 87.71 87.41
9 COMET Llama zs 85.02 86.79 85.90 85.93 87.46 86.69 86.30
10 Llama fs 85.65 87.15 86.40 86.40 87.81 87.11 86.75
11 PE zs 85.93 87.69 86.81 86.26 87.78 87.02 86.91
12 PE fs 86.56 87.99 87.28 87.34 88.32 87.83 87.55
13 Multi-ling 0.77 0.73 0.75 - - - -

14 NLLB 0.65 0.65 0.65 - - - -

15 Gender Accuracy Llama zs 0.74 0.71 0.73 - - - -

16 Llama fs 0.70 0.65 0.68 - - - -

17 PE zs 0.82 0.80 0.81 - - - -

18 PE fs 0.81 0.78 0.79 - - - -

19 Multi—ling 0.89 0.92 0.91 0.87 0.88 0.88 0.89
20 NLLB 0.79 0.86 0.83 0.86 0.91 0.88 0.86
21 Llama zs 0.88 0.93 0.91 0.88 0.90 0.89 0.90
gy [MMasEvaluator ) e 0.87 0.89 0.88 0.88 0.90 0.89 0.89
23 PE zs 0.87 0.91 0.89 0.88 0.90 0.89 0.89
24 PE fs 0.89 0.92 0.90 0.89 0.91 0.90 0.90

Table 5.15.: Comparison of Multi-lingual with all models in Counterfactual dataset

5.3.3. Target Language Error

In our experiments with the formality and gender datasets, we observed that outputs often
contained multiple languages. To address this, we used langid (Lui and Baldwin, 2012) to
measure target language accuracy. As shown in tenth row in Table 5.16 and Table 5.18, the
Multilingual model had the lowest accuracy, with 90.31% for formality and 95.67% for gender,
while other models exceeded 98% in both datasets. This suggests that incorrect target language
outputs may contribute to the Multilingual model’s suboptimal performance.

We also analyzed the incorrect target languages. As seen in Table 5.20, the third-language
examples sometimes mixed with the target language, potentially affecting quality. For example,
Dutch appeared in EN-DE outputs in the third row, and German in EN-NL outputs in the
fourth row. This suggests a possible trade-off between translation quality and gender control
in the Multilingual model.
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5.3. Impact of multilingual prompts

Target Language Accuracy

NLLB Llamazs Llamafs Multi-ling PE zs PE fs
1 DE 99.33% 99.50% 99.33% 92.17% 99.33%  99.17%
2 ES 97.00% 97.33% 97.50% 94.67% 97.00%  96.83%
3 FR 99.33% 98.67% 99.83% - 99.83%  99.83%
4 HI 98.67% 97.83% 99.00% - 98.83%  98.50%
5 IT 97.67% 99.00% 99.33% - 99.17%  99.00%
6 JA 100.00% 100.00%  100.00% - 100.00% 100.00%
7 NL 96.31% 98.99% 99.50% 79.23% 98.66%  98.49%
8 PT 94.82% 98.33% 97.50% 90.48% 98.00%  96.66%
9  Average 97.89% 98.71% 99.00% 89.14% 98.85%  98.56%
10 Avg both 97.89% 98.74% 98.75% 90.31% 98.41%  98.06%

Table 5.16.: Comparison of target language accuracy in formal dataset

Target Language Accuracy

NLLB Llamazs Llamafs Multi-ling PE zs PE fs
1 DE 99.33% 99.50% 99.67% 85.83% 99.00%  98.83%
2 ES 97.00% 97.00% 96.67% 92.83% 95.67%  95.50%
3 FR 99.33% 99.33% 99.67% - 99.33%  99.00%
4 HI 98.67% 97.67% 97.50% - 97.50%  96.17%
5 IT 97.67% 99.33% 99.33% - 98.83%  98.83%
6 JA 100.00% 100.00%  100.00% - 100.00% 100.00%
7 NL 96.31% 98.99% 98.83% 96.31% 97.32%  97.65%
3 PT 94.82% 98.33% 96.33% 90.98% 96.16%  94.49%
9 Average 97.89% 98.77% 98.50% 91.49% 97.98%  97.56%
Table 5.17.: Comparison of target language accuracy in informal dataset
Target Language Accuracy
NLLB Llamazs Llamafs Multi-ling PE zs PE fs

1 AR 100.00%  98.33% 98.33% - 99.67%  99.67%
2 DE 99.67% 98.67% 98.67% - 99.67%  99.67%
3 ES 98.00% 97.67% 97.67% 96.33% 98.67%  98.33%
4 FR 99.33% 94.00% 98.67% - 100.00% 100.00%
5 HI 97.33% 98.00% 98.67% - 97.33%  97.67%
6 IT 99.67%  100.00%  99.67% - 99.00% 100.00%
7 PT 97.33% 97.00% 96.67% 94.00% 99.00%  98.00%
8 RU 97.67% 97.33% 97.33% - 97.67%  97.00%
9 Average  98.63% 97.63% 98.21% 95.17% 98.88%  98.79%
10 Avg both 98.67% 97.67% 98.54% 95.67% 99.00%  98.94%

Table 5.18.: Comparison of target language accuracy in feminine dataset
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5. Results

Target Language Accuracy
NLLB Llamazs Llamafs Multi-ling PE zs PE fs

1 AR 99.00% 98.00% 98.00% - 99.67%  99.33%
2 DE 99.33% 98.67% 99.00% - 99.67%  99.67%
3 ES 98.33% 98.00% 98.33% 96.67% 98.67%  98.67%
4 FR 100.00%  92.67% 98.67% - 100.00% 100.00%
5 HI 97.67% 98.33% 98.33% - 98.33%  98.67%
6 IT 99.67%  100.00%  100.00% - 99.33%  99.67%
7 PT 97.67% 97.67% 100.00% 95.67% 98.67%  98.00%
8 RU 98.00% 98.33% 98.67% - 98.67%  98.67%
9 Average 98.71% 97.71% 98.88% 96.17% 99.13%  99.09%

Table 5.19.: Comparison of target language accuracy in masculine dataset

Wrong target language detected
Formality Dataset Gender Dataset

1 EN->ES GL, PT PT,CA,GL
2 EN->PT GL,ES,AF ES

3 EN->DE NL -

4 EN->NL DE -

Table 5.20.: List of wrong target language found in Multilingual module

5.4. Identifying missing attribute

We explored using an LLM for binary classification to identify missing attributes in an ambigu-
ous dataset. As shown in Table 5.21, the average accuracy in the tenth row is high at 97.62%.
This suggests the LLM may be conservative in confirming sufficient attribute information for
translation.

Direction Binary result accuracy
1 EN->AR 99.36%
2 EN->DE 99.36%
3 EN->ES 98.27%
4 EN->FR 92.45%
5 EN->HI 99.91%
6 EN->IT 97.17%
7  EN->NL 93.88%
8 EN->PT 99.36%
9 EN->RU 98.82%
10  Average 97.62%

Table 5.21.: Binary result accuracy from LLM request
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5.4. Identifying missing attribute

Threshold

Accuracy

AR

DE

ES

FR

HI

IT

NL

PT

RU

0

38.60%
38.60%
45.29%
45.29%
45.29%
45.29%
45.80%
45.80%

37.99%
37.99%
43.85%
43.85%
45.44%
45.44%
45.86%
45.86%

38.84%
38.84%
45.12%
45.12%
46.06%
46.06%
46.25%
46.25%

38.93%
38.93%
46.17%
46.17%
46.07%
46.07%
46.27%
46.27%

38.59%
38.59%
45.90%
45.90%
47.04%
47.04%
47.04%
47.04%

37.35%
37.35%
44.35%
44.35%
44.99%
44.99%
45.53%
45.53%

41.61%
41.61%
46.61%
46.61%
45.05%
45.05%
45.46%
45.46%

38.36%
38.36%
44.29%
44.29%
44.81%
44.81%
45.25%
45.25%

37.34%
37.34%
43.95%
43.95%
44.89%
44.89%
45.32%
45.32%

50.03%

50.13%

50.00%

50.05%

50.06%

50.05%

50.05%

49.96%

49.96%

Olo|lI i WD

50.03%

50.04%

50.09%

50.05%

50.06%

50.05%

50.05%

50.04%

50.04%

==
= AN Y e B S B N

—_
(=)

50.03%

50.04%

50.09%

50.05%

50.06%

50.05%

50.05%

50.04%

50.04%

Table 5.22.: Threshold and Accuracy Result of Contextual Development dataset
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Figure 5.9.: Accuracy vs. Threshold for all directions
Direction Threshold Accuracy
Dev dataset Test dataset
1 EN->AR 8 50.03% 50.07%
2 EN->DE 8 50.13% 50.00%
3 EN->ES 9 50.09% 50.02%
4  EN->FR 8 50.05% 50.02%
5 EN->HI 8 50.06% 50.02%
6 EN->IT 8 50.05% 50.05%
7  EN->NL 8 50.05% 50.02%
8 EN->PT 9 50.04% 50.02%
9 EN->RU 9 50.04% 50.00%
10  Average 8.3 50.06% 50.02%

Table 5.23.: Threshold and Accuracy Result of Development and Test dataset
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5. Results

To further investigate its confidence in detecting missing attributes, we used a 0-10 rating
scale. As seen in the ninth and tenth rows of Table 5.22, accuracy is highest at thresholds of 8
or 9 across all directions, indicating the LLM tends to request more attribute information.

However, as shown in Table 5.23 and Figure 5.9, average accuracy of test dataset in the tenth
row remains around 50% across all thresholds and directions, suggesting the LLM is ineffective
at identifying missing attributes.
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6. Conclusion

After presenting and analyzing the results, we will address the research questions (Section 1.2)
and outline directions for future work.

6.1. Answers to Research Questions

Research Question 1: How well can current state-of-the-art LLMs (e.g., Llama 3.1) achieve
attribute-controlled translation into diverse target languages? How much does the perfor-
mance differ under zero-shot and few-shot setups?

Llama 3.1 performs well in attribute-controlled translation across diverse languages, out-
performing standard translation for formality and contextual datasets. The exception is the
Counterfactual Gender dataset, where NLLB achieves higher quality scores.

Few-shot approaches generally improve both quality and attribute control compared to
zero-shot, suggesting LLMs can effectively learn and apply translation patterns. It is noticed
that zero-shot scores higher in gender accuracy for the counterfactual gender dataset, though
this may be due to synonym issues.

However, LLMs face certain drawbacks: longer inference times due to complex architectures
and larger model sizes requiring more memory and hardware resources. These limitations
reduce their suitability for real-time translation applications where efficiency is crucial.

Research Question 2: To what extent can LLM-based post-editing improve the output of
standard translation models (in both quality and attribute control)?

LLM-based post-editing significantly improves attribute control, particularly in the post-
editing few-shot setup, which achieves the best attribute control performance. The quality
control remains consistent with the standard translation, as the prompt instructs the LLM to
preserve the original translation quality.

However, LLM-based post-editing has notable limitations. It requires longer inference times
compared to conventional MT due to its complex architecture and larger model size. The
process is further slowed by the need to pass additional parameters, such as the translation
pair to be improved, making it less efficient for time-sensitive applications.

Research Question 3: To what extent can attribute-controlled translation examples from
different languages help?

The Multilingual model improves attribute control but at the cost of quality control, in-
dicating a trade-off. This decline in quality may stem from the inclusion of third-language
examples, which can lead to incorrect target language outputs. When compared to Llama
few-shot, same-language few-shot examples prove to be more effective for both quality and
attribute control.
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6. Conclusion

Research Question 4: How can we detect from the input sentence alone whether the
model needs additional attribute information?

We explored binary classification and 0-10 scale rating methods, but the results were incon-
clusive. The LLM displayed a conservative bias in the binary classification, often requesting
more attribute information. In the scale rating approach, the LLM’s accuracy was inadequate,
suggesting that it struggles to effectively assess the need for additional attribute information.

6.2. Future Work

For future work, investigating TOWER D. M. Alves et al. (2024) as an alternative LLM model to
Llama could offer valuable comparative insights and help evaluate its effectiveness in attribute-
controlled translation. Additionally, examining NLLB’s undertranslation issue by processing
translations on a sentence-by-sentence basis may provide a clearer understanding of this
challenge and potential strategies for mitigating it.
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A. Appendix

A.1. Prompts

For the target language Japanese, the LLM consistently generated romanized translations
instead of utilizing the appropriate writing systems (Kanji, Hiragana, and Katakana) present in
our dataset. To address this issue, we first translated our prompts into Japanese using Google
Translate, ensuring they aligned with the expected linguistic characteristics. We then used
these translated prompts to perform the translation tasks with the LLM.

The following is the prompt for formality controlled EN->JA translation.

The parameter attribute control in the first instruction will be set as formal (&5 7 7= 13 (F. 3\
RIEANZMHH T2 7o HAREMGRE TT. )or infomal (&b 7% 7= 1XIENN L\ Z (f
92 7noHARENRETT. ).

{Attribute control} BllERIcE —<F AT L &ML ZWTL 23w, BlRo &4
ZRMEL TSIV, B A BIXRETT,

IEHEIC HAGHICHIER L TL /22 {sentence}

We used the following prompts during the experiments. <attribute> is the placeholder
for formality or gender control, i.e. "formal"'informal",'feminine", or "masculine". <target
language> is the placeholder for the language we want to translate to. <Source Sentence> is
the placeholder for the input sentence to be translated. <Current Translation" is placeholder
for NLLB’s translation result. <prompt examples> is placeholder for the translation examples
from training dataset.

For Japanese, I set <attribute control> depending on the formality, where if the dataset is
from "formal" form, <attribute control> stands for "® 72 7- X ERLR A Z2{EHT S oD
HAREERNERZ T9 " If it is from "informal" form, <attribute control> stands for "& 72 7= 1%
FAARLR2MHT 2 70O HAGEMRETT,

A.1.1. Llama query
A.1.1.1. Formality Zero-shot

You are a professional <target language>translator using the <attribute> form. ONLY provide
the translation. NO additional explanations or notes.

Translate EXACTLY to <target language>: <Source Sentence>

A.1.1.2. Formality for Japanese Zero-shot

<attribute control>
PRIz =< FZ U AT L2 HLUBRVWTLS7ZI W, BEROAZREML TS ZI W,
EMOBHI® X EIZAETT,

EMEIZ HASGEIZENER U T < 72 ¥\ : <Source Sentence>
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A.1.1.3. Gender-Context Zero-shot

You are a professional <target language> translator. Only translate the text that appears AFTER
the <sep> symbol. Use the text BEFORE <sep> solely to determine the correct gender form.
Focus on the gender of a person. No additional explanations or notes.

Translate EXACTLY to <target language>: <Source Sentence>

A.1.1.4. Gender-Counterfactual Zero-shot

You are a professional <target language> translator focusing on <attribute> gender form.
Maintain translation accuracy while ensuring <attribute> gender. No additional explanations
or notes.

Translate EXACTLY to <target language>: <Source Sentence>

A.1.1.5. Formality Few-Shot

You are a professional <target language>translator using the <attribute> form.
Example Translations:

<prompt examples>

ONLY provide the translation. NO additional explanations or notes.

Translate EXACTLY to <target language>: <Source Sentence>

A.1.1.6. Formality for Japanese Few-Shot

<attribute control>

THERA -

<prompt examples>

BIERIZA =~V AT L2 FHULBWTLZI WV, BEROAZRML TS ZE W,
BHIDFRIHY A EIEAETT,

TEREIZ HARGEIZEHER L T < 72 X\ : <Source Sentence>

A.1.1.7. Gender-Context

You are a professional <target language> translator. Only translate the text that appears AFTER
the <sep> symbol. Use the text BEFORE <sep> solely to determine the correct gender form.
Focus on the gender of a person. No additional explanations or notes.

Example Translations:

<prompt examples>

Translate EXACTLY to <target language>: <Source Sentence>

A.1.1.8. Gender-Counterfactual Few-Shot

You are a professional <target language> translator focusing on <attribute> gender form.
Maintain translation accuracy while ensuring <attribute> gender. No additional explanations
or notes.
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Example Translations:
<prompt examples>

Translate EXACTLY to <target language>: <Source Sentence>

A.1.2. Post-edit
A.1.2.1. Formality Zero-shot

Your task is to improve a given English-to-<target language> translation by ensuring that the
translation correctly reflects the <attribute> references and grammar. Focus specifically on
correcting pronouns, possessive forms, and any <attribute>-related grammatical structures.
Provide translation only.

Source Sentence: <Source Sentence>
Current Translation:<Current Translation>

A.1.2.2. Gender-Counterfactual Zero-shot

Your task is to improve the given <target language> translation. Review and correct the gender-
related elements, ensuring the main subject/actor reflects <attribute> gender. Also improve
the overall translation quality for accuracy. Convert pronouns, possessives, and grammatical
agreements related to the main subject to match the <attribute> form.

Source Sentence: <Source Sentence>
Current Translation:<Current Translation>

A.1.2.3. Gender-Context Zero-shot

You are a professional English-to-<target language> translator. Your task is to improve the
given translation pair. First, analyze the context (the part before <sep> in the source sentence)
to determine the gender. Then use this gender information to improve the given translation of
the main part (the part after <sep> in the source sentence). Ensure the improved translation
maintains high-quality fluency as the given translation. Output only the improved translation
of the part after <sep>.

Source Sentence: <Source Sentence>
Current Translation:<Current Translation>

A.1.2.4. Formality Few-shot

Your task is to improve a given English-to-<target language> translation by ensuring that the
translation correctly reflects the <attribute> references and grammar. Focus specifically on
correcting pronouns, possessive forms, and any <attribute>-related grammatical structures.
Provide translation only.

Example Translations:

<prompt examples>
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Source Sentence: <Source Sentence>
Current Translation:<Current Translation>

A.1.2.5. Gender-Counterfactual Few-shot

our task is to improve the given <target language> translation. Review and correct the gender-
related elements, ensuring the main subject/actor reflects <attribute> gender. Also improve
the overall translation quality for accuracy. Convert pronouns, possessives, and grammatical
agreements related to the main subject to match the <attribute> form. Example Translations:
<prompt examples>

Source Sentence: <Source Sentence>
Current Translation:<Current Translation>

A.1.2.6. Gender-Context Few-shot

You are a professional English-to-<target language> translator. Your task is to improve the
given translation pair. First, analyze the context (the part before <sep> in the source sentence)
to determine the gender. Then use this gender information to improve the given translation of
the main part (the part after <sep> in the source sentence). Ensure the improved translation
maintains high-quality fluency as the given translation. Output only the improved translation
of the part after <sep>.

Example Translations:

<prompt examples>

Source Sentence: <Source Sentence>
Current Translation:<Current Translation>

A.1.3. LLM as Gender Evaluator
A.1.3.1. 0-10 Scale rating

You are evaluating an English-to-<target language> translation for <attribute> gender accuracy.
Focus ONLY on how accurately the translation reflects the gender of the PERSON mentioned
in the sentence. Rate the accuracy on a scale of 0 to 10, where 0 is completely inaccurate and
10 is perfectly accurate. Provide the result in this exact format: ’gender accuracy score: [0-10].
ONLY provide the score. NO ADDITIONAL EXPLANATION.

Rate the following translation for <attribute> gender accuracy:
Source Sentence: <Source Sentence>
Current Translation: <Current Translation>

A.1.3.2. Binary rating

This is an English-to-<target language> translation classification task. Your goal is to evaluate
if the translation uses the correct gender and gender-related grammar. If the translation is
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accurate regarding gender, return ’Accurate’. Otherwise, return "Inaccurate’.

Classify the following translation for gender control:
Source Sentence: <Source Sentence>
Current Translation: <Current Translation>

A.1.4. Multi-language prompt

You are a professional <target language> translator. The following are translations from
English to <example language> in <attribute> tone.

Example Translations:
<prompt examples>

Translate to <target language> in <attribute> tone: <sentence>

A.1.5. Identify Missing Information
A.1.5.1. Binary rating

You are evaluating an English-to-<target language> translation. Your task is to determine if
additional information is required to translate the sentence. Respond with ’yes’ if additional
information is necessary, or 'no’ if it is not. No explanation or comments.

Source Sentence: <Source Sentence>
Does the translation require additional context?

A.1.5.2. 0-10 Scale rating

You are evaluating an English-to-<target language> translation. Your task is to assess how
much ADDITIONAL gender information the source sentence needs for accurate translation.
Important: Only evaluate gender clarity for the MAIN SUBJECT/ACTOR of the sentence. If
the sentence mentions other people (like references, examples, or comparisons), ignore their
gender clarity".

Check for explicit gender indicators, such as: Pronouns (he’, she’, his’, ’her’) , Gendered
terms ‘man’, 'woman’, father’, ‘'mother’) , Possessive adjectives ("his book’, ’her idea’)."

Rate on a scale of 0 to 10. If the source sentence already provides sufficient clarity and no
additional gender information is needed, rate it as 0. If the source sentence is highly ambiguous
and additional gender details are essential for correct translation, then rate it as 10. ONLY
provide the rating score. NO ADDITIONAL EXPLANATION.

Source Sentence: <source sentence>
Rate, how necessary is additional gender information for accurate translation?
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