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Abstract

Text-based Large Language Models (LLMs) have emerged as valuable tools for processing
information based on instructions. However, their application also presents challenges, as
LLMs often struggle to handle inputs that contain long sequences. The longer the input,
the more computational resources are required, and the more difficult it becomes for the
LLM to capture long-range dependencies within the text. These challenges become even
more pronounced when dealing with speech instead of text. Text is usually tokenized word
by word. Speech, in contrast, is inherently longer and produces much longer sequences of
feature vectors that the LLM must process.

To address this issue, previous work has proposed adding intermediate processing steps
that reduce the number of feature vectors extracted from input audio. Two papers explicitly
introduced the concept of context compression, where groups of feature vectors are mapped
to a more compact representation that aims to preserve the relevant information from the
original sequence. These approaches utilize LLMs or other transformers. Methods that are
highly dependent on training and therefore require additional computation resources. In
this paper, two training-free approaches, namely skipping and averaging, and a trainable
convolution-based approach, are evaluated to examine whether training-free methods
provide a valid and less expensive alternative to training-based compression approaches.

To set up the convolution-based approach, a convolution layer is first integrated into
the Phi-4-multimodal-instruct environment, serving as an additional compression step.
Second, the layer is trained on an Automatic Speech Recognition (ASR) task while keeping
the original model frozen. Training is carried out on the LibriSQA dataset. Skipping
and averaging do not require any training. We then analyze how the adapted models
generalize across different evaluation settings: Assessing ASR capabilities under different
conditions, evaluating Question Answering (QA) capabilities on short-form speech, and
testing summarization capabilities on long-form speech.

We used the ACL 60/60 dataset to evaluate ASR capabilities, LibriSQA to evaluate QA
and ASR capabilities, and Nutshell to evaluate summarization capabilities.

The experiments show that, for ASR, training-free compression methods lead to sub-
stantial performance drops of up to 18.87 WER points (scaled by 100) compared to the
baseline. In contrast, under the same conditions, the convolution-based method remains
within 1.78 WER points (scaled by 100) of the baseline.

For tasks beyond ASR, such as summarization, the differences between compression
and no-compression settings are marginal, with performance gaps of up to 0.41 ROUGE-
L points (scaled by 100) and 0.04 BERTScore points (scaled by 100). In QA, however,



compression approaches result in more pronounced degradations relative to the baseline,
reaching up to 7.94 ROUGE-L points (scaled by 100). For BERTScore, the differences
between compression methods remain small, with a maximum of 0.49 points (scaled by
100). Compared to the baseline, they underperform slightly, by margins ranging from 0.65
to 1.14 points (scaled by 100).

Overall, these results demonstrate that compression methods can achieve performance
levels comparable to the baseline in tasks beyond ASR, highlighting the quality and
effectiveness of the compressed feature vector representation. Moreover, in QA and
summarization, simple training-free approaches such as skipping and averaging perform
nearly as well as the convolution-based method, indicating that even without task-specific
training, compression can remain competitive with more complex, training-dependent
approaches.
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Zusammenfassung

Textbasierte Large Language Models (LLMs) zeigen grofie Schwierigkeiten, wenn sie
mit langen Texteingaben konfrontiert werden. Je langer die Eingabe, desto mehr Hard-
wareressourcen werden vom Modell bendtigt, und die Identifizierung von inhaltlichen
Korrelationen iiber langere Textabschnitte hinweg wird zunehmend anspruchsvoller. Die-
ses Problem verstarkt sich, sobald Sprache statt Text verarbeitet wird: Sprache ist von
Natur aus ldnger und erzeugt umfangreichere Sequenzen von Feature-Vektoren, die vom
LLM verarbeitet werden miissen.

Um dieses Problem zu mitigieren, haben einige Studien Methoden entwickelt, um die
Lange derartiger Sequenzen zu reduzieren. Zwei wissenschaftliche Arbeiten beschéftigen
sich explizit mit dem Thema im Rahmen von Context Compression. Ziel der Context
Compression ist es, eine Gruppe von Feature-Vektoren auf eine kompakte Reprasentation
zu projizieren, wobei die semantische Information der Vektoren weitgehend erhalten
bleibt. Die Kompression kann dabei unter anderem von LLMs oder anderen Transfor-
mern umgesetzt werden. Aufgrund der Grofle dieser Modelle ist das Training jedoch
kostenintensiv.

In dieser Arbeit werden daher folgende Ansétze untersucht: zwei Training-freie Kom-
pressionsmethoden (Skipping und Averaging) sowie eine trainierbare, Convolution-basierte
Methode. Fiir die Convolution Methode wird die Schicht zunéchst in die Phi-4-Multimodal-
instruct-Verarbeitungskette integriert. Anschlieflend erfolgt eine Trainingsphase, in der
ausschliefllich die Convolutionsschicht auf der Automatic Speech Recognition (ASR)-
Aufgabe mit dem LibriSQA-Datensatz trainiert wird. Fir Skipping und Averaging entfallt
die Trainingsphase vollstandig.

Die Leistung der modifizierten Verarbeitungsketten wird auf Basis verschiedener Auf-
gaben und Datensétze analysiert. Dazu ziahlen ASR-Aufgaben unter verschiedenen Be-
dingungen, Question Answering (QA)-Aufgaben iiber kiirzere Audioeinheiten sowie
Summarization-Aufgaben iiber langere Audioeinheiten. Fiir die Evaluation werden ACL
60/60 fiir ASR-Fahigkeiten, LibriSQA fiir QA und ASR-Féahigkeiten und Nutshell fir
Summarization-Aufgaben genutzt.

Die Experimente zeigen, dass trainingsfreie Kompressionsmethoden bei ASR zu erhebli-
chen Leistungseinbuflen von bis zu 18,87 WER-Punkten (skaliert um den Faktor 100) im
Vergleich zur Baseline fithren. Im Gegensatz dazu bleibt die Leistung der convolutions-
basierten Methode unter denselben Bedingungen innerhalb von 1,78 WER-Punkten (ska-
liert um den Faktor 100) zur Baseline.

1ii



Fir Aufgaben jenseits von ASR, wie etwa die Summarization, sind die Unterschiede
zwischen Kompression und keiner Kompression marginal, mit Leistungsunterschieden von
bis zu 0,41 ROUGE-L-Punkten (skaliert um den Faktor 100) und 0,04 BERTScore-Punkten
(skaliert um den Faktor 100). Beim QA hingegen fithren Kompressionsansatze im Vergleich
zur Baseline zu deutlich starkeren Einbufien, mit bis zu 7,94 ROUGE-L-Punkten (skaliert
um den Faktor 100). Hinsichtlich des BERTScore bleiben die Unterschiede zwischen den
Kompressionsmethoden gering (bis zu 0,49 Punkte, skaliert um den Faktor 100), wahrend
sie im Vergleich zur Baseline leicht schlechter abschneiden, mit Abweichungen zwischen
0,65 und 1,14 Punkten (skaliert um den Faktor 100).

Insgesamt zeigen die Ergebnisse, dass Kompressionsmethoden bei Aufgaben jenseits
von ASR Leistungen erzielen konnen, die mit der Baseline vergleichbar sind, was die
Qualitat und Effektivitat der komprimierten Merkmalsvektorreprasentation unterstreicht.
Zudem schneiden bei QA und Summarization einfache, trainingsfreie Ansatze wie Skip-
ping und Averaging nahezu so gut ab wie die convolutions-basierte Methode. Dies weist
darauf hin, dass Kompression auch ohne aufgabenspezifisches Training mit komplexeren,
trainingsabhangigen Ansatzen konkurrenzfahig bleiben kann.

iv
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1 Introduction

This chapter addresses the motivation of the paper and outlines the corresponding problem
statement. It concludes by presenting the research questions the paper seeks to answer.

1.1 Motivation

A context window of a Large Language Model (LLM) defines the maximum length of an
input sequence that the model can process effectively without significant performance
degradation. Text-based LLMs are limited in this regard, as shown by [32], [19], and [20].
Consequently, extracting information from long texts is challenging and computationally
expensive, increasing complexity, particularly when using self-attention layers, as elabo-
rated in [54], [51], and [10]. Approaches that attempt to extend the context window (e.g.,
[9], [42]) still encounter limitations, showing performance drops for inputs exceeding the
context window, as demonstrated by [32], [19], and [20].

Processing speech is accompanied by additional challenges. Speech produces much
longer input sequences, especially at a sampling rate of typically 16 kHz (e.g., [43], [1]),
which results in a significantly larger number of feature vectors to be considered by the
LLM, in contrast to textual input. To illustrate this with an example, when processing text,
the sentence "Hello World" is often represented as only two tokens. When processed as
speech, the encoders must deal with a large number of frames, x > 2. If the audio has a
length of 3 seconds and the sampling rate is 16,000 kHz, x would be 48,000 frames. Even
when using a speech encoder with downsampling, as in Phi-4-multimodal [1], the number
of feature vectors that an LLM must process remains higher than for textual input; 48,000
speech frames would correspond to 44 feature vectors.

In addition, speech contains extra features such as silent segments, background noise,
and overlapping speech, all of which can degrade quality. Therefore, preprocessing steps
are required to carefully prepare the audio prior to further processing, which in turn leads
to additional computational cost.

One possible approach to mitigate the challenge of long-context processing is context
compression, which aims to reduce the size of input representations while preserving
the essential information needed for downstream tasks.
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1.2 Problem Statement

In essence, context compression subsequently reduces the number of feature vectors
extracted from the input audio, potentially losing valuable information. Compression
modules that employ more complex compression strategies may require additional train-
ing to achieve adequate performance, thereby increasing the demand for computational
resources.

This raises the question of how compression modules that require no training can
compete across various tasks and datasets with compression modules that need training,
and whether the model equipped with the compression module can maintain its original
performance without compression, given the potential information loss. Another key
aspect is whether compression modules, once integrated into the model architecture, allow
the original model, previously trained on diverse tasks, to preserve its performance on
these tasks, especially if the compression module was trained for only one of them.

1.3 Research Questions of the Study

The following research questions address the topic of context compression in the context
of SpeechLLMs:

RQ1: How can we perform compression without additional training?

These are approaches that have a straightforward implementation and, as a result, can
skip the training stage.

RQ2: How do these training-free approaches compare to the dedicated compression
modules that are trained?

Demonstrating whether the capabilities of non-trainable compression modules, despite
being easier to implement, can compete with trainable ones.

RQ3: How do these two types of approaches generalize to different acoustic conditions
and different tasks?

Therefore, conducting a deep dive into the resilience of compression strategies and
examining whether their ability to compress knowledge is effective across different tasks
and datasets.



2 Background and Related Work

This chapter elaborates on the various types of Large Language Models (LLMs) and their
construction and setup, while motivating the use of context compression. First, Section
2.1 introduces the background of Text LLMs by explaining the basic concept of language
modeling, listing the architectures and training stages of LLMs, highlighting the attributes
of Llama 3 and TOWER. Afterwards, Section 2.2 explains the background of Speech LLMs,
starting with speech encoders like HuBERT and Whisper and subsequently covering ways
to connect speech encoders with text LLMs. In Section 2.3, we present the challenge of
processing long-form input and, finally, elaborate on the concepts of context compression
by means of Section 2.4.

2.1 Text-Only LLM

This Section introduces the concept of language modeling and explains how it scales to
LLMs. It then discusses the different stages of training and provides a brief overview of
text-based LLMs such as Llama 3 and TOWER.

2.1.1 Formalization

Language Models (LMs) acquire a basic understanding of language generation by training.
Thereby, applying training objectives such as Causal or Masked Language Modeling, as
mentioned in [66] and studied by [35].

Causal Language Modeling (CLM)

In text generation, models must produce language sequentially and unidirectionally from
left to right. The core idea is that a model takes an input text or prompt and then iteratively
generates the next token until completion. This process is called Causal Language Modeling
(CLM) because the probability of generating each next token is conditioned only on the
tokens that appear before it in the sequence.

Given a sequence of tokens x = (x1, X, ..., xr), the model estimates the loss of the
sequence in an autoregressive manner:
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T
Lo = — Z log P(x; | x<) (2.1)
t=1
where x<; = (x1,...,x;—1). At each step, the next token x; is predicted and conditioned

only on the tokens that appear before it.

Masked Language Modeling (MLM)

The unidirectional approach of Causal Language Modeling inevitably restricts the capacity
to leverage the full context of a text, since models are prevented from incorporating or
generating tokens that appear later in the sequence.

However, this limitation does not occur when using another approach called Masked
Language Modeling (MLM). MLMs learn to generate tokens by looking at a bidirectional
context. Instead of predicting the sequence sequentially, Given a sequence of tokens
X = (x1,...,x7), MLM randomly masks a subset of tokens M c {1,...,T} in the input
and trains the model to recover them:

Lyww = - ) Tog P(x | xym), (22)
teM

where x\ p( denotes the observed tokens (i.e., all tokens except the masked ones).

It is unusual to apply Masked Language Modeling (MLM) in Auto-regressive architec-
tures. However, a speech encoder model like HuBERT [21], as mentioned in Section 2.2.1,
which employs an Auto-encoding architecture, applies the MLM approach to learn discrete
units by predicting masked frames. This shows that the concept of token prediction can
be transferred to the speech domain.

2.1.2 Large Language Model (LLM)

By increasing the number of parameters and the amount of training data, following
the scaling laws [24], studies (e.g., [57], [66]) have shown that LMs acquire additional
capabilities. This discovery has led to the emergence of LLMs. In order for LLMs to become
real general-purpose task solvers (e.g., [53], [59], [37]), LLMs are required to undergo
instruction finetuning, as elaborated in [38]. The meaning of instruction finetuning will
be elaborated in Section 2.1.3.

Scaling LLMs is one aspect, but it must take place within a specific architecture. Three
well-known architectures for LLMs are Auto-encoding, Auto-regressive, and Encoder-
Decoder models, as explored by [49]. The Auto-encoding architecture is usually applied
to encoder-only models (e.g., [11], [21]), allowing bidirectional and masked training. In
contrast, the Auto-regressive architecture is commonly used by decoder-only models
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(e.g., [53], [2]) which generate text exclusively in an undirectional and autoregressive
fashion. Lastly, the Encoder—-Decoder architecture consists of an encoder and a decoder
(e.g., [43]). The encoder utilizes self-attention layers to transform the input sequence into
latent representations, while the decoder generates the target sequence autoregressively.

As mentioned above, with the increasing size of LLMs, several core capabilities have
been discovered. One such capability is In-Context Learning (ICL), as introduced by
[6], which enables models to learn from natural language instructions or demonstrations
provided in the prompt, without requiring parameter updates. Another capability is
Reasoning, where models solve complex tasks through methods like Chain-of-Thought
(CoT) prompting, as studied by [56], which encourages the generation of intermediate
reasoning steps.

2.1.3 Overview of Training Stages

Training can be divided into pretraining and finetuning, as explored in [66].

Pretraining

Pretraining is an essential step that encodes general knowledge from a large-scale corpus
into the massive model parameters. For LLM training, two commonly used pretraining
objectives are language modeling and denoising auto-encoding, as studied in [28]. This
stage equips the model with broad linguistic and semantic knowledge, thereby enhancing
its language modeling and generalization abilities.

Compared with small-scale LMs, LLMs have a stronger demand for high-quality data
during pretraining. Their general capacity largely depends on the size, diversity, and
quality of the pretraining corpus. The pretraining corpus usually contains webpages,
books (e.g., [17]), and conversational text (e.g., [45]). For more specialized use cases, it can
be extended to multilingual corpora (e.g., [47]), scientific texts, and code datasets collected
from programming QA communities (e.g., [61]).

After collecting a large pretraining corpus, it is important to preprocess the data by
removing noisy, redundant, or irrelevant content. A typical preprocessing pipeline includes
filtering, selection and tokenization, which segments the raw text into sequences of
tokens that serve as basic input units for LLMs.

Instruction Finetuning

Instruction Finetuning is the approach to finetuning pretrained LLMs in a collection of
formatted instances that contain instructions and their desired outcome or behavior. These
formatted instances are used to finetune LLMs in a supervised learning way to follow
instructions, align with human preferences, and acquire specialized capabilities while
maintaining basic abilities, acquired by the pretraining objective, as further studied by
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[38] and [64]. The formatted instances can be constructed based on preexisting datasets
or using LLMs.

2.1.4 Specific Models

Llama 3 [13] and TOWER [2] are text-based LLMs.

Llama3

Llama 3 is a general purpose model for natural language processing. Therefore, the Llama
3 family of models supports a wide variety of tasks. Llama 3’s pretraining and finetuning
stages correspond to those described in Section 2.1.3. In terms of pretraining, Llama 3
utilizes the language modeling objective on a multilingual text corpus constructed from
formatted web documents. In terms of finetuning, Llama 3 utilizes a cross-entropy loss on
data, which is largely comprised of synthetic data and human-annotated prompts.

TOWER

TOWER focuses in contrast to general-purpose models, which demonstrate strong perfor-
mance across a broad spectrum of tasks and domains, specifically on translation-related
tasks. TOWER is trained in three stages. First, the TOWERbase model is created by
continuing pretraining on Llama 2 [52] with a large multilingual corpus, thus improving
its multilingual capabilities. To further specialize the model on translation tasks, dedi-
cated datasets are used to create TOWERblocks. These datasets allow training on tasks,
including Named-Entity Recognition, sentence-level translation, error-span detection, and
conversational-based tasks. Finally, through finetuning TOWERbase on TOWERDblocks
with standard cross-entropy loss, an instruction-following model, TOWERinstruct, is
created.

2.2 SpeechLLM

LLMs have advanced text-based processing, as explained in section 2.1. When combined
with speech encoders, LLMs can be extended to the speech domain, enabling tasks such as
Automatic Speech Recognition (ASR), Speech Translation (ST), or speech-based Question
Answering (SQA) (e.g., [50]).

However, speech encoders face several unique challenges, as addressed by [21]. Unlike
vision, where one instance typically corresponds to a single object, a single speech utterance
may contain multiple overlapping sound units. Moreover, unlike NLP, speech pretraining
lags a predefined vocabulary of sound units, making predictive losses harder to apply.
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Finally, speech does not come with explicit boundaries between sound units, which
complicates tasks such as masked prediction pretraining.

2.2.1 Speech Encoders

Speech encoders convert raw audio waveforms into structured feature vectors, providing
semantic representations that facilitate various downstream applications.

HuBERT

Hidden Unit Bidirectional Encoder Representations from Transformers (HuBERT) [21]
is a speech encoder that addresses the challenges outlined in Section 2.2 by employing
a BERT-style masked prediction framework, as studied in [11]. HuBERT leverages the
concept of simple discrete latent variable models (e.g., k-means), which categorize input
sequences by assigning each data point to a representative cluster center, as shown in [26].
The model is trained on sequences of partially masked speech feature vectors, exclusively
predicting the cluster assignments of the masked frames. This forces the model to build
high-level representations of the unmasked inputs. This design implicitly encourages the
model to learn both acoustic modeling, which captures meaningful latent representations
from continuous speech, and language modeling, which models long-range temporal
dependencies between these representations.

HuBERT is unsupervised, pretrained for two iterations on either the 960 hours of
LibriSpeech audio from [40] or 60,000 hours of Libri-Light audio from [23], both derived
from the LibriVox project, which contains English recordings of copyright-free audiobooks
read by volunteers. Supervised finetuning of HUBERT is also performed on Libri-Light
and LibriSpeech.

Whisper Encoder

Unlike many models that rely solely on an encoder to extract audio features (e.g., [21],
[11]), Whisper employs an encoder-decoder architecture, as described in Section 2.1.

Whisper is trained in speech processing tasks, including multilingual speech recognition
and translation. A unique aspect of Whisper is that tasks such as determining who spoke
when and voice detection are trained together with speech recognition tasks by applying
a multitask training format. These tasks are tokenized to be predicted by the decoder
without significant standardization. For training, the dataset was constructed based on
audio with transcripts gathered from the Internet covering a wide range of environments,
recording setups, speakers, and languages. Furthermore, a set of heuristics was applied to
the dataset to remove machine-generated transcripts and an audio language detector was
used to ensure language consistency. Moreover, the model is trained on audio files that
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are divided into 30-second segments, each paired with the corresponding portion of the
transcript that falls within the segment.

2.2.2 Connection Speech Encoders and Text LLMs

[ Speech Input)

PROMPT + SPEECH
MIXER

(LARGE LANGUAGE ),
' MODEL (LLM)

¥
Text Output

Figure 2.1: The figure illustrates a pipeline for connecting speech encoders with LLMs, as
shown in [16]. The pipeline consists of a Speech Foundation Model (SFM), a
length adapter, a modality adapter, a prompt speech mixer, and a LLM.

Speech LLMs are all about combining the capabilities of a speech encoder with those of
a text LLM. However, the challenge lies in aligning the modules to ensure the encoder can
work effectively with the LLM.

Yu et al. (2024) [62] propose three different ways to connect a speech encoder to an
LLM. First, by using fully connected layers to compress adjacent feature vectors, serving
as a one-dimensional convolution layer. Second, by using a one-dimensional convolution
layer and afterwards a multi-headed cross attention layer to project the feature vectors
into the embedding space of the LLM. Third, by using a Q-Former [29] that divides the
audio into segments, processes them independently, and concatenates the outputs.

Gaido et al. (2024) [16] is a study that reviews different approaches that integrate Speech
Foundation Models (SFMs) with LLMs. The basic pipeline is illustrated in Figure 2.1,
starting with SFMs, which are typically built on Transformer or Conformer architectures.
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SFM’s are effective in extracting semantic representations. These representations are
projected into the embedding space of the LLM through modality adapters. Since the raw
sequence length of speech is much larger than what LLMs can process, a length adapter
(e.g., [15], [29]) is used to compress and reduce the number of embeddings. Integration is
often enhanced by additional components, such as prompt speech mixers, as used in [7],
[60], and [14], which combine speech embeddings with textual prompts. The LLM then
processes both modalities jointly and generates a final textual output.

Tung et al. 2024 [41] study ways to align the modalities of the speech encoder and the
LLM by finetuning on ASR tasks. The paper reviews combinations of preexisting methods,
such as freezing certain modules, utilizing parameter-efficient training strategies like LoRA
[22], and applying adapters similar to those in [62]. Revealing that applying LoRA to both
modules is the most effective finetuning strategy. In contrast, the strategy of keeping both
frozen lags a bit behind in performance. The pretraining and finetuning stages correspond
to those described in Section 2.1.3. Typical training and evaluation tasks include ASR (e.g.,

[55], [63]), ST (e.g., [55]), [63]) and SQA (e.g., [39], [50]).

The compression approaches evaluated in this paper can be viewed as length adapters,
following the formulation in the second paper. The training-dependent compression
variant, in particular, closely resembles the convolution-like approach introduced in the
first paper. Moreover, while the third paper showed that the best performance is achieved
when LoRA adapters remain active for both the encoder and the LLM, we keep them
frozen in this work in order to isolate the effect of the compression modules.

2.3 LLM and Long Context

Most LLMs are built on Transformer architectures, whose memory and computational
requirements grow with sequence length. This presents a fundamental trade-off: while
longer input contexts provide models with more potentially useful information, they also
increase the difficulty of reasoning over large amounts of content, often leading to a
decrease in precision, as elaborated in [32].

The performance of language models on long contexts has been studied by Liu et al.
(2024) [32] in multi-document question answering and key-value retrieval tasks. The
results revealed that performance often depends on the position of relevant information.
Accuracy tends to be highest when relevant content appears at the beginning or end of
the input sequence, but performance degrades significantly when critical information
is located in the middle. This degradation occurs even in models that exhibit extended
context windows, indicating that simply increasing the context length does not guarantee
better performance.

Hilgert et al. (2024) [19] have shown that reduced performance in question answering is
observed for documents that exceed the original context length, particularly for questions
where the relevant information lies beyond the model’s context window. Even models
with extended context windows struggle with such documents. However, finetuning
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can enhance a model’s performance on question-answering tasks for scientific papers.
When applying finetuning, the performance loss for inputs exceeding the model’s original
context window is nearly eliminated.

Cheng-Ping Hsieh et al. 2024 [20] have shown that all reviewed models exhibit a
significant reduction in question answering performance as sequence length increases.
Additionally, it is suggested that increasing the input length based on the size of the context
window significantly decreases performance. Moreover, Models that are larger in size tend
to perform better overall than smaller models. When Models are trained on larger context
sizes, it can lead to better performance, but this is not always the case. In fact, while larger
context sizes can sometimes enhance overall performance, inconsistencies arise for longer
inputs.

Although only the first study observed a U-shaped performance pattern when processing
long contexts, all studies agree that performance degrades once the input sequence exceeds
the model’s context window. Moreover, all papers indicate that models with extended
context windows do not necessarily exhibit better long-context performance.

2.4 Context Compression
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Figure 2.2: The concept of context compression, as illustrated in [18]. In the bottom
section of the figure, it is emphasized how the prompt fed to the LLM can have
representations of different lengths with M; to Mj,s being memory tokens,
which lead to the same response
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LLMs are constrained by a finite context window and the high computational cost
associated with processing long documents. Previous research has attempted to address
the limitation of LLMs through innovations in hardware (e.g., improvements in GPUs)
or algorithms (e.g., [9], [42]). Although these methods can extend the size of context
windows, they may still suffer from a drop in performance when applied to very long
contexts, as shown in [32] and [19].

Another approach to reducing computational costs is context compression. Context
compression is based on the observation that textual information can be represented at
different levels of size while still preserving its core meaning, as illustrated in Figure 2.2.
In this setting, an LLM can be trained to compress long contexts into shorter, compact
memory vectors, which can then be directly used for a variety of downstream tasks.

An approach to context compression is described by Chevalier et al. [8]. In their work,
language models are shown to be capable of compressing text into summary vectors that
are significantly shorter than the original precompressed text. These summary vectors
can be reused as soft prompts, i.e., newly initialized embeddings that are prepended to the
input sequence. When long documents are divided into segments Sy, ..., S, and processed
sequentially, the summary vectors from the previous segments can be accumulated and
concatenated. This concatenation provides the model with a compact representation of
the entire document, enabling it to reason over long contexts without exceeding its native
context window.

Another approach is presented by Tao Ge et al. [18], who propose the ICAE framework
for context compression. This framework introduces an encoder-decoder architecture,
where the encoder is an LLM that compresses an input context ¢ = (wq, Wy, ..., wr) into a
compact set of memory slots (my, ..., m) with k < L. The decoder can condition these
memory slots for downstream tasks such as autoencoding or text continuation.

All of the references base their approach on the idea of compressing the input into a
more compact semantic representation, but they use additional transformers or LLMs that
require extensive training. The approaches evaluated in this paper serve the same purpose
but are lighter and rely on a more based strategy of slicing the input into compressed
memory vectors. Therefore, the need for extensive training is reduced, and consequently,
the computational cost is also reduced.

11






3 Methodology

This chapter introduces various approaches to context compression, with the goal of
reducing resource usage while maintaining task performance. Section 3.1 presents com-
pression methods that do not rely on training, while Section 3.2 introduces a training-based
approach.

3.1 Inference-Time Compression

Speech, particularly at high sampling rates, generates very dense frame sequences even
over short intervals. Because of this density, many segments contain similar or redundant
information. This redundancy makes more aggressive, static compression strategies
practical. Consequently, there is less need for training-dependent methods to achieve
adequate performance.

The following approaches do not rely on trainable compression methods; They apply
additional processing steps either directly to the speech waveform or to the corresponding
feature vectors. As no training is required, these compression methods are lightweight,
computationally inexpensive, and straightforward to implement. Therefore, they serve as
a strong baseline for comparison with more advanced compression approaches.

Formal Definitions.

Let a raw speech waveform be denoted as

X = (X1, X2, ..., Xn), (3.1)

Formally, the encoder function can be defined as

E:R*" > R™ E(x)=w (3.2)

and let the corresponding sequence of feature vectors extracted by the audio encoder be

W= (Wi, Wa,...,Wn), W € Rd, (3.3)

where d is the hidden size of the encoder output and m depends on the encoder archi-
tecture .

13
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3.1.1 Simple Chunking

The approach adds an additional preprocessing step by dividing the audio waveform into
non-overlapping chunks of fixed length L. These chunks are then independently processed,
and the results are concatenated. By segmenting and processing the input independently,
the model requires fewer resources compared to processing the whole input in one run.

The simple chunking method was chosen because it is straightforward to implement
and does not require additional training or modifications to the model architecture. In
addition, chunking is a proven method to reduce computational cost, as many ASR models
integrate a chunking-like approach (e.g., [43], [4]).

Chunking

The waveform x is split into consecutive, non-overlapping segments of fixed length L:

X = (C1, CZs L] CK), Ck = (x(k—l)L+1’ L] xminkL,n), (3'4)

where K = [n/L]. Each chunk ¢ is processed independently by the encoder, and the
resulting outputs are concatenated:

w = (E(cy) | E(c2) || ... [|E(ck)). (3.5)

The feature vector sequence obtained by encoding the entire audio without chunking
will not be identical to w, since the attention span allows the model to attend to all positions
in the given waveform when computing the feature vectors. With chunking, the attention
span is restricted to each chunk. Moreover, the positional encodings differ, as each chunk
resets its positional indices to zero.

3.1.2 Skipping and Averaging

As speech signals are continuous, sampling them at high frequencies produces sequences
with high frame density. Due to the length of these sequences, one often encounters neigh-
boring frames that contain similar information, resulting in redundancy. These redundant
frames correspond to feature vectors that are suitable for compression. Since skipping and
averaging focus on compressing neighboring frames, they are a compatible choice for this
purpose. For implementation, these approaches introduce an intermediate processing step
between the encoding and decoding stages. After extracting an array of feature vectors
from the audio, the array is compressed along the time dimension by a constant factor
x. In doing so, skipping and averaging reflect different degrees of roughness. Skipping
simply discards feature vectors, whereas averaging incorporates the values of all vectors
by computing their mean. This enables us to assess the impact of compression method
complexity on model performance in ASR, particularly in summarization and QA tasks.
Unlike in ASR, not every word or sentence in the audio contributes relevant information for
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summarization or QA, which makes such compression strategies particularly interesting
to investigate.

Overall, in terms of compression, skipping, and averaging offer a straightforward
method, as they require no training and are relatively easy to implement.

Skipping
Given the feature sequence w, every z-th frame is retained and the others are discarded:
W = (W1, Witz Wit2z: - -+ ), (3.6)

leading to a compressed length
Iw'| =[2]. (3.7)

Averaging

The sequence w is divided into consecutive blocks of size z, and the mean vector is
computed for each block:

jz

W)=~ Z wi, j=1...,]2]. (3.8)

2 i=(j Dz
If a remainder r = m mod z exists, the last block is averaged accordingly:
m
’

1
WLI’II/ZJ+1 = - Z Wi. (3.9)

i=m—-r+1

3.2 Trained Compression Module

This approach modifies the model architecture by adding a trainable layer between the
encoding and decoding stages. Compression is applied along the time dimension with
a constant downsampling rate x on the sequence of audio feature vectors produced by
the encoder. In contrast to the inference-time methods, this approach requires additional
training to adapt the weights of the convolution layer to the specific environment and
task. However, since this step is strongly data- and task-dependent, there is no guarantee
of generalization across different datasets or tasks. Training in ASR does not guarantee
equally strong performance in summarization or QA tasks. This opens the opportunity to
evaluate how trainable compression methods generalize to different domains and tasks.

To illustrate the concept of trainable compression, convolution was chosen, as it repre-
sents a fundamental approach to downsampling, commonly used in Conformer models
and other architectures (e.g., [1], [21]).

15
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Convolution

The convolution layer with kernel size k and stride s produces a compressed output

N {m—(k—l)—l_i_

, =
m s

w = (W, Wy, ..., W 1 (3.10)

Each output vector wa is computed as a weighted sum over a local window of k consecutive

input vectors, with learnable weights K € Rkxd,

=~
—_

wi = > Ki W(j-1)s+i (3.11)

Il
o

i

During training, all parameters of the base model, including the LoRA parameters, are
frozen, except for the weights of the newly added convolution layer. This allows for the
direct evaluation of the convolution layer’s impact on the model’s performance across
various tasks.

The convolution layer is trained exclusively on ASR data, as ASR datasets have the
advantage of being available in large quantities compared to other datasets. Additionally,
they are typically sentence-based, making it easier to train the model on them. The setup
also enables us to investigate whether models trained on ASR can perform more complex
tasks beyond ASR.
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This chapter begins with Section 4.1, which presents the tasks and datasets used for
training and evaluation. Section 4.2 then discusses the baselines and their respective
configurations. In Section 4.3, the compression pipeline, training setup, and characteristics
of the compression modules are described. Finally, Section 4.4 introduces the metrics used
for evaluation.

4.1 Tasks and Datasets

In this Section, the underlying tasks and datasets are introduced and motivated. Both were
used to evaluate the baselines and compression approaches.

4.1.1 Tasks

To evaluate how compression influences the performance of LLMs on downstream capa-
bilities, three types of speech-to-text tasks are introduced.

Automatic Speech Recognition Tasks

Automatic Speech Recognition (ASR) Tasks evaluate a model’s ability to accurately convert
input audio to text. Since ASR tasks involve transcribing spoken words in a one-to-one
mapping, ASR models can exhibit vulnerabilities to information loss, as explored in
[12]. This makes ASR a suitable choice to illustrate how increased compression rates
relate to poorer ASR performance. ASR also provides the opportunity to evaluate how
models perform under challenging conditions, such as audio containing background noise,
distortions, or accented speech (e.g., [46]). Lastly, ASR combined with the Word Error Rate
(WER) metric is a well-established evaluation setup, as it is applied by many papers to
evaluate their models (e.g., [1], [21], [43]).

Speech Summarization Tasks
Summarization tasks assess a model’s ability to extract the most representative infor-

mation from the input audio and synthesize it into a coherent textual summary, as was
even explored in the context of speech LLMs [48]. Therefore, such tasks can require a
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deeper semantic understanding of audio content, as highlighted by [27]. Thus, it allows
the evaluation of the model’s semantic capabilities. Furthermore, since summarization
itself can be viewed as a form of compression, it is particularly interesting to investigate
how context compression on feature vectors influences a model’s performance on sum-
marization. Lastly, summarization tasks also provide datasets with long-form audio (e.g.,
[68]), which align with the intended purpose of compression methods.

Question Answering Tasks

Question Answering (QA) tasks require the model to generate answers to a given question
based on the content of the input audio. Similarly to summarization, QA tasks can help
models develop better semantic understanding, as explored in [5], making QA a suitable
setup to illustrate how compression influences a model’s semantic understanding capabili-
ties. Moreover, the fact that QA is already an established task in speech LLMs makes it a
suitable choice as an evaluating task (e.g., [36], [1], [50]).

4.1.2 Datasets

Table 4.1: Overview of Nutshell, LibriSQA-Partl and ACL 60/60 datasets, showing the
amount of samples, the audio length in minutes, and the average word length
per answer for both training and testing / development sets for each task.

Task Training set Testing / Development set
amount average audio  average words ~ amount  average audio average words
of samples (min) per answer  of samples (min) per answer
ASR 104,014 0.21 34.57 2,620 0.12 20.07
LibriSQA-PartI ? .
briSQAPartl ) tion Answering 104,014 0.21 1745 2,620 0.12 1745
Nutshell Summarization 4,000 121+ 11.2 142.8 £ 36.1 885 9.9+3.6 141.9 £ 36.5
ACL 60/60 ASR *no training set  *no training set *no training set 468 0.11 15+7.5
LibriSQA

LibriSQA-Partl [67] contains a total of up to 107,000 audio samples, as illustrated in Table
4.1. For evaluating ASR and QA capabilities, the complete LibriSQA-PartI test set is used,
comprising 2,620 authentic human and clean speech samples. On average, each sample
has a duration of 7.42 seconds, has an average length of 20.07 words, and is paired with a
transcription, a natural question, and a corresponding free-form answer. For training ASR
capabilities, the full LibriSQA-Partl training set is utilized, comprising 104,014 samples. On
average, each sample has a duration of 12.58 seconds, an average length of 34.57 words, and
is paired with a transcription, a natural question, and a corresponding free-form answer.
The questions in the LibriSQA dataset have an average length of approximately 16 words,
while the answers average around 17 words. The dataset is based on Librispeech [40] and
is therefore limited to English.
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Nutshell

For evaluating summarization tasks, the complete Nutshell [68] development set is used,
which contains 885 audio samples from scientific talks, as illustrated in Table 4.1. The
samples have an average duration of 9.9 + 3.6 minutes. Each audio sample is paired with
a corresponding abstract, averaging 141.9 + 36.5 words. The dataset is built on the ACL
Anthology data collection and is limited to English.

ACL 60/60

To evaluate ASR capabilities under challenging conditions, the complete ACL 60/60 [46]
development set is used. It consists of sentence-level audio samples recorded under realistic
conditions with speakers from diverse demographic backgrounds. The dataset comprises
468 audio samples with an average duration of 6.64 seconds and a length of 15 + 7.5
words, as illustrated in Table 4.1. Each sample is paired with a corresponding transcription,
averaging 16.9 word tokens in length. Unlike LibriSQA and Nutshell, ACL 60/60 supports
multiple languages.

4.2 Baselines

To compare the impact of context compression on the performance of Speech LLMs across
different tasks, the following baselines are defined.

4.2.1 Text-Based Two-Stage Pipeline
Whisper + Llama Pipeline

For audio-to-text transcription, Whisper [43] is employed as the ASR model. Whisper is
a Transformer based on an encoder—decoder architecture, as elaborated in Section 2.1.2.
Whisper segments input audio into sentence-level chunks of up to 30 seconds and supports
up to 100 languages.

Two baselines are considered: Whisper-small and Whisper-large, differing in model
size, with 244M and 1.55B parameters, respectively. For tasks beyond ASR, the generated
transcriptions are processed by a text-based LLM. Llama 3, specifically the LLaMA-3.2-
3B-Instruct model. Llama 3 is a decoder-only transformer that also supports up to 100
languages.

The Whisper+Llama combination is a suitable choice for this paper, as it represents an
established pipeline for Speech LLMs both in the context of speech recognition [44] and
speech understanding [30] and has been used in other prior works (e.g., [68]) .
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Phi-4-multimodal-instruct self-cascade Pipeline

Phi-4-multimodal-instruct [1] is an open multimodal foundation model, allowing the
pipeline to perform automatic speech recognition and a wide range of downstream tasks
beyond ASR. The model has 5.6B parameters and supports multiple languages.

In this approach, all audios are first transcribed into English. Downstream tasks, such
as summarization and QA, are then performed on the transcribed audio. With Nutshell
containing long-form audio, the model cannot process the audio at once, given the limited
GPU memory. Thus, the samples are first split into fixed-length segments and then
concatenated when transcribed.

Phi-4-multimodal-instruct is a suitable choice for this paper, as it has been trained in
speech recognition, QA, and summarization, and represents a unified solution, requiring
no separate module for speech encoding.

4.2.2 Discrete-Token-Based Two-Stage Pipeline
Discrete-unit adapted ASR (HUBERT) + LLM (Spire) Pipeline

This pipeline employs an ASR approach based on discrete units. Specifically, the HuBERT-
large-1160k model [21], an encoder-only transformer, is used to extract feature vectors and
convert them into discrete tokens. HuBERT primarily supports English. For tasks beyond
ASR, Spire [3] is used as the LLM, adapted to process the discrete units generated by
HuBERT. Spire has 7B parameters, follows a decoder-only architecture, and also primarily
supports English.

As this approach is based on discrete units, a contrast is drawn with text-based ap-
proaches, thereby expanding the baseline variety.

4.2.3 End-To-End Pipeline
Phi-4-multimodal-instruct out of the box Pipeline

In this approach, summarization and QA are performed directly on the audio samples,
without any interruptions of intermediate transcription or chunking steps.

Phi-4-multimodal-instruct without chunking Pipeline

In this approach, summarization and QA are also performed directly on the audio samples,
without any transcription or chunking steps. As the out of the box approach encounters
GPU memory shortages when processing Nutshell, the encoding and decoding steps are
executed in separate runs. Specifically, the feature vectors extracted by the encoder are
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first saved to disk. In a subsequent step, these vectors are reloaded, the encoder parameters
are released from GPU memory, and decoding is performed. This baseline also serves as a
sanity check, verifying that the results are identical to those obtained with the out of the
box approach.

4.3 Model Configuration

The following implementations and their corresponding configurations of the baselines
are based on the Hugging Face Transformer package [58] and are configured to produce
results solely in English.

4.3.1 ASR (Whisper) + Text LLM (Llama) Pipeline

In the Whisper + Llama pipeline, the following settings are applied to the Whisper modules:
timestamps are enabled and sampling is disabled (do_sample=False) to ensure deterministic
results. The model is assigned to a single GPU (e.g., Nvidia Titan RTX) with 24 GB of
memory, and the inference batch size is adapted per dataset: 1 for Nutshell and 20 for
both LibriSQA and ACL 60/60. For the Llama module, the torch data type is set to float16
to reduce GPU memory usage, and a device map distributes computation across four
GPUs. During inference, tokenization is configured with padding=True. Generation is
performed with a maximum of 300 new tokens and sampling disabled (do_sample=False).
For ACL 60/60 and LibriSQA, two GPUs with a batch size of 30 are sufficient, whereas
Nutshell requires four GPUs with a batch size of 5.

4.3.2 Discrete-Unit Adapted ASR (HUBERT) + LLM (Spire) Pipeline

In the HUBERT + Spire pipeline, the HuBERT module is configured with torch data type
float32. For labeling inputs from LibriSQA and ACL 60/60, the module is assigned to a
single GPU with a batch size of 20. In contrast, for Nutshell, one GPU with a batch size of
10 is used. Only Nutshell audio samples are chunked into 20-second segments to prevent
GPU memory from overflowing. Chunks shorter than 31.25 ms are discarded. During
labeling, padding is set to true. For Spire, the model uses torch data type float32. During
inference across all datasets, three GPUs are assigned with a batch size of 10. The tokenizer
is configured with padding=True. Text generation is performed with max_new_tokens=300
and do_sample=False. Furthermore, no_repeat_ngram_size=3 is set because Spire appears
not to be adapted to accented speech and, therefore, vulnerable to generating repeating
sequences when confronted with ACL 60/60. Additionally, regarding Nuthell, the summa-
rization tasks are conducted on the transcriptions of the audio files, as using discrete units
directly leads to GPU memory shortages.
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4.3.3 Phi-4-Multimodal-Instruct Pipeline
Self-cascade

For the Phi-4-multimodal-instruct self-cascade setup, the processor is configured with
trust_remote_code=True. The model is initialized with the following settings: attention
implementation set to eager, torch_dtype="auto", and trust_remote_code=True. For
dataset transcription, the model is assigned two GPUs with a batch size of 20. For inference
beyond ASR, a batch size of 20 is used for LibriSQA, while Nutshell uses a batch size of 5.
For both cases, three GPUs are assigned. For transcription in Nutshell, audio samples are
chunked into 30-second segments. During inference, text generation is configured with
max_new_tokens=300, do_sample=False, and the default generation mode.

Out of the box

For the Phi-4 Multimodal-instruct out of the box setup, the processor and model are
configured identically to those in the self-cascade setup. For inference beyond ASR, the
model is assigned four GPUs, with a batch size of 15 for LibriSQA and a batch size of 1 for
Nutshell.

Without chunking

For the Phi-4 multimodal-instruct setup without chunking, the processor and model are
configured identically to the self-cascade setup. For ASR and QA, the model is assigned
two GPUs with a batch size of 1, whereas summarization requires four GPUs with a batch
size of 1. The batch size is reduced to 1 because when executing the model decoder inde-
pendently, it no longer supports batching. During inference beyond ASR, text generation
is configured with do_sample=False, max_new_tokens=300, and no_repeat_ngram_size=3.
The processor settings remain the same as in the self-cascade setup.

Training

The training configuration is set as listed in Table 4.2: Exclusively, the convolution
layer weights are adjusted during training while the parameters of the original model
remain frozen, resulting in 28,31M trainable parameters. Training is conducted 10 epochs
with a batch size of 8 per GPU, distributed across four GPUs, on 99% of the LibriSQA
training set, which corresponds to 102,973 samples. Gradient checkpointing is enabled
(use_reentrant=False) to reduce memory usage, and FlashAttention [10] is disabled. The
optimizer used is AdamW [34] with f; = 0.9, f; =0.95, € = 1077, a learning rate of 4 - 1072,
a weight decay of 0.01, and a maximum gradient norm of 1.0. The learning rate scheduler is
linear with 50 warm-up steps. Logging occurs at every step, and checkpoints are saved ev-
ery 200 steps, with a maximum of one checkpoint retained, storing only the model weights.
Evaluation is performed every 200 steps on 1 percent of the LibriSQA training set. The early
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Table 4.2: Hyperparameters for training the convolution layer

Hyper Parameters

Training epochs

Batch size

Gradient checkpointing
Optim

Adam betal

Adam beta2

Adam epsilon

Learning rate

Weight decay

Max grad norm

Lr scheduler type
Warmup steps

Save strategy

Save steps

Eval strategy

Eval steps

Save total limit

Save only model

bf16

fp16

Remove unused columns
Disable tqdm
Dataloader num workers
Ddp find unused parame-
ters

Load best model at end
Metric for best model
Greater is better

10

8
True
Adamw torch
0.9
0.95
le-7
4-107°
0.01
1.0
linear
50
steps
200
steps
200

1
True
bf16
fp16
False
True
4
True

True
Eval loss
False
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stopping patience is set to 2 to prevent the layer from overfitting. When training ends, the
best model is selected based on eval loss (lower is better). Training stops after 6.4 epochs
due to early stopping kicking in. Mixed precision is enabled with bf16 or fp16 as specified.
Unused columns in the dataset are retained (remove_unused_columns=False). DeepSpeed
is not used. Data loading uses 4 worker threads and ddp_find_unused_parameters=True
to handle any unused layers.

4.3.4 Compression Modules

To ensure proper compression, the processor first calculates the expected size of the
compressed feature vector array that will be passed to the encoder for generation. To
avoid issues when running the decoder, padding is applied to feature vector arrays with
lengths between 4000 and 4096 tokens before they are fed to the decoder.

For the convolution, the following formula is applied, where Ly, and Lj, denote the
sizes of the output and input, respectively, k is the kernel size, and s is the stride:

Lm—(k—l)—1+
S

1 (4.1)

Lout =

and a compression ratio of

Lout _ |_(Lm -k + 1)/3J

CR = =
conv L, Lo,

(4.2)

The convolution layer has the following parameters: kernel_size=3, stride=2, bias=False,
which results in an output length of

Lin—1
Lout:{ 1"2 +1| (4.3)

and a compression rate of

Lout — L(Lln - 2)/2J ‘

CR = 4.4
cono Lm Lm ( )
For the skipping approach, the compression formula is:
L:
Loyt = ’Vﬂ“ (4~5)
Xte

For the averaging approach, the compression formula is:

L; 1 if L dxpe #0
Low = {ﬂ| +6, 6= 1 in TOC Hte (4.6)
Xte 0 ifL;, modx;, =0

Both approaches have an approximate compression ratio of

L 1
CRavg = CRskip = Lout ~ (4.7)
in te
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4.4 Evaluation

4.4 Evaluation

4.4.1 Quality Metrics

To evaluate a model’s performance on ASR tasks, the Word Error Rate (WER) is used. WER
measures the similarity between two texts by counting the number of insertions, deletions,
or substitutions required to align them. It is a standard ASR metric (e.g, [1], [43]).

For summarization and QA tasks, ROUGE-L [31] and BERTScore [65] are employed.
ROUGE-L is suitable because the model may generate multiple valid answers or abstracts
that are semantically correct but paraphrase the reference, where WER would be too
strict. ROUGE-L evaluates similarity based on the longest common subsequence, capturing
syntactic overlap while remaining flexible. To assess semantic similarity, BERTScore is
used. BERTScore uses contextual embeddings that consider surrounding words, making it
robust to paraphrasing and capable of capturing long-range dependencies in text. For this
paper, we use the unnormalized version of BERTScore with RoBERTa-large [33] as the
underlying model. Also, we use the F1 score of BERTScore. ROUGE-L and BERTScore are
well-established metrics, as they have been used in both QA datasets, such as [67], and
summarization datasets, like [68].

4.4.2 Compression Metrics

To quantify compression the compression factor is used, which measures the ratio between
the size of the input feature vector array and the size of the output feature vector array.
When quantifying the default compression rates of the baselines, the macro average of
per-sample ratios between the number of frames when the input utterance is converted
into waveform datapoints, and the number of output tokens is taken. For an end-to-end
system that does not rely on intermediate discrete units, the macro average of per-sample
ratios between the number of frames and the number of feature vectors is taken.
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5 Results and Analysis

This chapter first presents the baseline results for ASR, QA, and summarization in Section
5.1. Section 5.2 then discusses the results of the inference-time compression approaches,
including the compression rates of the baselines and the impact of increased compression
on model performance. Finally, Section 5.3 reviews the results of the trained compression
approach, evaluating its performance across different tasks and domains.

5.1 Baseline Results

This section presents the baseline results for ASR, QA, and summarization, as introduced
in Section 4.1.

5.1.1 ASR Results

The Whisper-large model outperforms Whisper-small in all domains, with improvements
of approximately 2.1 (WER) points in ACL 60/60 and 1.2 points in LibriSQA, as shown in
Table 5.1. This gain can be attributed to its larger model size (1.54B parameters vs. 242M).

In contrast, the HuBERT + Spire combination yields the weakest results across all
domains, lagging behind by up to 9.02 points in ACL 60/60 and 3.24 points in LibriSQA
compared to Whisper-small, as reported in Table 5.1.

The best overall performance is achieved by the Phi-4-multimodal-instruct model,
surpassing Whisper-large by approximately 0.8 points (17.47 vs. 18.27) on ACL 60/60 and
1.1 points (2.53 to 3.63) on LibriSQA, as shown in Table 5.1.

5.1.2 QA and Summarization Results

Whisper-large, despite its larger model size, performs nearly identically in summarization
and QA across all metrics compared to Whisper-small, with differences within 0.34 ROUGE-
L and BERTScore points, as shown in Table 5.2.

The Phi-4-multimodal-instruct self-cascade model slightly outperforms Whisper-large
in both tasks, achieving gains of up to 1.08 ROUGE-L points (36.18 vs. 35.10) and 1.42
BERTScore points (90.33 vs. 88.91) in QA. In summarization, it yields an improvement
of 0.87 BERTScore points (86.02 vs. 85.15), while the ROUGE-L scores remain almost
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5 Results and Analysis

Table 5.1: Baseline ASR results in WER (|) on two datasets of varying conditions: LibriSQA
(clean, read speech) and ACL 60/60 (accented speech with varying recording
conditions). For readability, the results have been scaled by a factor of 100.

ASR
ACL 60/60 LibriSQA
Whisper-small 20.38 4.90
Whisper-large-v3 18.27 3.63
hubert+spire 29.40 8.14
Phi-4-multimodal-instruct  17.47 2.53

equal, differing by only 0.43 points (19.65 vs. 19.22), as shown in Table 5.2. However,
Phi-4-multimodal-instruct self-cascade lags behind HuBERT + Spire in QA, with a gap of
up to 13.31 ROUGE-L points (36.18 vs. 49.49); the difference in BERTScore is smaller at
about 1.49 points (90.33 vs. 91.82). In contrast, HuBERT + Spire performs considerably
worse in summarization, trailing the Phi-4-multimodal-instruct self-cascade model by
4.84 ROUGE-L points (14.81 vs. 19.65) and 2.48 BERTScore points (83.54 vs. 86.02). Due
to limited GPU memory, summarization for HuBERT + Spire had to be carried out in a
self-cascading setup, where summarization was applied to the transcriptions. As already
noted, HuBERT + Spire does not perform strongly in ASR, which likely contributes to its
weaker summarization results.

The best overall QA performance is achieved by the out of the box Phi-4-multimodal-
instruct model, surpassing HuBERT + Spire by 8.78 ROUGE-L points (58.27 vs. 49.49) and
1.38 BERTScore points (93.20 vs. 91.82), as shown in Table 5.2. The greater performance
of both the out of the box version of Phi-4-multimodal-instruct and the HuBERT + Spire
pipeline compared to the Whisper + Llama pipeline may be explained by their training
data. For Phi-4-multimodal-instruct, it is possible that LibriSQA or a related dataset was
included in its training, although this cannot be confirmed. As a matter of fact, HuBERT
in the HuBERT + Spire pipeline was trained on LibriSpeech, while LibriSQA is derived
from LibriSpeech. This may also be attributed to the fact that SpireLM is the largest model
among the baselines, and although it was exclusively trained on ASR and ST, its model
size potentially enables improved generalization to QA tasks.

However, the out of the box Phi-4-multimodal-instruct approach encounters an Out Of
Memory (OOM) error when processing long-form audio from Nutshell due to the limited
GPU memory. The BERTScore for Nutshell is therefore taken from [25]. As [25] only
reports BERTScore, we leave the ROUGE-L for this system open. When compared to the
version without chunking, the Phi-4-multimodal-instruct out of the box pipeline performs
almost identical in summarization, showing a difference of only 0.38 BERTScore points
(86.72 vs. 86.34).

The without chunking variant of Phi-4-multimodal-instruct served as a sanity check
to verify that separating the feature extraction step works as intended. A comparison
of its LibriSQA ASR transcriptions on the first 100 samples with those from the out of
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the box approach showed identical outputs. Although the without chunking approach
delivers results close to the out of the box variant, it performs worse when generating
abstracts in terms of ROUGE-L compared to the self-cascade approach, with a margin of
3.13 ROUGE-L points (16.52 vs. 19.65), as shown in Table 5.2.

Interestingly, both the without chunking and out of the box versions of Phi-4-multimodal-
instruct outperform the self-cascade variant across all metrics, except for ROUGE-L in
summarization. This may be attributed to the fact that there is no single correct way to
write an abstract; this effect becomes even more pronounced as the input audio length
increases. Since the BERTScore is higher in the setup without chunking, it indicates that
the generated abstracts are closer in meaning to the references, which can be considered a
more important signal. Regarding QA, the better performance of the out of the box pipeline
compared to the self-cascading variant could be explained by the intermediate transcription
step in the pipeline, which may lose or alter information from the short-form audio. Since
QA tasks can be very sensitive to the specific information requested, sometimes down to a
single word, such alterations can have a noticeable impact on performance.

Table 5.2: Baselines speech-to-text results in ROUGE-L (T) and BERTScore (T) on two
datasets of varying conditions: LibriSQA (Audio books + questions and answers,
short-form audio) and Nutshell (Conference talks + abstracts, long-form audio).
For readability, the results have been scaled by a factor of 100.

Summarization (Nutshell) QA (LibriSQA)
ROUGE-L BERTScore ROUGE-L BERTScore

Whisper-small+llama 3-3B  18.96 85.11 34.76 88.83
Whisper-large-v3+llama 3- 19.22 85.15 35.10 88.91
3B
hubert+spire 14.81 83.54 49.49 91.82
Phi-4-multimodal-instruct 19.65 86.02 36.18 90.33
self-cascade
Phi-4-multimodal-instruct — 86.72 58.27 93.20

e2e (out of the box)
Phi-4-multimodal-instruct  16.52 86.34 58.27 93.20
e2e (without chunking)

5.2 Inference-Time Compression Results

In the following section, we examine both the compression rate inherent to the model and
the effect of increasing compression on model performance. Additionally, we present the
results of the inference-time compression approaches.
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Table 5.3: Inference-Time Compression text-to-text results in ROUGE-L (T) and BERTScore
(T) on two datasets of varying conditions: LibriSQA (Audio books + questions
and answers, short-form audio) and Nutshell (Conference talks + abstracts, long-
form audio). For readability, the results have been scaled by a factor of 100.

Summarization (Nutshell) QA (LibriSQA)
ROUGE-L BERTScore ROUGE-L BERTScore

Phi-4-multimodal-instruct 16.52 86.34 58.27 93.20
- e2e (without compres-
sion)
Phi-4-multimodal-instruct 16.27 86.34 50.33 92.06
- e2e (skip 2)
Phi-4-multimodal-instruct 16.68 86.36 53.70 92.56
- e2e (avg 2)
Phi-4-multimodal-instruct 14.46 85.71 33.85 89.10
- e2e (skip 4)
Phi-4-multimodal-instruct 14.47 85.68 35.06 89.19
- e2e (avg 4)
Phi-4-multimodal-instruct 13.04 84.75 26.41 87.83
- e2e (skip 8)
Phi-4-multimodal-instruct 11.43 82.59 22.17 87.00
- e2e (avg 8)

5.2.1 Compression Rate Comparison to Baselines

The baselines already yield a certain degree of compression by default. For instance, in
ASR on LibriSQA, Phi-4-multimodal-instruct exhibits a compression rate of 5690 when
considering the macro average of ratios between the number of audio frames and the
number of generated text tokens per sample, whereas Whisper-large achieves a compres-
sion rate of 4315 under the same setup. When comparing the compression ratio regarding
the macro average of ratios between the number of audio frames and the corresponding
feature vectors per sample, the Phi-4 Multimodal-instruct encoder yields a compression
rate of 1108, while HuBERT achieves 419. The compression approaches introduced in this
paper further extend these rates by multiplying factors of 2, 4, and 8. The corresponding
pipelines are summarized in Table 5.3.

5.2.2 Performance Comparison to Baselines

The Phi-4-multimodal-instruct pipeline without compression performs slightly better than
the skipping approach: in summarization, the results are almost identical, differing by only
0.25 ROUGE-L points (16.52 vs. 16.27), and regarding BERTScore, they are equal. For QA,
the baseline performs better by 7.94 ROUGE-L points (58.27 vs. 50.33) and 1.14 BERTScore
points (93.20 vs. 92.06), as shown in Table 5.3. Regarding summarization, averaging and
the pipeline without compression perform almost equally well, differing by only 0.16
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ROUGE-L points (16.68 vs. 16.52) and 0.02 BERTScore points (86.36 vs. 86.34). For QA,
the without compression approach outperforms averaging by 4.57 ROUGE-L points (58.27
vs. 53.70) and by 0.64 BERTScore points (93.20 vs. 92.56). Overall, performance scores in
summarization are very close across all metrics. In contrast, for QA, the original pipeline
performs noticeably better, particularly in terms of ROUGE-L, compared to the compression
approaches. This may be due to the fact that LibriSQA contains short-form audio, making
information loss from compression more impactful. Nevertheless, the results indicate that,
at least for summarization of long-form audio, compression approaches (averaging with
a compression rate of 2) can perform comparably to the no compression baseline. The
fact that summarization tasks focus on compressing and removing redundant information,
combined with the fact that speech frames often contain large amounts of redundant
content, which are intended to be removed by the compression method, may explain why
these types of compression approaches are particularly compatible.

The compression approach based on averaging performs slightly better than skipping
across all metrics and tasks, as shown in Table 5.3. Specifically, they perform almost
identically in summarization, differing by only 0.41 ROUGE-L points (16.68 vs. 16.27) and
0.02 BERTScore points (86.36 vs. 86.34). In QA, averaging improves by 3.37 ROUGE-L
points (53.70 vs. 50.33), and they perform in terms of BERTScore almost equally with 0.5
BERTScore points (92.56 vs. 92.06) difference.

5.2.3 Impact of Increasing Compression Rate

The previous analyses exclusively considered compression pipelines with a compression
rate of 2. When comparing skipping and averaging approaches at higher compression
rates (4 and 8), performance is consistently degrading between tasks and metrics. When
comparing rates 2 and 8 for averaging, in summarization performance decreases by 5.25
ROUGE-L points and by 3.77 BERTScore points, as shown in Figure 5.1 and Figure 5.2.
For QA, the degradation is more severe, with performance drops by up to 31.53 ROUGE-L
points and 5.56 BERTScore points, as shown in Table 5.3, Figure 5.4, and Figure 5.3. When
comparing rates 2 and 8 for skipping, in summarization performance decreases by 3.23
ROUGE-L points and by 1.59 BERTScore points, as shown in Figure 5.1 and Figure 5.2. For
QA, the degradation is more severe, with performance dropping by up to 23.92 ROUGE-
L points and by up to 4.23 BERTScore points, as shown in Table 5.3, Figure 5.4, and
Figure 5.3. Interestingly, as the compression rate increases, the performance gap between
averaging and skipping narrows. As presented in the previous passage, averaging performs
better than skipping at a compression rate of 2. At a compression rate of 8, skipping
even surpasses averaging across all tasks and metrics in summarization, with a 1.61-
point ROUGE-L advantage (13.04 vs. 11.43) and a 2.16-point BERTScore (84.75 vs. 82.59)
advantage, favoring the use of skipping. In QA, by 4.24 ROUGE-L points (26.41 vs. 22.17)
and 0.83 BERTScore points (87.82 vs. 87.00), also in favor of skipping. This can be explained
by the fact that when compressing too many vectors into one, the resulting vector may
deviate significantly from the original vectors, making it possible that simply removing
vectors while keeping the rest authentic might have the same or even better effect.
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Figure 5.1: Averaging and Skipping approach over compression rates 0, 2, 4, 8 in ROUGE-L
(T) on one dataset: Nutshell (Conference talks + abstracts, long-form audio).
For readability, the results have been scaled by a factor of 100.
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Figure 5.2: Averaging and Skipping approach over compression rates 0, 2, 4, 8 in BERTScore
(T) on one dataset: Nutshell (Conference talks + abstracts, long-form audio).
For readability, the results have been scaled by a factor of 100.
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Figure 5.3:

Figure 5.4:

QA (LibriSQA)
94 T T T I I I I I I
92 |- -
&
S)
% 90 - -
>
=
M
88 |- 2
—e— Averaging
—— Skipping
86 1 1 l l l l l l l

0 1 2 3 4 5 6 7 8
Compression-Rate

Averaging and Skipping approach over compression rates 0, 2, 4, 8 in ROUGE-L
(T) on one dataset: LibriSQA (clean, read speech). For readability, the results
have been scaled by a factor of 100.
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Averaging and Skipping approach over compression rates 0, 2, 4, 8 in BERTscore

(T) on one dataset: LibriSQA (clean, read speech). For readability, the results
have been scaled by a factor of 100.
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The Phi-4 Multimodal-instruct approach without compression performs best in ASR
across both datasets. It surpasses the skipping approach (compression rate 2) by 16.59
points in ACL 60/60 (17.47 vs. 34.06) and by 18.87 points in LibriSQA (2.53 vs. 21.4).
Compared to the averaging approach (compression rate 2), it performs better with 6.09
points in ACL 60/60 (17.47 vs. 23.56) and 5.07 points in LibriSQA (2.53 vs. 7.6), as shown in
Table 5.4. As expected, since compression comes with potential information loss.

With higher compression rates (4 and 8), performance further degrades. Without
compression, the model outperforms averaging (compression rate 8) by approximately
75.37 points in ACL 60/60 and by 87.22 points in LibriSQA and outperforms skipping
(compression rate 8) by approximately 77.01 points in ACL 60/60 and by 85.05 points in
LibriSQA , as shown in Table 5.4, Figure 5.6 and Figure 5.5. The gap between skipping
and averaging narrows as the compression rate increases. At a compression rate of 2,
averaging is ahead of skipping by 10.5 points (23.56 vs. 34.06) in ACL 60/60 and 13.8 points
(7.60 vs. 21.40) in LibriSQA. At a rate of 8, the difference shrinks to 1.54 points (94.48 vs.
92.84) in favor of averaging in ACL 60/60, while skipping slightly outperforms averaging
by 2.17 points (87.58 vs. 89.75) in LibriSQA. For ASR overall, skipping and averaging seem
to exhibit a similar trend to the summarization and QA tasks.

Table 5.4: Inference-Time Compression ASR results in WER () on two datasets of varying
conditions: LibriSQA (clean, read speech) and ACL 60/60 (accented speech with
varying recording conditions). For readability, the results have been scaled by a
factor of 100.

ASR
ACL 60/60 LibriSQA

Phi-4-multimodal-instruct - e2e (with- 17.47 2.53

out compression)

Phi-4-multimodal-instruct - e2e (skip 2) 34.06 21.40
Phi-4-multimodal-instruct - e2e (avg 2) 23.56 7.60
Phi-4-multimodal-instruct - e2e (skip 4) 78.59 71.54
Phi-4-multimodal-instruct - e2e (avg 4) 71.36 64.32
Phi-4-multimodal-instruct - e2e (skip 8) 94.48 87.58
Phi-4-multimodal-instruct - e2e (avg 8) 92.84 89.75

5.3 Results of Trained Compression

5.3.1 Training and Testing Both on LibriSQA

As expected, the convolution-based compression approach achieved the best performance
in ASR tasks with LibriSQA, outperforming the skipping method (compression rate 2) by
19.26 points (2.14 vs. 21.4) and averaging (compression rate 2) by 5.46 points (2.14 vs. 7.60),
as shown in Table 5.5. It even slightly surpasses the no compression approach by 0.39
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Figure 5.5: Averaging and Skipping approach over compression rates 0, 2, 4, 8 in WER (|)
on one dataset: LibriSQA (clean, read speech). For readability, the results have
been scaled by a factor of 100.
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Figure 5.6: Averaging and Skipping approach over compression rates 0, 2, 4, 8 in WER ()

on one dataset: ACL 60/60 (accented speech with varying recording conditions).
For readability, the results have been scaled by a factor of 100.
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points (2.14 vs. 2.53). This improvement can be attributed to the fact that the convolution
layer was specifically trained on LibriSQA.

Table 5.5: Trained Compression ASR results in WER () on one dataset: LibriSQA (clean,
read speech). For readability, the results have been scaled by a factor of 100.

ASR

LibriSQA
Phi-4-multimodal-instruct - e2e (without compression) 2.53
Phi-4-multimodal-instruct - e2e (skip 2) 21.40
Phi-4-multimodal-instruct - e2e (avg 2) 7.60
Phi-4-multimodal-instruct - e2e (conv) 2.14

5.3.2 Same Domain, Different Tasks: Training on ASR, Testing on QA

The convolution-based compression approach performs for QA in regard to ROUGE-L
slightly better than averaging (compression rate 2) by 1.05 ROUGE-L points (54.75 vs. 53.70)
and skipping (compression rate 2) by 4.42 ROUGE-L points (54.75 vs. 50.33), as shown
in Table 5.6. However, in terms of BERTScore, all compression methods perform almost
equally, with the results of the convolution-based approach differing by 0.36 BERTScore
points (92.19 vs. 92.55) from averaging and by 0.13 BERTScore points (92.19 vs. 92.06)
from skipping. This indicates that training compression parameters on ASR tasks does
not necessarily give an advantage in performance on QA tasks compared to non-trainable
compression methods. On the other hand, the no compression approach still slightly
outperforms all compression methods, with the convolution approach trailing by 3.52
ROUGE-L points (58.27 vs. 54.75) and the averaging approach by 0.65 BERTScore points
(93.20 vs. 92.55).

An aspect to consider is the fact that LibriSQA contains short-form audio. QA is, by
nature, very sensitive. Consequently, the answer to a question can depend on one word.
Altering this word can lead to a change in context, thereby yielding a completely different
answer. When compression is applied to short-form audio, it may induce a greater loss or
change in relevant information, resulting in poorer QA performance. Furthermore, this
results in the convolution-based approach being marginalized compared to the averaging
method.

5.3.3 Same Task, Different Domains: Training on LibriSQA and Testing on ACL
60/60

The convolution-based compression approach achieved better performance in ASR tasks
with ACL 60/60 than the training-free compression methods, outperforming averaging
(compression rate 2) by 4.31 points (19.25 vs. 23.56) and skipping (compression rate 2) by
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Table 5.6: Trained Compression text-to-text results in ROUGE-L (T) and BERTScore (T) on
one dataset: LibriSQA (Audio books + questions and answers, short-form audio).
For readability, the results have been scaled by a factor of 100.

QA (LibriSQA)
ROUGE-L BERTScore
Phi-4-multimodal-instruct - e2e (without com- 58.27 93.20
pression)
Phi-4-multimodal-instruct - e2e (skip 2) 50.33 92.06
Phi-4-multimodal-instruct - e2e (avg 2) 53.70 92.55
Phi-4-multimodal-instruct - e2e (conv) 54.75 92.19

14.81 points (19.25 vs. 34.06), as shown in Table 5.7. The no compression approach still
outperforms all other methods, including convolution, by 1.78 points (17.47 vs. 19.25).
However, these results are expected because transcribing corresponds more or less to a
one-to-one projection when it comes to words. By applying compression, words may get
lost, leading to worse ASR performance. The superior performance of the convolution-
based approach among the compression methods may be attributed to the fact that it was
trained on ASR tasks.

Table 5.7: Trained Compression ASR results in WER () on one dataset: ACL 60/60 (ac-
cented speech with varying recording conditions). For readability, the results
have been scaled by a factor of 100.

ASR

ACL 60/60
Phi-4-multimodal-instruct - e2e (without com- 17.47
pression)
Phi-4-multimodal-instruct - e2e (skip 2) 34.06
Phi-4-multimodal-instruct - e2e (avg 2) 23.56
Phi-4-multimodal-instruct - e2e (conv) 19.25

5.3.4 Different Tasks, Different Domains: Training on LibriSQA and Testing on
Nutshell

The compression approaches and the baseline achieve nearly identical performances in
summarization with respect to BERTScore, differing by only a small margin of up to 0.04
BERTScore points, as shown in Table 5.8. In terms of ROUGE-L, both the compression
approaches and the baseline deliver almost identical results, differing by a small margin of
up to 0.41 ROUGE-L points. Overall, for summarization tasks, the compression approaches
deliver almost equal scores across all metrics, including the approach without compression,
indicating that the non-trained compression approaches can compete with both the trained
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compression methods and the approach without compression. With abstracts more or less
describing the overall notion and purpose of a text and QA demanding specific details in
the text, it is possible that Summarization is less sensitive to information loss as a result of
compression, especially when applied to long-form audio. Compression can also facilitate
the model in finding long-range dependencies by placing them numerically closer. In fact,
the summarization task and the compression of feature vectors share a similar intention,
which potentially translates into improved summarization performance.

Table 5.8: Trained Compression text-to-text results in ROUGE-L (T) and BERTScore (7)
on one dataset: Nutshell (Conference talks + abstracts, long-form audio). For
readability, the results have been scaled by a factor of 100.

Summarization (Nutshell)

ROUGE-L BERTScore
Phi-4-multimodal-instruct - e2e (with- 16.52 86.34
out compression)
Phi-4-multimodal-instruct - e2e (skip 2) 16.27 86.34
Phi-4-multimodal-instruct - e2e (avg 2) 16.68 86.36
Phi-4-multimodal-instruct - e2e (conv)  16.62 86.38
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6 Conclusion

This paper highlights the need for LLMs to consume substantial computational resources
and the performance degradation they experience when processing lengthy input. The
concept of context compression was introduced as a means to mitigate these challenges.
Thus, both training-free and training-dependent compression approaches were introduced
to investigate whether less resource-intensive, training-free methods can serve as a valid
alternative to training-dependent approaches for compression. These approaches were
tested, and the results were analyzed in light of the following research questions.

RQ1: How can we realize compression without additional training?

Compression can be implemented through simple methods such as skipping, which
retains only every x-th feature vector, or averaging, which replaces a group of adjacent
vectors with their mean representation. These approaches rely on linear operations
without adjustable parameters, eliminating the need for training and thereby reducing
computational cost.

RQ2: How do these training-free approaches compare to dedicated compression
modules that are trained?

For long-form audio summarization tasks, training-free compression methods approach
the baseline competitively, within a margin of 0.25 ROUGE-L points and 0.02 BERTScore
points. In addition, the training-dependent convolution-based approach, which is trained
on ASR, yields nearly identical results to the training-free approaches, with differences of
only up to 0.04 BERTScore points and 0.35 ROUGE-L points. The findings suggest that
the convolution approach, when trained in ASR, provides only a marginal advantage over
training-free compression methods when applied to summarization tasks on long-form
audio. The near-identical performance of the compression methods and the baseline can be
attributed to the alignment between the goals of the summarization task and the objectives
of the compression modules, both aiming to condense information. The fact that the
audio consists of long-form recordings may also account for the minimal performance
differences between trainable and non-trainable methods. As the relevant information
density decreases with longer audio, the compression can be less fine-grained without
significantly impacting the results, allowing for some tolerance to errors.

In QA, averaging, skipping, and the trainable convolution approach also yield results
that are competitively close regarding BERTscore, differing by a small margin of up to 0.49
BERTScore points. Compared to the baseline, the compression methods perform slightly
worse in terms of BERTScore by a margin of 0.65 to 1.14 BERTScore points. With ROUGE-L,
the performance drops become even more pronounced, with the training-free compression
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approaches performing worse than the convolution-based approach by up to 4.42 ROUGE-
L points, and the convolution-based approach performing worse than the baseline by
3.52 ROUGE-L points. This may be because compression alters the original syntax, and
when applied to short-form audio, it can further distort the structure. Combined with the
tendency of models to paraphrase, this may lead to differences in syntactic accuracy.

As expected, regarding LibriSQA and ACL 60/60, the training-free approaches perform
noticeably worse on ASR tasks by up to 18.87 points compared to the baseline without
compression. This could be due to compression-induced information loss and the ASR
task’s sensitivity to such information loss. The trainable approach outperforms the training-
free approach, achieving a performance comparable to the baseline (within 1.78 points).
The trainable approach, which was explicitly trained in ASR, may be a reason why the
performance drop is mitigated.

When increasing the compression rates for the training-free approaches, performance
consistently degrades across summarization, QA, and ASR, with skipping even outper-
forming averaging at a compression rate of 8.

Nevertheless, the results show that the compression methods can compete with the
baseline in both QA and summarization tasks. In particular, the training-free approaches
are able to perform comparably to the training-dependent methods except for ASR.

RQ3: How do these two types of approaches generalize to different acoustic
conditions and tasks?

When tested on ASR using LibriSQA, the training-dependent convolution-based ap-
proach, which was specifically trained on ASR in LibriSQA, performed the best, outper-
forming both the no-compression baseline and the training-free compression methods,
as expected. The training-free compression methods performed the worst, trailing the
convolution-based approach by up to 18.96 points, due to their indiscriminate discarding
of feature vectors.

When transferred to the same dataset, LibriSQA, but for a different task, namely QA,
all compression methods performed worse than the no-compression baseline by up to
1.14 BERTScore points and 7.94 ROUGE-L points. However, the training-free compression
methods showed significantly better generalization abilities on QA compared to ASR,
approaching the baseline, particularly in terms of BERTScore. The convolution-based ap-
proach, although it also showed some performance drop, especially in regard to BERTScore,
maintained relatively stable performance.

When applying the same ASR task to a different dataset, ACL 60/60, which contains
short-form audio similar to LibriSQA but with accented speech, making the ASR task more
challenging, the overall performance of compression methods dropped considerably. The
convolution-based approach, trained on LibrisQA ASR, trailed the no-compression baseline
by 1.78 points, whereas the training-free methods lagged by up to 16.59 points. Thus,
the training-free compression methods demonstrate similar generalization abilities on
ACL 60/60 as they did on LibrisQA, while the convolution-based approach shows reduced
generalization.
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When applying a different task, summarization, to a different dataset, Nutshell, all
compression methods exhibited strong generalization abilities, similar to those of the
convolution-based approach on LibrisQA with ASR. The performances of all compression
approaches and the baseline were almost identical, differing by no more than 0.41 ROUGE-
L points and 0.04 BERTScore points, demonstrating the strongest overall generalization
capabilities compared to the different setups.

All compression approaches generalized reasonably well to the summarization of long-
form audio, often performing as strongly as the baseline. They also demonstrated strong
performance in QA, although generalization was not as robust as in summarization.

In contrast, for ASR tasks, performance differences were more pronounced, particularly
on ACL 60/60, which contains accented speech, with compression methods demonstrating
one of the weakest generalization abilities. On LibriSQA, which contains clean audio,
the performance drop was less significant for the convolution-based approach; in fact,
the approach even outperformed the baseline slightly. However, for the training-free
compression approaches, the results were nearly as poor as with ACL 60/60.

Notably, the experiments on long-form summarization and short-form QA showed that
averaging and skipping, despite being training-free compression methods, generalized well
to the tasks and performed competitively with the training-based compression approach.
Overall, the results suggest that compression methods can achieve performance levels
comparable to those of no-compression baselines for QA and summarization, although
this effect is less pronounced for ASR.

Limitations

Due to time and computational resource limitations, only a limited number of compression
methods could be tested. This study focuses on the most essential methods, including
skipping, averaging, and convolution-based compression. Future work should evaluate
other compression modules within the same setup, such as Max / Min pooling or windowed-
level Q-formers [29].

In addition to different compression methods, other datasets, especially QA datasets
with long-form audio, should be considered to draw a more comprehensive comparison
with the summarization performance on Nutshell. Furthermore, datasets that allow testing
the compression module capabilities beyond ASR, QA, and Summarization should be
evaluated.
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