
Context Compression for Speech LLM’s

Bachelor’s Thesis of

Liam Derk Rembold

Artificial Intelligence for Language Technologies (AI4LT) Lab

Institute for Anthropomatics and Robotics (IAR)

KIT Department of Informatics

Reviewer: Prof. Dr. Jan Niehues

Second reviewer: Prof. Dr.-Ing. Rainer Stiefelhagen

Advisor: M.Sc. Danni Liu

31. May 2025 – 30. September 2025

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

Karlsruhe, 30.09.2025

. .

(Liam Derk Rembold)

Abstract

Text-based Large Language Models (LLMs) have emerged as valuable tools for processing

information based on instructions. However, their application also presents challenges, as

LLMs often struggle to handle inputs that contain long sequences. The longer the input,

the more computational resources are required, and the more difficult it becomes for the

LLM to capture long-range dependencies within the text. These challenges become even

more pronounced when dealing with speech instead of text. Text is usually tokenized word

by word. Speech, in contrast, is inherently longer and produces much longer sequences of

feature vectors that the LLM must process.

To address this issue, previous work has proposed adding intermediate processing steps

that reduce the number of feature vectors extracted from input audio. Two papers explicitly

introduced the concept of context compression, where groups of feature vectors aremapped

to a more compact representation that aims to preserve the relevant information from the

original sequence. These approaches utilize LLMs or other transformers. Methods that are

highly dependent on training and therefore require additional computation resources. In

this paper, two training-free approaches, namely skipping and averaging, and a trainable

convolution-based approach, are evaluated to examine whether training-free methods

provide a valid and less expensive alternative to training-based compression approaches.

To set up the convolution-based approach, a convolution layer is first integrated into

the Phi-4-multimodal-instruct environment, serving as an additional compression step.

Second, the layer is trained on an Automatic Speech Recognition (ASR) task while keeping

the original model frozen. Training is carried out on the LibriSQA dataset. Skipping

and averaging do not require any training. We then analyze how the adapted models

generalize across different evaluation settings: Assessing ASR capabilities under different

conditions, evaluating Question Answering (QA) capabilities on short-form speech, and

testing summarization capabilities on long-form speech.

We used the ACL 60/60 dataset to evaluate ASR capabilities, LibriSQA to evaluate QA

and ASR capabilities, and Nutshell to evaluate summarization capabilities.

The experiments show that, for ASR, training-free compression methods lead to sub-

stantial performance drops of up to 18.87 WER points (scaled by 100) compared to the

baseline. In contrast, under the same conditions, the convolution-based method remains

within 1.78 WER points (scaled by 100) of the baseline.

For tasks beyond ASR, such as summarization, the differences between compression

and no-compression settings are marginal, with performance gaps of up to 0.41 ROUGE-

L points (scaled by 100) and 0.04 BERTScore points (scaled by 100). In QA, however,

i

compression approaches result in more pronounced degradations relative to the baseline,

reaching up to 7.94 ROUGE-L points (scaled by 100). For BERTScore, the differences

between compression methods remain small, with a maximum of 0.49 points (scaled by

100). Compared to the baseline, they underperform slightly, by margins ranging from 0.65

to 1.14 points (scaled by 100).

Overall, these results demonstrate that compression methods can achieve performance

levels comparable to the baseline in tasks beyond ASR, highlighting the quality and

effectiveness of the compressed feature vector representation. Moreover, in QA and

summarization, simple training-free approaches such as skipping and averaging perform

nearly as well as the convolution-based method, indicating that even without task-specific

training, compression can remain competitive with more complex, training-dependent

approaches.

ii

Zusammenfassung

Textbasierte Large Language Models (LLMs) zeigen große Schwierigkeiten, wenn sie

mit langen Texteingaben konfrontiert werden. Je länger die Eingabe, desto mehr Hard-

wareressourcen werden vom Modell benötigt, und die Identifizierung von inhaltlichen

Korrelationen über längere Textabschnitte hinweg wird zunehmend anspruchsvoller. Die-

ses Problem verstärkt sich, sobald Sprache statt Text verarbeitet wird: Sprache ist von

Natur aus länger und erzeugt umfangreichere Sequenzen von Feature-Vektoren, die vom

LLM verarbeitet werden müssen.

Um dieses Problem zu mitigieren, haben einige Studien Methoden entwickelt, um die

Länge derartiger Sequenzen zu reduzieren. Zwei wissenschaftliche Arbeiten beschäftigen

sich explizit mit dem Thema im Rahmen von Context Compression. Ziel der Context

Compression ist es, eine Gruppe von Feature-Vektoren auf eine kompakte Repräsentation

zu projizieren, wobei die semantische Information der Vektoren weitgehend erhalten

bleibt. Die Kompression kann dabei unter anderem von LLMs oder anderen Transfor-

mern umgesetzt werden. Aufgrund der Größe dieser Modelle ist das Training jedoch

kostenintensiv.

In dieser Arbeit werden daher folgende Ansätze untersucht: zwei Training-freie Kom-

pressionsmethoden (Skipping undAveraging) sowie eine trainierbare, Convolution-basierte

Methode. Für die Convolution Methode wird die Schicht zunächst in die Phi-4-Multimodal-

instruct-Verarbeitungskette integriert. Anschließend erfolgt eine Trainingsphase, in der

ausschließlich die Convolutionsschicht auf der Automatic Speech Recognition (ASR)-

Aufgabe mit dem LibriSQA-Datensatz trainiert wird. Für Skipping und Averaging entfällt

die Trainingsphase vollständig.

Die Leistung der modifizierten Verarbeitungsketten wird auf Basis verschiedener Auf-

gaben und Datensätze analysiert. Dazu zählen ASR-Aufgaben unter verschiedenen Be-

dingungen, Question Answering (QA)-Aufgaben über kürzere Audioeinheiten sowie

Summarization-Aufgaben über längere Audioeinheiten. Für die Evaluation werden ACL

60/60 für ASR-Fähigkeiten, LibriSQA für QA und ASR-Fähigkeiten und Nutshell für

Summarization-Aufgaben genutzt.

Die Experimente zeigen, dass trainingsfreie Kompressionsmethoden bei ASR zu erhebli-

chen Leistungseinbußen von bis zu 18,87 WER-Punkten (skaliert um den Faktor 100) im

Vergleich zur Baseline führen. Im Gegensatz dazu bleibt die Leistung der convolutions-

basierten Methode unter denselben Bedingungen innerhalb von 1,78 WER-Punkten (ska-

liert um den Faktor 100) zur Baseline.

iii

Für Aufgaben jenseits von ASR, wie etwa die Summarization, sind die Unterschiede

zwischen Kompression und keiner Kompression marginal, mit Leistungsunterschieden von

bis zu 0,41 ROUGE-L-Punkten (skaliert um den Faktor 100) und 0,04 BERTScore-Punkten

(skaliert um den Faktor 100). Beim QA hingegen führen Kompressionsansätze im Vergleich

zur Baseline zu deutlich stärkeren Einbußen, mit bis zu 7,94 ROUGE-L-Punkten (skaliert

um den Faktor 100). Hinsichtlich des BERTScore bleiben die Unterschiede zwischen den

Kompressionsmethoden gering (bis zu 0,49 Punkte, skaliert um den Faktor 100), während

sie im Vergleich zur Baseline leicht schlechter abschneiden, mit Abweichungen zwischen

0,65 und 1,14 Punkten (skaliert um den Faktor 100).

Insgesamt zeigen die Ergebnisse, dass Kompressionsmethoden bei Aufgaben jenseits

von ASR Leistungen erzielen können, die mit der Baseline vergleichbar sind, was die

Qualität und Effektivität der komprimierten Merkmalsvektorrepräsentation unterstreicht.

Zudem schneiden bei QA und Summarization einfache, trainingsfreie Ansätze wie Skip-

ping und Averaging nahezu so gut ab wie die convolutions-basierte Methode. Dies weist

darauf hin, dass Kompression auch ohne aufgabenspezifisches Training mit komplexeren,

trainingsabhängigen Ansätzen konkurrenzfähig bleiben kann.

iv

Contents

Abstract i

Zusammenfassung iii

1 Introduction 1
1.1 Motivation . 1

1.2 Problem Statement . 2

1.3 Research Questions of the Study . 2

2 Background and Related Work 3
2.1 Text-Only LLM . 3

2.1.1 Formalization . 3

2.1.2 Large Language Model (LLM) . 4

2.1.3 Overview of Training Stages . 5

2.1.4 Specific Models . 6

2.2 Speech LLM . 6

2.2.1 Speech Encoders . 7

2.2.2 Connection Speech Encoders and Text LLMs 8

2.3 LLM and Long Context . 9

2.4 Context Compression . 10

3 Methodology 13
3.1 Inference-Time Compression . 13

3.1.1 Simple Chunking . 14

3.1.2 Skipping and Averaging . 14

3.2 Trained Compression Module . 15

4 Experimental setup 17
4.1 Tasks and Datasets . 17

4.1.1 Tasks . 17

4.1.2 Datasets . 18

4.2 Baselines . 19

4.2.1 Text-Based Two-Stage Pipeline 19

4.2.2 Discrete-Token-Based Two-Stage Pipeline 20

4.2.3 End-To-End Pipeline . 20

4.3 Model Configuration . 21

4.3.1 ASR (Whisper) + Text LLM (Llama) Pipeline 21

v

Contents

4.3.2 Discrete-Unit Adapted ASR (HuBERT) + LLM (Spire) Pipeline . . 21

4.3.3 Phi-4-Multimodal-Instruct Pipeline 22

4.3.4 Compression Modules . 24

4.4 Evaluation . 25

4.4.1 Quality Metrics . 25

4.4.2 Compression Metrics . 25

5 Results and Analysis 27
5.1 Baseline Results . 27

5.1.1 ASR Results . 27

5.1.2 QA and Summarization Results 27

5.2 Inference-Time Compression Results . 29

5.2.1 Compression Rate Comparison to Baselines 30

5.2.2 Performance Comparison to Baselines 30

5.2.3 Impact of Increasing Compression Rate 31

5.3 Results of Trained Compression . 34

5.3.1 Training and Testing Both on LibriSQA 34

5.3.2 Same Domain, Different Tasks: Training on ASR, Testing on QA 36

5.3.3 Same Task, Different Domains: Training on LibriSQA and Testing

on ACL 60/60 . 36

5.3.4 Different Tasks, Different Domains: Training on LibriSQA and

Testing on Nutshell . 37

6 Conclusion 39

Bibliography 43

vi

List of Figures

2.1 The figure illustrates a pipeline for connecting speech encoders with LLMs,

as shown in [16]. The pipeline consists of a Speech Foundation Model

(SFM), a length adapter, a modality adapter, a prompt speech mixer, and a

LLM. 8

2.2 The concept of context compression, as illustrated in [18]. In the bottom

section of the figure, it is emphasized how the prompt fed to the LLM can

have representations of different lengths with𝑀1 to𝑀128 being memory

tokens, which lead to the same response 10

5.1 Averaging and Skipping approach over compression rates 0, 2, 4, 8 in

ROUGE-L (↑) on one dataset: Nutshell (Conference talks + abstracts, long-

form audio). For readability, the results have been scaled by a factor of

100. 32

5.2 Averaging and Skipping approach over compression rates 0, 2, 4, 8 in

BERTScore (↑) on one dataset: Nutshell (Conference talks + abstracts,

long-form audio). For readability, the results have been scaled by a factor

of 100. 32

5.3 Averaging and Skipping approach over compression rates 0, 2, 4, 8 in

ROUGE-L (↑) on one dataset: LibriSQA (clean, read speech). For readability,

the results have been scaled by a factor of 100. 33

5.4 Averaging and Skipping approach over compression rates 0, 2, 4, 8 in

BERTscore (↑) on one dataset: LibriSQA (clean, read speech). For readabil-

ity, the results have been scaled by a factor of 100. 33

5.5 Averaging and Skipping approach over compression rates 0, 2, 4, 8 in WER

(↓) on one dataset: LibriSQA (clean, read speech). For readability, the

results have been scaled by a factor of 100. 35

5.6 Averaging and Skipping approach over compression rates 0, 2, 4, 8 in WER

(↓) on one dataset: ACL 60/60 (accented speech with varying recording

conditions). For readability, the results have been scaled by a factor of 100. 35

vii

List of Tables

4.1 Overview of Nutshell, LibriSQA-PartI and ACL 60/60 datasets, showing

the amount of samples, the audio length in minutes, and the average word

length per answer for both training and testing / development sets for

each task. 18

4.2 Hyperparameters for training the convolution layer 23

5.1 Baseline ASR results in WER (↓) on two datasets of varying conditions:

LibriSQA (clean, read speech) andACL 60/60 (accented speechwith varying

recording conditions). For readability, the results have been scaled by a

factor of 100. 28

5.2 Baselines speech-to-text results in ROUGE-L (↑) and BERTScore (↑) on two

datasets of varying conditions: LibriSQA (Audio books + questions and

answers, short-form audio) and Nutshell (Conference talks + abstracts,

long-form audio). For readability, the results have been scaled by a factor

of 100. 29

5.3 Inference-Time Compression text-to-text results in ROUGE-L (↑) and
BERTScore (↑) on two datasets of varying conditions: LibriSQA (Audio

books + questions and answers, short-form audio) and Nutshell (Confer-

ence talks + abstracts, long-form audio). For readability, the results have

been scaled by a factor of 100. 30

5.4 Inference-Time Compression ASR results in WER (↓) on two datasets of

varying conditions: LibriSQA (clean, read speech) and ACL 60/60 (accented

speech with varying recording conditions). For readability, the results have

been scaled by a factor of 100. 34

5.5 Trained Compression ASR results in WER (↓) on one dataset: LibriSQA

(clean, read speech). For readability, the results have been scaled by a

factor of 100. 36

5.6 Trained Compression text-to-text results in ROUGE-L (↑) and BERTScore

(↑) on one dataset: LibriSQA (Audio books + questions and answers, short-

form audio). For readability, the results have been scaled by a factor of

100. 37

5.7 Trained Compression ASR results in WER (↓) on one dataset: ACL 60/60

(accented speech with varying recording conditions). For readability, the

results have been scaled by a factor of 100. 37

ix

List of Tables

5.8 Trained Compression text-to-text results in ROUGE-L (↑) and BERTScore

(↑) on one dataset: Nutshell (Conference talks + abstracts, long-form audio).

For readability, the results have been scaled by a factor of 100. 38

x

1 Introduction

This chapter addresses the motivation of the paper and outlines the corresponding problem

statement. It concludes by presenting the research questions the paper seeks to answer.

1.1 Motivation

A context window of a Large Language Model (LLM) defines the maximum length of an

input sequence that the model can process effectively without significant performance

degradation. Text-based LLMs are limited in this regard, as shown by [32], [19], and [20].

Consequently, extracting information from long texts is challenging and computationally

expensive, increasing complexity, particularly when using self-attention layers, as elabo-

rated in [54], [51], and [10]. Approaches that attempt to extend the context window (e.g.,

[9], [42]) still encounter limitations, showing performance drops for inputs exceeding the

context window, as demonstrated by [32], [19], and [20].

Processing speech is accompanied by additional challenges. Speech produces much

longer input sequences, especially at a sampling rate of typically 16 kHz (e.g., [43], [1]),

which results in a significantly larger number of feature vectors to be considered by the

LLM, in contrast to textual input. To illustrate this with an example, when processing text,

the sentence "Hello World" is often represented as only two tokens. When processed as

speech, the encoders must deal with a large number of frames, 𝑥 ≫ 2. If the audio has a

length of 3 seconds and the sampling rate is 16,000 kHz, 𝑥 would be 48,000 frames. Even

when using a speech encoder with downsampling, as in Phi-4-multimodal [1], the number

of feature vectors that an LLM must process remains higher than for textual input; 48,000

speech frames would correspond to 44 feature vectors.

In addition, speech contains extra features such as silent segments, background noise,

and overlapping speech, all of which can degrade quality. Therefore, preprocessing steps

are required to carefully prepare the audio prior to further processing, which in turn leads

to additional computational cost.

One possible approach to mitigate the challenge of long-context processing is context
compression, which aims to reduce the size of input representations while preserving

the essential information needed for downstream tasks.

1

1 Introduction

1.2 Problem Statement

In essence, context compression subsequently reduces the number of feature vectors

extracted from the input audio, potentially losing valuable information. Compression

modules that employ more complex compression strategies may require additional train-

ing to achieve adequate performance, thereby increasing the demand for computational

resources.

This raises the question of how compression modules that require no training can

compete across various tasks and datasets with compression modules that need training,

and whether the model equipped with the compression module can maintain its original

performance without compression, given the potential information loss. Another key

aspect is whether compression modules, once integrated into the model architecture, allow

the original model, previously trained on diverse tasks, to preserve its performance on

these tasks, especially if the compression module was trained for only one of them.

1.3 Research Questions of the Study

The following research questions address the topic of context compression in the context

of SpeechLLMs:

RQ1: How can we perform compression without additional training?

These are approaches that have a straightforward implementation and, as a result, can

skip the training stage.

RQ2: How do these training-free approaches compare to the dedicated compression

modules that are trained?

Demonstrating whether the capabilities of non-trainable compression modules, despite

being easier to implement, can compete with trainable ones.

RQ3: How do these two types of approaches generalize to different acoustic conditions

and different tasks?

Therefore, conducting a deep dive into the resilience of compression strategies and

examining whether their ability to compress knowledge is effective across different tasks

and datasets.

2

2 Background and Related Work

This chapter elaborates on the various types of Large Language Models (LLMs) and their

construction and setup, while motivating the use of context compression. First, Section

2.1 introduces the background of Text LLMs by explaining the basic concept of language

modeling, listing the architectures and training stages of LLMs, highlighting the attributes

of Llama 3 and TOWER. Afterwards, Section 2.2 explains the background of Speech LLMs,

starting with speech encoders like HuBERT and Whisper and subsequently covering ways

to connect speech encoders with text LLMs. In Section 2.3, we present the challenge of

processing long-form input and, finally, elaborate on the concepts of context compression

by means of Section 2.4.

2.1 Text-Only LLM

This Section introduces the concept of language modeling and explains how it scales to

LLMs. It then discusses the different stages of training and provides a brief overview of

text-based LLMs such as Llama 3 and TOWER.

2.1.1 Formalization

Language Models (LMs) acquire a basic understanding of language generation by training.

Thereby, applying training objectives such as Causal or Masked Language Modeling, as

mentioned in [66] and studied by [35].

Causal Language Modeling (CLM)

In text generation, models must produce language sequentially and unidirectionally from

left to right. The core idea is that a model takes an input text or prompt and then iteratively

generates the next token until completion. This process is called Causal LanguageModeling

(CLM) because the probability of generating each next token is conditioned only on the

tokens that appear before it in the sequence.

Given a sequence of tokens x = (𝑥1, 𝑥2, . . . , 𝑥𝑇), the model estimates the loss of the

sequence in an autoregressive manner:

3

2 Background and Related Work

LCLM = −
𝑇∑︁
𝑡=1

log 𝑃 (𝑥𝑡 | 𝑥<𝑡) (2.1)

where 𝑥<𝑡 = (𝑥1, . . . , 𝑥𝑡−1). At each step, the next token 𝑥𝑡 is predicted and conditioned

only on the tokens that appear before it.

Masked Language Modeling (MLM)

The unidirectional approach of Causal Language Modeling inevitably restricts the capacity

to leverage the full context of a text, since models are prevented from incorporating or

generating tokens that appear later in the sequence.

However, this limitation does not occur when using another approach called Masked

Language Modeling (MLM). MLMs learn to generate tokens by looking at a bidirectional

context. Instead of predicting the sequence sequentially, Given a sequence of tokens

x = (𝑥1, . . . , 𝑥𝑇), MLM randomly masks a subset of tokens M ⊂ {1, . . . ,𝑇 } in the input

and trains the model to recover them:

LMLM = −
∑︁
𝑡∈M

log 𝑃 (𝑥𝑡 | x\M), (2.2)

where x\M denotes the observed tokens (i.e., all tokens except the masked ones).

It is unusual to apply Masked Language Modeling (MLM) in Auto-regressive architec-

tures. However, a speech encoder model like HuBERT [21], as mentioned in Section 2.2.1,

which employs an Auto-encoding architecture, applies the MLM approach to learn discrete

units by predicting masked frames. This shows that the concept of token prediction can

be transferred to the speech domain.

2.1.2 Large Language Model (LLM)

By increasing the number of parameters and the amount of training data, following

the scaling laws [24], studies (e.g., [57], [66]) have shown that LMs acquire additional

capabilities. This discovery has led to the emergence of LLMs. In order for LLMs to become

real general-purpose task solvers (e.g., [53], [59], [37]), LLMs are required to undergo

instruction finetuning, as elaborated in [38]. The meaning of instruction finetuning will

be elaborated in Section 2.1.3.

Scaling LLMs is one aspect, but it must take place within a specific architecture. Three

well-known architectures for LLMs are Auto-encoding, Auto-regressive, and Encoder-

Decoder models, as explored by [49]. The Auto-encoding architecture is usually applied

to encoder-only models (e.g., [11], [21]), allowing bidirectional and masked training. In

contrast, the Auto-regressive architecture is commonly used by decoder-only models

4

2.1 Text-Only LLM

(e.g., [53], [2]) which generate text exclusively in an undirectional and autoregressive

fashion. Lastly, the Encoder–Decoder architecture consists of an encoder and a decoder

(e.g., [43]). The encoder utilizes self-attention layers to transform the input sequence into

latent representations, while the decoder generates the target sequence autoregressively.

As mentioned above, with the increasing size of LLMs, several core capabilities have

been discovered. One such capability is In-Context Learning (ICL), as introduced by

[6], which enables models to learn from natural language instructions or demonstrations

provided in the prompt, without requiring parameter updates. Another capability is

Reasoning, where models solve complex tasks through methods like Chain-of-Thought

(CoT) prompting, as studied by [56], which encourages the generation of intermediate

reasoning steps.

2.1.3 Overview of Training Stages

Training can be divided into pretraining and finetuning, as explored in [66].

Pretraining

Pretraining is an essential step that encodes general knowledge from a large-scale corpus

into the massive model parameters. For LLM training, two commonly used pretraining

objectives are language modeling and denoising auto-encoding, as studied in [28]. This

stage equips the model with broad linguistic and semantic knowledge, thereby enhancing

its language modeling and generalization abilities.

Compared with small-scale LMs, LLMs have a stronger demand for high-quality data

during pretraining. Their general capacity largely depends on the size, diversity, and

quality of the pretraining corpus. The pretraining corpus usually contains webpages,

books (e.g., [17]), and conversational text (e.g., [45]). For more specialized use cases, it can

be extended to multilingual corpora (e.g., [47]), scientific texts, and code datasets collected

from programming QA communities (e.g., [61]).

After collecting a large pretraining corpus, it is important to preprocess the data by

removing noisy, redundant, or irrelevant content. A typical preprocessing pipeline includes

filtering, selection and tokenization, which segments the raw text into sequences of

tokens that serve as basic input units for LLMs.

Instruction Finetuning

Instruction Finetuning is the approach to finetuning pretrained LLMs in a collection of

formatted instances that contain instructions and their desired outcome or behavior. These

formatted instances are used to finetune LLMs in a supervised learning way to follow

instructions, align with human preferences, and acquire specialized capabilities while

maintaining basic abilities, acquired by the pretraining objective, as further studied by

5

2 Background and Related Work

[38] and [64]. The formatted instances can be constructed based on preexisting datasets

or using LLMs.

2.1.4 Specific Models

Llama 3 [13] and TOWER [2] are text-based LLMs.

Llama 3

Llama 3 is a general purpose model for natural language processing. Therefore, the Llama

3 family of models supports a wide variety of tasks. Llama 3’s pretraining and finetuning

stages correspond to those described in Section 2.1.3. In terms of pretraining, Llama 3

utilizes the language modeling objective on a multilingual text corpus constructed from

formatted web documents. In terms of finetuning, Llama 3 utilizes a cross-entropy loss on

data, which is largely comprised of synthetic data and human-annotated prompts.

TOWER

TOWER focuses in contrast to general-purpose models, which demonstrate strong perfor-

mance across a broad spectrum of tasks and domains, specifically on translation-related

tasks. TOWER is trained in three stages. First, the TOWERbase model is created by

continuing pretraining on Llama 2 [52] with a large multilingual corpus, thus improving

its multilingual capabilities. To further specialize the model on translation tasks, dedi-

cated datasets are used to create TOWERblocks. These datasets allow training on tasks,

including Named-Entity Recognition, sentence-level translation, error-span detection, and

conversational-based tasks. Finally, through finetuning TOWERbase on TOWERblocks

with standard cross-entropy loss, an instruction-following model, TOWERinstruct, is

created.

2.2 Speech LLM

LLMs have advanced text-based processing, as explained in section 2.1. When combined

with speech encoders, LLMs can be extended to the speech domain, enabling tasks such as

Automatic Speech Recognition (ASR), Speech Translation (ST), or speech-based Question

Answering (SQA) (e.g., [50]).

However, speech encoders face several unique challenges, as addressed by [21]. Unlike

vision, where one instance typically corresponds to a single object, a single speech utterance

may contain multiple overlapping sound units. Moreover, unlike NLP, speech pretraining

lags a predefined vocabulary of sound units, making predictive losses harder to apply.

6

2.2 Speech LLM

Finally, speech does not come with explicit boundaries between sound units, which

complicates tasks such as masked prediction pretraining.

2.2.1 Speech Encoders

Speech encoders convert raw audio waveforms into structured feature vectors, providing

semantic representations that facilitate various downstream applications.

HuBERT

Hidden Unit Bidirectional Encoder Representations from Transformers (HuBERT) [21]

is a speech encoder that addresses the challenges outlined in Section 2.2 by employing

a BERT-style masked prediction framework, as studied in [11]. HuBERT leverages the

concept of simple discrete latent variable models (e.g., k-means), which categorize input

sequences by assigning each data point to a representative cluster center, as shown in [26].

The model is trained on sequences of partially masked speech feature vectors, exclusively

predicting the cluster assignments of the masked frames. This forces the model to build

high-level representations of the unmasked inputs. This design implicitly encourages the

model to learn both acoustic modeling, which captures meaningful latent representations

from continuous speech, and language modeling, which models long-range temporal

dependencies between these representations.

HuBERT is unsupervised, pretrained for two iterations on either the 960 hours of

LibriSpeech audio from [40] or 60,000 hours of Libri-Light audio from [23], both derived

from the LibriVox project, which contains English recordings of copyright-free audiobooks

read by volunteers. Supervised finetuning of HuBERT is also performed on Libri-Light

and LibriSpeech.

Whisper Encoder

Unlike many models that rely solely on an encoder to extract audio features (e.g., [21],

[11]), Whisper employs an encoder-decoder architecture, as described in Section 2.1.

Whisper is trained in speech processing tasks, including multilingual speech recognition

and translation. A unique aspect of Whisper is that tasks such as determining who spoke

when and voice detection are trained together with speech recognition tasks by applying

a multitask training format. These tasks are tokenized to be predicted by the decoder

without significant standardization. For training, the dataset was constructed based on

audio with transcripts gathered from the Internet covering a wide range of environments,

recording setups, speakers, and languages. Furthermore, a set of heuristics was applied to

the dataset to remove machine-generated transcripts and an audio language detector was

used to ensure language consistency. Moreover, the model is trained on audio files that

7

2 Background and Related Work

are divided into 30-second segments, each paired with the corresponding portion of the

transcript that falls within the segment.

2.2.2 Connection Speech Encoders and Text LLMs

Figure 2.1: The figure illustrates a pipeline for connecting speech encoders with LLMs, as

shown in [16]. The pipeline consists of a Speech Foundation Model (SFM), a

length adapter, a modality adapter, a prompt speech mixer, and a LLM.

Speech LLMs are all about combining the capabilities of a speech encoder with those of

a text LLM. However, the challenge lies in aligning the modules to ensure the encoder can

work effectively with the LLM.

Yu et al. (2024) [62] propose three different ways to connect a speech encoder to an

LLM. First, by using fully connected layers to compress adjacent feature vectors, serving

as a one-dimensional convolution layer. Second, by using a one-dimensional convolution

layer and afterwards a multi-headed cross attention layer to project the feature vectors

into the embedding space of the LLM. Third, by using a Q-Former [29] that divides the

audio into segments, processes them independently, and concatenates the outputs.

Gaido et al. (2024) [16] is a study that reviews different approaches that integrate Speech

Foundation Models (SFMs) with LLMs. The basic pipeline is illustrated in Figure 2.1,

starting with SFMs, which are typically built on Transformer or Conformer architectures.

8

2.3 LLM and Long Context

SFM’s are effective in extracting semantic representations. These representations are

projected into the embedding space of the LLM through modality adapters. Since the raw

sequence length of speech is much larger than what LLMs can process, a length adapter

(e.g., [15], [29]) is used to compress and reduce the number of embeddings. Integration is

often enhanced by additional components, such as prompt speech mixers, as used in [7],

[60], and [14], which combine speech embeddings with textual prompts. The LLM then

processes both modalities jointly and generates a final textual output.

Tung et al. 2024 [41] study ways to align the modalities of the speech encoder and the

LLM by finetuning on ASR tasks. The paper reviews combinations of preexisting methods,

such as freezing certain modules, utilizing parameter-efficient training strategies like LoRA

[22], and applying adapters similar to those in [62]. Revealing that applying LoRA to both

modules is the most effective finetuning strategy. In contrast, the strategy of keeping both

frozen lags a bit behind in performance. The pretraining and finetuning stages correspond

to those described in Section 2.1.3. Typical training and evaluation tasks include ASR (e.g.,

[55], [63]), ST (e.g., [55]), [63]) and SQA (e.g., [39], [50]).

The compression approaches evaluated in this paper can be viewed as length adapters,

following the formulation in the second paper. The training-dependent compression

variant, in particular, closely resembles the convolution-like approach introduced in the

first paper. Moreover, while the third paper showed that the best performance is achieved

when LoRA adapters remain active for both the encoder and the LLM, we keep them

frozen in this work in order to isolate the effect of the compression modules.

2.3 LLM and Long Context

Most LLMs are built on Transformer architectures, whose memory and computational

requirements grow with sequence length. This presents a fundamental trade-off: while

longer input contexts provide models with more potentially useful information, they also

increase the difficulty of reasoning over large amounts of content, often leading to a

decrease in precision, as elaborated in [32].

The performance of language models on long contexts has been studied by Liu et al.

(2024) [32] in multi-document question answering and key-value retrieval tasks. The

results revealed that performance often depends on the position of relevant information.

Accuracy tends to be highest when relevant content appears at the beginning or end of

the input sequence, but performance degrades significantly when critical information

is located in the middle. This degradation occurs even in models that exhibit extended

context windows, indicating that simply increasing the context length does not guarantee

better performance.

Hilgert et al. (2024) [19] have shown that reduced performance in question answering is

observed for documents that exceed the original context length, particularly for questions

where the relevant information lies beyond the model’s context window. Even models

with extended context windows struggle with such documents. However, finetuning

9

2 Background and Related Work

can enhance a model’s performance on question-answering tasks for scientific papers.

When applying finetuning, the performance loss for inputs exceeding the model’s original

context window is nearly eliminated.

Cheng-Ping Hsieh et al. 2024 [20] have shown that all reviewed models exhibit a

significant reduction in question answering performance as sequence length increases.

Additionally, it is suggested that increasing the input length based on the size of the context

window significantly decreases performance. Moreover, Models that are larger in size tend

to perform better overall than smaller models. When Models are trained on larger context

sizes, it can lead to better performance, but this is not always the case. In fact, while larger

context sizes can sometimes enhance overall performance, inconsistencies arise for longer

inputs.

Although only the first study observed a U-shaped performance pattern when processing

long contexts, all studies agree that performance degrades once the input sequence exceeds

the model’s context window. Moreover, all papers indicate that models with extended

context windows do not necessarily exhibit better long-context performance.

2.4 Context Compression

Figure 2.2: The concept of context compression, as illustrated in [18]. In the bottom

section of the figure, it is emphasized how the prompt fed to the LLM can have

representations of different lengths with 𝑀1 to 𝑀128 being memory tokens,

which lead to the same response

10

2.4 Context Compression

LLMs are constrained by a finite context window and the high computational cost

associated with processing long documents. Previous research has attempted to address

the limitation of LLMs through innovations in hardware (e.g., improvements in GPUs)

or algorithms (e.g., [9], [42]). Although these methods can extend the size of context

windows, they may still suffer from a drop in performance when applied to very long

contexts, as shown in [32] and [19].

Another approach to reducing computational costs is context compression. Context
compression is based on the observation that textual information can be represented at

different levels of size while still preserving its core meaning, as illustrated in Figure 2.2.

In this setting, an LLM can be trained to compress long contexts into shorter, compact

memory vectors, which can then be directly used for a variety of downstream tasks.

An approach to context compression is described by Chevalier et al. [8]. In their work,

language models are shown to be capable of compressing text into summary vectors that

are significantly shorter than the original precompressed text. These summary vectors

can be reused as soft prompts, i.e., newly initialized embeddings that are prepended to the

input sequence. When long documents are divided into segments 𝑆1, . . . , 𝑆𝑛 and processed

sequentially, the summary vectors from the previous segments can be accumulated and

concatenated. This concatenation provides the model with a compact representation of

the entire document, enabling it to reason over long contexts without exceeding its native

context window.

Another approach is presented by Tao Ge et al. [18], who propose the ICAE framework
for context compression. This framework introduces an encoder-decoder architecture,

where the encoder is an LLM that compresses an input context 𝑐 = (𝑤1,𝑤2, . . . ,𝑤𝐿) into a

compact set of memory slots (𝑚1, . . . ,𝑚𝑘) with 𝑘 ≪ 𝐿. The decoder can condition these

memory slots for downstream tasks such as autoencoding or text continuation.

All of the references base their approach on the idea of compressing the input into a

more compact semantic representation, but they use additional transformers or LLMs that

require extensive training. The approaches evaluated in this paper serve the same purpose

but are lighter and rely on a more based strategy of slicing the input into compressed

memory vectors. Therefore, the need for extensive training is reduced, and consequently,

the computational cost is also reduced.

11

3 Methodology

This chapter introduces various approaches to context compression, with the goal of

reducing resource usage while maintaining task performance. Section 3.1 presents com-

pression methods that do not rely on training, while Section 3.2 introduces a training-based

approach.

3.1 Inference-Time Compression

Speech, particularly at high sampling rates, generates very dense frame sequences even

over short intervals. Because of this density, many segments contain similar or redundant

information. This redundancy makes more aggressive, static compression strategies

practical. Consequently, there is less need for training-dependent methods to achieve

adequate performance.

The following approaches do not rely on trainable compression methods; They apply

additional processing steps either directly to the speech waveform or to the corresponding

feature vectors. As no training is required, these compression methods are lightweight,

computationally inexpensive, and straightforward to implement. Therefore, they serve as

a strong baseline for comparison with more advanced compression approaches.

Formal Definitions.

Let a raw speech waveform be denoted as

x = (𝑥1, 𝑥2, . . . , 𝑥𝑛), (3.1)

Formally, the encoder function can be defined as

𝐸 : R𝑛 → R𝑚×𝑑 , 𝐸 (x) = w (3.2)

and let the corresponding sequence of feature vectors extracted by the audio encoder be

w = (w1,w2, . . . ,wm), 𝑤𝑖 ∈ R𝑑 , (3.3)

where 𝑑 is the hidden size of the encoder output and𝑚 depends on the encoder archi-

tecture .

13

3 Methodology

3.1.1 Simple Chunking

The approach adds an additional preprocessing step by dividing the audio waveform into

non-overlapping chunks of fixed length 𝐿. These chunks are then independently processed,

and the results are concatenated. By segmenting and processing the input independently,

the model requires fewer resources compared to processing the whole input in one run.

The simple chunking method was chosen because it is straightforward to implement

and does not require additional training or modifications to the model architecture. In

addition, chunking is a proven method to reduce computational cost, as many ASR models

integrate a chunking-like approach (e.g., [43], [4]).

Chunking

The waveform 𝑥 is split into consecutive, non-overlapping segments of fixed length 𝐿:

x = (c1, c2, . . . , cK), ck = (𝑥 (𝑘−1)𝐿+1, . . . , 𝑥min𝑘𝐿,𝑛), (3.4)

where 𝐾 = ⌈𝑛/𝐿⌉. Each chunk 𝑐𝑘 is processed independently by the encoder, and the

resulting outputs are concatenated:

w = (E(c1) ∥ E(c2) ∥ . . . ∥ E(cK)). (3.5)

The feature vector sequence obtained by encoding the entire audio without chunking

will not be identical to𝑤 , since the attention span allows the model to attend to all positions

in the given waveform when computing the feature vectors. With chunking, the attention

span is restricted to each chunk. Moreover, the positional encodings differ, as each chunk

resets its positional indices to zero.

3.1.2 Skipping and Averaging

As speech signals are continuous, sampling them at high frequencies produces sequences

with high frame density. Due to the length of these sequences, one often encounters neigh-

boring frames that contain similar information, resulting in redundancy. These redundant

frames correspond to feature vectors that are suitable for compression. Since skipping and

averaging focus on compressing neighboring frames, they are a compatible choice for this

purpose. For implementation, these approaches introduce an intermediate processing step

between the encoding and decoding stages. After extracting an array of feature vectors

from the audio, the array is compressed along the time dimension by a constant factor

𝑥 . In doing so, skipping and averaging reflect different degrees of roughness. Skipping

simply discards feature vectors, whereas averaging incorporates the values of all vectors

by computing their mean. This enables us to assess the impact of compression method

complexity on model performance in ASR, particularly in summarization and QA tasks.

Unlike in ASR, not every word or sentence in the audio contributes relevant information for

14

3.2 Trained Compression Module

summarization or QA, which makes such compression strategies particularly interesting

to investigate.

Overall, in terms of compression, skipping, and averaging offer a straightforward

method, as they require no training and are relatively easy to implement.

Skipping

Given the feature sequence𝑤 , every 𝑧-th frame is retained and the others are discarded:

w′ = (w1,w1+z,w1+2z, . . .), (3.6)

leading to a compressed length

|w′| =
⌈
𝑚
𝑧

⌉
. (3.7)

Averaging

The sequence 𝑤 is divided into consecutive blocks of size 𝑧, and the mean vector is

computed for each block:

w′
j =

1

𝑧

𝑗𝑧∑︁
𝑖=(𝑗−1)𝑧+1

wi, 𝑗 = 1, . . . ,
⌊
𝑚
𝑧

⌋
. (3.8)

If a remainder 𝑟 =𝑚 mod 𝑧 exists, the last block is averaged accordingly:

w′
⌊m/z⌋+1 =

1

𝑟

𝑚∑︁
𝑖=𝑚−𝑟+1

wi. (3.9)

3.2 Trained Compression Module

This approach modifies the model architecture by adding a trainable layer between the

encoding and decoding stages. Compression is applied along the time dimension with

a constant downsampling rate 𝑥 on the sequence of audio feature vectors produced by

the encoder. In contrast to the inference-time methods, this approach requires additional

training to adapt the weights of the convolution layer to the specific environment and

task. However, since this step is strongly data- and task-dependent, there is no guarantee

of generalization across different datasets or tasks. Training in ASR does not guarantee

equally strong performance in summarization or QA tasks. This opens the opportunity to

evaluate how trainable compression methods generalize to different domains and tasks.

To illustrate the concept of trainable compression, convolution was chosen, as it repre-

sents a fundamental approach to downsampling, commonly used in Conformer models

and other architectures (e.g., [1], [21]).

15

3 Methodology

Convolution

The convolution layer with kernel size 𝑘 and stride 𝑠 produces a compressed output

w′ = (w′
1,w

′
2, . . . ,w

′
m′), 𝑚′ =

⌊
𝑚 − (𝑘 − 1) − 1

𝑠
+ 1

⌋
(3.10)

Each output vectorw′
j is computed as a weighted sum over a local window of 𝑘 consecutive

input vectors, with learnable weights K ∈ R𝑘×𝑑 :

w′
j =

𝑘−1∑︁
𝑖=0

Ki ·w(j−1)s+i (3.11)

During training, all parameters of the base model, including the LoRA parameters, are

frozen, except for the weights of the newly added convolution layer. This allows for the

direct evaluation of the convolution layer’s impact on the model’s performance across

various tasks.

The convolution layer is trained exclusively on ASR data, as ASR datasets have the

advantage of being available in large quantities compared to other datasets. Additionally,

they are typically sentence-based, making it easier to train the model on them. The setup

also enables us to investigate whether models trained on ASR can perform more complex

tasks beyond ASR.

16

4 Experimental setup

This chapter begins with Section 4.1, which presents the tasks and datasets used for

training and evaluation. Section 4.2 then discusses the baselines and their respective

configurations. In Section 4.3, the compression pipeline, training setup, and characteristics

of the compression modules are described. Finally, Section 4.4 introduces the metrics used

for evaluation.

4.1 Tasks and Datasets

In this Section, the underlying tasks and datasets are introduced and motivated. Both were

used to evaluate the baselines and compression approaches.

4.1.1 Tasks

To evaluate how compression influences the performance of LLMs on downstream capa-

bilities, three types of speech-to-text tasks are introduced.

Automatic Speech Recognition Tasks

Automatic Speech Recognition (ASR) Tasks evaluate a model’s ability to accurately convert

input audio to text. Since ASR tasks involve transcribing spoken words in a one-to-one

mapping, ASR models can exhibit vulnerabilities to information loss, as explored in

[12]. This makes ASR a suitable choice to illustrate how increased compression rates

relate to poorer ASR performance. ASR also provides the opportunity to evaluate how

models perform under challenging conditions, such as audio containing background noise,

distortions, or accented speech (e.g., [46]). Lastly, ASR combined with the Word Error Rate

(WER) metric is a well-established evaluation setup, as it is applied by many papers to

evaluate their models (e.g., [1], [21], [43]).

Speech Summarization Tasks

Summarization tasks assess a model’s ability to extract the most representative infor-

mation from the input audio and synthesize it into a coherent textual summary, as was

even explored in the context of speech LLMs [48]. Therefore, such tasks can require a

17

4 Experimental setup

deeper semantic understanding of audio content, as highlighted by [27]. Thus, it allows

the evaluation of the model’s semantic capabilities. Furthermore, since summarization

itself can be viewed as a form of compression, it is particularly interesting to investigate

how context compression on feature vectors influences a model’s performance on sum-

marization. Lastly, summarization tasks also provide datasets with long-form audio (e.g.,

[68]), which align with the intended purpose of compression methods.

Question Answering Tasks

Question Answering (QA) tasks require the model to generate answers to a given question

based on the content of the input audio. Similarly to summarization, QA tasks can help

models develop better semantic understanding, as explored in [5], making QA a suitable

setup to illustrate how compression influences a model’s semantic understanding capabili-

ties. Moreover, the fact that QA is already an established task in speech LLMs makes it a

suitable choice as an evaluating task (e.g., [36], [1], [50]).

4.1.2 Datasets

Table 4.1: Overview of Nutshell, LibriSQA-PartI and ACL 60/60 datasets, showing the

amount of samples, the audio length in minutes, and the average word length

per answer for both training and testing / development sets for each task.

Task Training set Testing / Development set

amount

of samples

average audio

(min)

average words

per answer

amount

of samples

average audio

(min)

average words

per answer

LibriSQA-PartI

ASR 104,014 0.21 34.57 2,620 0.12 20.07

Question Answering 104,014 0.21 17 ± 5 2,620 0.12 17 ± 5

Nutshell Summarization 4,000 12.1 ± 11.2 142.8 ± 36.1 885 9.9 ± 3.6 141.9 ± 36.5

ACL 60/60 ASR *no training set *no training set *no training set 468 0.11 15 ± 7.5

LibriSQA

LibriSQA-PartI [67] contains a total of up to 107,000 audio samples, as illustrated in Table

4.1. For evaluating ASR and QA capabilities, the complete LibriSQA-PartI test set is used,

comprising 2,620 authentic human and clean speech samples. On average, each sample

has a duration of 7.42 seconds, has an average length of 20.07 words, and is paired with a

transcription, a natural question, and a corresponding free-form answer. For training ASR

capabilities, the full LibriSQA-PartI training set is utilized, comprising 104,014 samples. On

average, each sample has a duration of 12.58 seconds, an average length of 34.57 words, and

is paired with a transcription, a natural question, and a corresponding free-form answer.

The questions in the LibriSQA dataset have an average length of approximately 16 words,

while the answers average around 17 words. The dataset is based on Librispeech [40] and

is therefore limited to English.

18

4.2 Baselines

Nutshell

For evaluating summarization tasks, the complete Nutshell [68] development set is used,

which contains 885 audio samples from scientific talks, as illustrated in Table 4.1. The

samples have an average duration of 9.9 ± 3.6 minutes. Each audio sample is paired with

a corresponding abstract, averaging 141.9 ± 36.5 words. The dataset is built on the ACL

Anthology data collection and is limited to English.

ACL 60/60

To evaluate ASR capabilities under challenging conditions, the complete ACL 60/60 [46]

development set is used. It consists of sentence-level audio samples recorded under realistic

conditions with speakers from diverse demographic backgrounds. The dataset comprises

468 audio samples with an average duration of 6.64 seconds and a length of 15 ± 7.5

words, as illustrated in Table 4.1. Each sample is paired with a corresponding transcription,

averaging 16.9 word tokens in length. Unlike LibriSQA and Nutshell, ACL 60/60 supports

multiple languages.

4.2 Baselines

To compare the impact of context compression on the performance of Speech LLMs across

different tasks, the following baselines are defined.

4.2.1 Text-Based Two-Stage Pipeline

Whisper + Llama Pipeline

For audio-to-text transcription, Whisper [43] is employed as the ASR model. Whisper is

a Transformer based on an encoder–decoder architecture, as elaborated in Section 2.1.2.

Whisper segments input audio into sentence-level chunks of up to 30 seconds and supports

up to 100 languages.

Two baselines are considered: Whisper-small and Whisper-large, differing in model

size, with 244M and 1.55B parameters, respectively. For tasks beyond ASR, the generated

transcriptions are processed by a text-based LLM. Llama 3, specifically the LLaMA-3.2-

3B-Instruct model. Llama 3 is a decoder-only transformer that also supports up to 100

languages.

The Whisper+Llama combination is a suitable choice for this paper, as it represents an

established pipeline for Speech LLMs both in the context of speech recognition [44] and

speech understanding [30] and has been used in other prior works (e.g., [68]) .

19

4 Experimental setup

Phi-4-multimodal-instruct self-cascade Pipeline

Phi-4-multimodal-instruct [1] is an open multimodal foundation model, allowing the

pipeline to perform automatic speech recognition and a wide range of downstream tasks

beyond ASR. The model has 5.6B parameters and supports multiple languages.

In this approach, all audios are first transcribed into English. Downstream tasks, such

as summarization and QA, are then performed on the transcribed audio. With Nutshell

containing long-form audio, the model cannot process the audio at once, given the limited

GPU memory. Thus, the samples are first split into fixed-length segments and then

concatenated when transcribed.

Phi-4-multimodal-instruct is a suitable choice for this paper, as it has been trained in

speech recognition, QA, and summarization, and represents a unified solution, requiring

no separate module for speech encoding.

4.2.2 Discrete-Token-Based Two-Stage Pipeline

Discrete-unit adapted ASR (HuBERT) + LLM (Spire) Pipeline

This pipeline employs an ASR approach based on discrete units. Specifically, the HuBERT-

large-ll60k model [21], an encoder-only transformer, is used to extract feature vectors and

convert them into discrete tokens. HuBERT primarily supports English. For tasks beyond

ASR, Spire [3] is used as the LLM, adapted to process the discrete units generated by

HuBERT. Spire has 7B parameters, follows a decoder-only architecture, and also primarily

supports English.

As this approach is based on discrete units, a contrast is drawn with text-based ap-

proaches, thereby expanding the baseline variety.

4.2.3 End-To-End Pipeline

Phi-4-multimodal-instruct out of the box Pipeline

In this approach, summarization and QA are performed directly on the audio samples,

without any interruptions of intermediate transcription or chunking steps.

Phi-4-multimodal-instruct without chunking Pipeline

In this approach, summarization and QA are also performed directly on the audio samples,

without any transcription or chunking steps. As the out of the box approach encounters

GPU memory shortages when processing Nutshell, the encoding and decoding steps are

executed in separate runs. Specifically, the feature vectors extracted by the encoder are

20

4.3 Model Configuration

first saved to disk. In a subsequent step, these vectors are reloaded, the encoder parameters

are released from GPU memory, and decoding is performed. This baseline also serves as a

sanity check, verifying that the results are identical to those obtained with the out of the

box approach.

4.3 Model Configuration

The following implementations and their corresponding configurations of the baselines

are based on the Hugging Face Transformer package [58] and are configured to produce

results solely in English.

4.3.1 ASR (Whisper) + Text LLM (Llama) Pipeline

In theWhisper + Llama pipeline, the following settings are applied to theWhisper modules:

timestamps are enabled and sampling is disabled (do_sample=False) to ensure deterministic

results. The model is assigned to a single GPU (e.g., Nvidia Titan RTX) with 24 GB of

memory, and the inference batch size is adapted per dataset: 1 for Nutshell and 20 for

both LibriSQA and ACL 60/60. For the Llama module, the torch data type is set to float16

to reduce GPU memory usage, and a device map distributes computation across four

GPUs. During inference, tokenization is configured with padding=True. Generation is

performed with a maximum of 300 new tokens and sampling disabled (do_sample=False).

For ACL 60/60 and LibriSQA, two GPUs with a batch size of 30 are sufficient, whereas

Nutshell requires four GPUs with a batch size of 5.

4.3.2 Discrete-Unit Adapted ASR (HuBERT) + LLM (Spire) Pipeline

In the HuBERT + Spire pipeline, the HuBERT module is configured with torch data type

float32. For labeling inputs from LibriSQA and ACL 60/60, the module is assigned to a

single GPU with a batch size of 20. In contrast, for Nutshell, one GPU with a batch size of

10 is used. Only Nutshell audio samples are chunked into 20-second segments to prevent

GPU memory from overflowing. Chunks shorter than 31.25 ms are discarded. During

labeling, padding is set to true. For Spire, the model uses torch data type float32. During

inference across all datasets, three GPUs are assigned with a batch size of 10. The tokenizer

is configured with padding=True. Text generation is performed with max_new_tokens=300

and do_sample=False. Furthermore, no_repeat_ngram_size=3 is set because Spire appears

not to be adapted to accented speech and, therefore, vulnerable to generating repeating

sequences when confronted with ACL 60/60. Additionally, regarding Nuthell, the summa-

rization tasks are conducted on the transcriptions of the audio files, as using discrete units

directly leads to GPU memory shortages.

21

4 Experimental setup

4.3.3 Phi-4-Multimodal-Instruct Pipeline

Self-cascade

For the Phi-4-multimodal-instruct self-cascade setup, the processor is configured with

trust_remote_code=True. The model is initialized with the following settings: attention

implementation set to eager, torch_dtype="auto", and trust_remote_code=True. For

dataset transcription, the model is assigned two GPUs with a batch size of 20. For inference

beyond ASR, a batch size of 20 is used for LibriSQA, while Nutshell uses a batch size of 5.

For both cases, three GPUs are assigned. For transcription in Nutshell, audio samples are

chunked into 30-second segments. During inference, text generation is configured with

max_new_tokens=300, do_sample=False, and the default generation mode.

Out of the box

For the Phi-4 Multimodal-instruct out of the box setup, the processor and model are

configured identically to those in the self-cascade setup. For inference beyond ASR, the

model is assigned four GPUs, with a batch size of 15 for LibriSQA and a batch size of 1 for

Nutshell.

Without chunking

For the Phi-4 multimodal-instruct setup without chunking, the processor and model are

configured identically to the self-cascade setup. For ASR and QA, the model is assigned

two GPUs with a batch size of 1, whereas summarization requires four GPUs with a batch

size of 1. The batch size is reduced to 1 because when executing the model decoder inde-

pendently, it no longer supports batching. During inference beyond ASR, text generation

is configured with do_sample=False, max_new_tokens=300, and no_repeat_ngram_size=3.

The processor settings remain the same as in the self-cascade setup.

Training

The training configuration is set as listed in Table 4.2: Exclusively, the convolution

layer weights are adjusted during training while the parameters of the original model

remain frozen, resulting in 28,31M trainable parameters. Training is conducted 10 epochs

with a batch size of 8 per GPU, distributed across four GPUs, on 99% of the LibriSQA

training set, which corresponds to 102,973 samples. Gradient checkpointing is enabled

(use_reentrant=False) to reduce memory usage, and FlashAttention [10] is disabled. The

optimizer used is AdamW [34] with 𝛽1 = 0.9, 𝛽2 = 0.95, 𝜖 = 10
−7
, a learning rate of 4 · 10−5,

a weight decay of 0.01, and a maximum gradient norm of 1.0. The learning rate scheduler is

linear with 50 warm-up steps. Logging occurs at every step, and checkpoints are saved ev-

ery 200 steps, with a maximum of one checkpoint retained, storing only the model weights.

Evaluation is performed every 200 steps on 1 percent of the LibriSQA training set. The early

22

4.3 Model Configuration

Table 4.2: Hyperparameters for training the convolution layer

Hyper Parameters

Training epochs 10

Batch size 8

Gradient checkpointing True

Optim Adamw torch

Adam beta1 0.9

Adam beta2 0.95

Adam epsilon 1e-7

Learning rate 4 · 10−5
Weight decay 0.01

Max grad norm 1.0

Lr scheduler type linear

Warmup steps 50

Save strategy steps

Save steps 200

Eval strategy steps

Eval steps 200

Save total limit 1

Save only model True

bf16 bf16

fp16 fp16

Remove unused columns False

Disable tqdm True

Dataloader num workers 4

Ddp find unused parame-

ters

True

Load best model at end True

Metric for best model Eval loss

Greater is better False

23

4 Experimental setup

stopping patience is set to 2 to prevent the layer from overfitting. When training ends, the

best model is selected based on eval_loss (lower is better). Training stops after 6.4 epochs

due to early stopping kicking in. Mixed precision is enabled with bf16 or fp16 as specified.

Unused columns in the dataset are retained (remove_unused_columns=False). DeepSpeed

is not used. Data loading uses 4 worker threads and ddp_find_unused_parameters=True

to handle any unused layers.

4.3.4 Compression Modules

To ensure proper compression, the processor first calculates the expected size of the

compressed feature vector array that will be passed to the encoder for generation. To

avoid issues when running the decoder, padding is applied to feature vector arrays with

lengths between 4000 and 4096 tokens before they are fed to the decoder.

For the convolution, the following formula is applied, where 𝐿out and 𝐿in denote the

sizes of the output and input, respectively, 𝑘 is the kernel size, and 𝑠 is the stride:

𝐿𝑜𝑢𝑡 =

⌊
𝐿𝑖𝑛 − (𝑘 − 1) − 1

𝑠
+ 1

⌋
(4.1)

and a compression ratio of

𝐶𝑅𝑐𝑜𝑛𝑣 =
𝐿𝑜𝑢𝑡

𝐿𝑖𝑛
=

⌊(𝐿𝑖𝑛 − 𝑘 + 1)/𝑠⌋
𝐿𝑖𝑛

. (4.2)

The convolution layer has the following parameters: kernel_size=3, stride=2, bias=False,

which results in an output length of

𝐿𝑜𝑢𝑡 =

⌊
𝐿𝑖𝑛 − 1

2

+ 1

⌋
(4.3)

and a compression rate of

𝐶𝑅𝑐𝑜𝑛𝑣 =
𝐿𝑜𝑢𝑡

𝐿𝑖𝑛
=

⌊(𝐿𝑖𝑛 − 2)/2⌋
𝐿𝑖𝑛

. (4.4)

For the skipping approach, the compression formula is:

𝐿𝑜𝑢𝑡 =

⌈
𝐿𝑖𝑛

𝑥𝑡𝑒

⌉
(4.5)

For the averaging approach, the compression formula is:

𝐿𝑜𝑢𝑡 =

⌊
𝐿𝑖𝑛

𝑥𝑡𝑒

⌋
+ 𝛿, 𝛿 =

{
1 if 𝐿𝑖𝑛 mod 𝑥𝑡𝑒 ≠ 0

0 if 𝐿𝑖𝑛 mod 𝑥𝑡𝑒 = 0

(4.6)

Both approaches have an approximate compression ratio of

𝐶𝑅𝑎𝑣𝑔 =𝐶𝑅𝑠𝑘𝑖𝑝 =
𝐿𝑜𝑢𝑡

𝐿𝑖𝑛
≈ 1

𝑥𝑡𝑒
. (4.7)

24

4.4 Evaluation

4.4 Evaluation

4.4.1 Quality Metrics

To evaluate a model’s performance on ASR tasks, the Word Error Rate (WER) is used. WER

measures the similarity between two texts by counting the number of insertions, deletions,

or substitutions required to align them. It is a standard ASR metric (e.g, [1], [43]).

For summarization and QA tasks, ROUGE-L [31] and BERTScore [65] are employed.

ROUGE-L is suitable because the model may generate multiple valid answers or abstracts

that are semantically correct but paraphrase the reference, where WER would be too

strict. ROUGE-L evaluates similarity based on the longest common subsequence, capturing

syntactic overlap while remaining flexible. To assess semantic similarity, BERTScore is

used. BERTScore uses contextual embeddings that consider surrounding words, making it

robust to paraphrasing and capable of capturing long-range dependencies in text. For this

paper, we use the unnormalized version of BERTScore with RoBERTa-large [33] as the

underlying model. Also, we use the F1 score of BERTScore. ROUGE-L and BERTScore are

well-established metrics, as they have been used in both QA datasets, such as [67], and

summarization datasets, like [68].

4.4.2 Compression Metrics

To quantify compression the compression factor is used, which measures the ratio between

the size of the input feature vector array and the size of the output feature vector array.

When quantifying the default compression rates of the baselines, the macro average of

per-sample ratios between the number of frames when the input utterance is converted

into waveform datapoints, and the number of output tokens is taken. For an end-to-end

system that does not rely on intermediate discrete units, the macro average of per-sample

ratios between the number of frames and the number of feature vectors is taken.

25

5 Results and Analysis

This chapter first presents the baseline results for ASR, QA, and summarization in Section

5.1. Section 5.2 then discusses the results of the inference-time compression approaches,

including the compression rates of the baselines and the impact of increased compression

on model performance. Finally, Section 5.3 reviews the results of the trained compression

approach, evaluating its performance across different tasks and domains.

5.1 Baseline Results

This section presents the baseline results for ASR, QA, and summarization, as introduced

in Section 4.1.

5.1.1 ASR Results

The Whisper-large model outperforms Whisper-small in all domains, with improvements

of approximately 2.1 (WER) points in ACL 60/60 and 1.2 points in LibriSQA, as shown in

Table 5.1. This gain can be attributed to its larger model size (1.54B parameters vs. 242M).

In contrast, the HuBERT + Spire combination yields the weakest results across all

domains, lagging behind by up to 9.02 points in ACL 60/60 and 3.24 points in LibriSQA

compared to Whisper-small, as reported in Table 5.1.

The best overall performance is achieved by the Phi-4-multimodal-instruct model,

surpassing Whisper-large by approximately 0.8 points (17.47 vs. 18.27) on ACL 60/60 and

1.1 points (2.53 to 3.63) on LibriSQA, as shown in Table 5.1.

5.1.2 QA and Summarization Results

Whisper-large, despite its larger model size, performs nearly identically in summarization

and QA across all metrics compared toWhisper-small, with differences within 0.34 ROUGE-

L and BERTScore points, as shown in Table 5.2.

The Phi-4-multimodal-instruct self-cascade model slightly outperforms Whisper-large

in both tasks, achieving gains of up to 1.08 ROUGE-L points (36.18 vs. 35.10) and 1.42

BERTScore points (90.33 vs. 88.91) in QA. In summarization, it yields an improvement

of 0.87 BERTScore points (86.02 vs. 85.15), while the ROUGE-L scores remain almost

27

5 Results and Analysis

Table 5.1: Baseline ASR results in WER (↓) on two datasets of varying conditions: LibriSQA

(clean, read speech) and ACL 60/60 (accented speech with varying recording

conditions). For readability, the results have been scaled by a factor of 100.

ASR

ACL 60/60 LibriSQA

Whisper-small 20.38 4.90

Whisper-large-v3 18.27 3.63

hubert+spire 29.40 8.14

Phi-4-multimodal-instruct 17.47 2.53

equal, differing by only 0.43 points (19.65 vs. 19.22), as shown in Table 5.2. However,

Phi-4-multimodal-instruct self-cascade lags behind HuBERT + Spire in QA, with a gap of

up to 13.31 ROUGE-L points (36.18 vs. 49.49); the difference in BERTScore is smaller at

about 1.49 points (90.33 vs. 91.82). In contrast, HuBERT + Spire performs considerably

worse in summarization, trailing the Phi-4-multimodal-instruct self-cascade model by

4.84 ROUGE-L points (14.81 vs. 19.65) and 2.48 BERTScore points (83.54 vs. 86.02). Due

to limited GPU memory, summarization for HuBERT + Spire had to be carried out in a

self-cascading setup, where summarization was applied to the transcriptions. As already

noted, HuBERT + Spire does not perform strongly in ASR, which likely contributes to its

weaker summarization results.

The best overall QA performance is achieved by the out of the box Phi-4-multimodal-

instruct model, surpassing HuBERT + Spire by 8.78 ROUGE-L points (58.27 vs. 49.49) and

1.38 BERTScore points (93.20 vs. 91.82), as shown in Table 5.2. The greater performance

of both the out of the box version of Phi-4-multimodal-instruct and the HuBERT + Spire

pipeline compared to the Whisper + Llama pipeline may be explained by their training

data. For Phi-4-multimodal-instruct, it is possible that LibriSQA or a related dataset was

included in its training, although this cannot be confirmed. As a matter of fact, HuBERT

in the HuBERT + Spire pipeline was trained on LibriSpeech, while LibriSQA is derived

from LibriSpeech. This may also be attributed to the fact that SpireLM is the largest model

among the baselines, and although it was exclusively trained on ASR and ST, its model

size potentially enables improved generalization to QA tasks.

However, the out of the box Phi-4-multimodal-instruct approach encounters an Out Of

Memory (OOM) error when processing long-form audio from Nutshell due to the limited

GPU memory. The BERTScore for Nutshell is therefore taken from [25]. As [25] only

reports BERTScore, we leave the ROUGE-L for this system open. When compared to the

version without chunking, the Phi-4-multimodal-instruct out of the box pipeline performs

almost identical in summarization, showing a difference of only 0.38 BERTScore points

(86.72 vs. 86.34).

The without chunking variant of Phi-4-multimodal-instruct served as a sanity check

to verify that separating the feature extraction step works as intended. A comparison

of its LibriSQA ASR transcriptions on the first 100 samples with those from the out of

28

5.2 Inference-Time Compression Results

the box approach showed identical outputs. Although the without chunking approach

delivers results close to the out of the box variant, it performs worse when generating

abstracts in terms of ROUGE-L compared to the self-cascade approach, with a margin of

3.13 ROUGE-L points (16.52 vs. 19.65), as shown in Table 5.2.

Interestingly, both thewithout chunking and out of the box versions of Phi-4-multimodal-

instruct outperform the self-cascade variant across all metrics, except for ROUGE-L in

summarization. This may be attributed to the fact that there is no single correct way to

write an abstract; this effect becomes even more pronounced as the input audio length

increases. Since the BERTScore is higher in the setup without chunking, it indicates that

the generated abstracts are closer in meaning to the references, which can be considered a

more important signal. Regarding QA, the better performance of the out of the box pipeline

compared to the self-cascading variant could be explained by the intermediate transcription

step in the pipeline, which may lose or alter information from the short-form audio. Since

QA tasks can be very sensitive to the specific information requested, sometimes down to a

single word, such alterations can have a noticeable impact on performance.

Table 5.2: Baselines speech-to-text results in ROUGE-L (↑) and BERTScore (↑) on two

datasets of varying conditions: LibriSQA (Audio books + questions and answers,

short-form audio) and Nutshell (Conference talks + abstracts, long-form audio).

For readability, the results have been scaled by a factor of 100.

Summarization (Nutshell) QA (LibriSQA)

ROUGE-L BERTScore ROUGE-L BERTScore

Whisper-small+llama 3-3B 18.96 85.11 34.76 88.83

Whisper-large-v3+llama 3-

3B

19.22 85.15 35.10 88.91

hubert+spire 14.81 83.54 49.49 91.82

Phi-4-multimodal-instruct

self-cascade

19.65 86.02 36.18 90.33

Phi-4-multimodal-instruct

e2e (out of the box)

− 86.72 58.27 93.20

Phi-4-multimodal-instruct

e2e (without chunking)

16.52 86.34 58.27 93.20

5.2 Inference-Time Compression Results

In the following section, we examine both the compression rate inherent to the model and

the effect of increasing compression on model performance. Additionally, we present the

results of the inference-time compression approaches.

29

5 Results and Analysis

Table 5.3: Inference-Time Compression text-to-text results in ROUGE-L (↑) and BERTScore
(↑) on two datasets of varying conditions: LibriSQA (Audio books + questions

and answers, short-form audio) and Nutshell (Conference talks + abstracts, long-

form audio). For readability, the results have been scaled by a factor of 100.

Summarization (Nutshell) QA (LibriSQA)

ROUGE-L BERTScore ROUGE-L BERTScore

Phi-4-multimodal-instruct

- e2e (without compres-

sion)

16.52 86.34 58.27 93.20

Phi-4-multimodal-instruct

- e2e (skip 2)

16.27 86.34 50.33 92.06

Phi-4-multimodal-instruct

- e2e (avg 2)

16.68 86.36 53.70 92.56

Phi-4-multimodal-instruct

- e2e (skip 4)

14.46 85.71 33.85 89.10

Phi-4-multimodal-instruct

- e2e (avg 4)

14.47 85.68 35.06 89.19

Phi-4-multimodal-instruct

- e2e (skip 8)

13.04 84.75 26.41 87.83

Phi-4-multimodal-instruct

- e2e (avg 8)

11.43 82.59 22.17 87.00

5.2.1 Compression Rate Comparison to Baselines

The baselines already yield a certain degree of compression by default. For instance, in

ASR on LibriSQA, Phi-4-multimodal-instruct exhibits a compression rate of 5690 when

considering the macro average of ratios between the number of audio frames and the

number of generated text tokens per sample, whereas Whisper-large achieves a compres-

sion rate of 4315 under the same setup. When comparing the compression ratio regarding

the macro average of ratios between the number of audio frames and the corresponding

feature vectors per sample, the Phi-4 Multimodal-instruct encoder yields a compression

rate of 1108, while HuBERT achieves 419. The compression approaches introduced in this

paper further extend these rates by multiplying factors of 2, 4, and 8. The corresponding

pipelines are summarized in Table 5.3.

5.2.2 Performance Comparison to Baselines

The Phi-4-multimodal-instruct pipeline without compression performs slightly better than

the skipping approach: in summarization, the results are almost identical, differing by only

0.25 ROUGE-L points (16.52 vs. 16.27), and regarding BERTScore, they are equal. For QA,

the baseline performs better by 7.94 ROUGE-L points (58.27 vs. 50.33) and 1.14 BERTScore

points (93.20 vs. 92.06), as shown in Table 5.3. Regarding summarization, averaging and

the pipeline without compression perform almost equally well, differing by only 0.16

30

5.2 Inference-Time Compression Results

ROUGE-L points (16.68 vs. 16.52) and 0.02 BERTScore points (86.36 vs. 86.34). For QA,

the without compression approach outperforms averaging by 4.57 ROUGE-L points (58.27

vs. 53.70) and by 0.64 BERTScore points (93.20 vs. 92.56). Overall, performance scores in

summarization are very close across all metrics. In contrast, for QA, the original pipeline

performs noticeably better, particularly in terms of ROUGE-L, compared to the compression

approaches. This may be due to the fact that LibriSQA contains short-form audio, making

information loss from compression more impactful. Nevertheless, the results indicate that,

at least for summarization of long-form audio, compression approaches (averaging with

a compression rate of 2) can perform comparably to the no compression baseline. The

fact that summarization tasks focus on compressing and removing redundant information,

combined with the fact that speech frames often contain large amounts of redundant

content, which are intended to be removed by the compression method, may explain why

these types of compression approaches are particularly compatible.

The compression approach based on averaging performs slightly better than skipping

across all metrics and tasks, as shown in Table 5.3. Specifically, they perform almost

identically in summarization, differing by only 0.41 ROUGE-L points (16.68 vs. 16.27) and

0.02 BERTScore points (86.36 vs. 86.34). In QA, averaging improves by 3.37 ROUGE-L

points (53.70 vs. 50.33), and they perform in terms of BERTScore almost equally with 0.5

BERTScore points (92.56 vs. 92.06) difference.

5.2.3 Impact of Increasing Compression Rate

The previous analyses exclusively considered compression pipelines with a compression

rate of 2. When comparing skipping and averaging approaches at higher compression

rates (4 and 8), performance is consistently degrading between tasks and metrics. When

comparing rates 2 and 8 for averaging, in summarization performance decreases by 5.25

ROUGE-L points and by 3.77 BERTScore points, as shown in Figure 5.1 and Figure 5.2.

For QA, the degradation is more severe, with performance drops by up to 31.53 ROUGE-L

points and 5.56 BERTScore points, as shown in Table 5.3, Figure 5.4, and Figure 5.3. When

comparing rates 2 and 8 for skipping, in summarization performance decreases by 3.23

ROUGE-L points and by 1.59 BERTScore points, as shown in Figure 5.1 and Figure 5.2. For

QA, the degradation is more severe, with performance dropping by up to 23.92 ROUGE-

L points and by up to 4.23 BERTScore points, as shown in Table 5.3, Figure 5.4, and

Figure 5.3. Interestingly, as the compression rate increases, the performance gap between

averaging and skipping narrows. As presented in the previous passage, averaging performs

better than skipping at a compression rate of 2. At a compression rate of 8, skipping

even surpasses averaging across all tasks and metrics in summarization, with a 1.61-

point ROUGE-L advantage (13.04 vs. 11.43) and a 2.16-point BERTScore (84.75 vs. 82.59)

advantage, favoring the use of skipping. In QA, by 4.24 ROUGE-L points (26.41 vs. 22.17)

and 0.83 BERTScore points (87.82 vs. 87.00), also in favor of skipping. This can be explained

by the fact that when compressing too many vectors into one, the resulting vector may

deviate significantly from the original vectors, making it possible that simply removing

vectors while keeping the rest authentic might have the same or even better effect.

31

5 Results and Analysis

0 1 2 3 4 5 6 7 8

10

12

14

16

18

Compression-Rate

R
O
U
G
E
-
L

Summarization (Nutshell)

Averaging

Skipping

Figure 5.1: Averaging and Skipping approach over compression rates 0, 2, 4, 8 in ROUGE-L

(↑) on one dataset: Nutshell (Conference talks + abstracts, long-form audio).

For readability, the results have been scaled by a factor of 100.

0 1 2 3 4 5 6 7 8

83

84

85

86

Compression-Rate

B
E
R
T
S
c
o
r
e

Summarization (Nutshell)

Averaging

Skipping

Figure 5.2: Averaging and Skipping approach over compression rates 0, 2, 4, 8 in BERTScore

(↑) on one dataset: Nutshell (Conference talks + abstracts, long-form audio).

For readability, the results have been scaled by a factor of 100.

32

5.2 Inference-Time Compression Results

0 1 2 3 4 5 6 7 8

86

88

90

92

94

Compression-Rate

B
E
R
T
S
c
o
r
e

QA (LibriSQA)

Averaging

Skipping

Figure 5.3: Averaging and Skipping approach over compression rates 0, 2, 4, 8 in ROUGE-L

(↑) on one dataset: LibriSQA (clean, read speech). For readability, the results

have been scaled by a factor of 100.

0 1 2 3 4 5 6 7 8

20

30

40

50

60

Compression-Rate

R
O
U
G
E
-
L

QA (LibriSQA)

Averaging

Skipping

Figure 5.4: Averaging and Skipping approach over compression rates 0, 2, 4, 8 in BERTscore

(↑) on one dataset: LibriSQA (clean, read speech). For readability, the results

have been scaled by a factor of 100.

33

5 Results and Analysis

The Phi-4 Multimodal-instruct approach without compression performs best in ASR

across both datasets. It surpasses the skipping approach (compression rate 2) by 16.59

points in ACL 60/60 (17.47 vs. 34.06) and by 18.87 points in LibriSQA (2.53 vs. 21.4).

Compared to the averaging approach (compression rate 2), it performs better with 6.09

points in ACL 60/60 (17.47 vs. 23.56) and 5.07 points in LibriSQA (2.53 vs. 7.6), as shown in

Table 5.4. As expected, since compression comes with potential information loss.

With higher compression rates (4 and 8), performance further degrades. Without

compression, the model outperforms averaging (compression rate 8) by approximately

75.37 points in ACL 60/60 and by 87.22 points in LibriSQA and outperforms skipping

(compression rate 8) by approximately 77.01 points in ACL 60/60 and by 85.05 points in

LibriSQA , as shown in Table 5.4, Figure 5.6 and Figure 5.5. The gap between skipping

and averaging narrows as the compression rate increases. At a compression rate of 2,

averaging is ahead of skipping by 10.5 points (23.56 vs. 34.06) in ACL 60/60 and 13.8 points

(7.60 vs. 21.40) in LibriSQA. At a rate of 8, the difference shrinks to 1.54 points (94.48 vs.

92.84) in favor of averaging in ACL 60/60, while skipping slightly outperforms averaging

by 2.17 points (87.58 vs. 89.75) in LibriSQA. For ASR overall, skipping and averaging seem

to exhibit a similar trend to the summarization and QA tasks.

Table 5.4: Inference-Time Compression ASR results in WER (↓) on two datasets of varying

conditions: LibriSQA (clean, read speech) and ACL 60/60 (accented speech with

varying recording conditions). For readability, the results have been scaled by a

factor of 100.

ASR

ACL 60/60 LibriSQA

Phi-4-multimodal-instruct - e2e (with-

out compression)

17.47 2.53

Phi-4-multimodal-instruct - e2e (skip 2) 34.06 21.40

Phi-4-multimodal-instruct - e2e (avg 2) 23.56 7.60

Phi-4-multimodal-instruct - e2e (skip 4) 78.59 71.54

Phi-4-multimodal-instruct - e2e (avg 4) 71.36 64.32

Phi-4-multimodal-instruct - e2e (skip 8) 94.48 87.58

Phi-4-multimodal-instruct - e2e (avg 8) 92.84 89.75

5.3 Results of Trained Compression

5.3.1 Training and Testing Both on LibriSQA

As expected, the convolution-based compression approach achieved the best performance

in ASR tasks with LibriSQA, outperforming the skipping method (compression rate 2) by

19.26 points (2.14 vs. 21.4) and averaging (compression rate 2) by 5.46 points (2.14 vs. 7.60),

as shown in Table 5.5. It even slightly surpasses the no compression approach by 0.39

34

5.3 Results of Trained Compression

0 1 2 3 4 5 6 7 8

0

20

40

60

80

100

Compression-Rate

W
E
R

ASR (LibriSQA)

Averaging

Skipping

Figure 5.5: Averaging and Skipping approach over compression rates 0, 2, 4, 8 in WER (↓)
on one dataset: LibriSQA (clean, read speech). For readability, the results have

been scaled by a factor of 100.

0 1 2 3 4 5 6 7 8

0

20

40

60

80

100

Compression-Rate

W
E
R

ASR (ACL 60/60)

Averaging

Skipping

Figure 5.6: Averaging and Skipping approach over compression rates 0, 2, 4, 8 in WER (↓)
on one dataset: ACL 60/60 (accented speech with varying recording conditions).

For readability, the results have been scaled by a factor of 100.

35

5 Results and Analysis

points (2.14 vs. 2.53). This improvement can be attributed to the fact that the convolution

layer was specifically trained on LibriSQA.

Table 5.5: Trained Compression ASR results in WER (↓) on one dataset: LibriSQA (clean,

read speech). For readability, the results have been scaled by a factor of 100.

ASR

LibriSQA

Phi-4-multimodal-instruct - e2e (without compression) 2.53

Phi-4-multimodal-instruct - e2e (skip 2) 21.40

Phi-4-multimodal-instruct - e2e (avg 2) 7.60

Phi-4-multimodal-instruct - e2e (conv) 2.14

5.3.2 Same Domain, Different Tasks: Training on ASR, Testing on QA

The convolution-based compression approach performs for QA in regard to ROUGE-L

slightly better than averaging (compression rate 2) by 1.05 ROUGE-L points (54.75 vs. 53.70)

and skipping (compression rate 2) by 4.42 ROUGE-L points (54.75 vs. 50.33), as shown

in Table 5.6. However, in terms of BERTScore, all compression methods perform almost

equally, with the results of the convolution-based approach differing by 0.36 BERTScore

points (92.19 vs. 92.55) from averaging and by 0.13 BERTScore points (92.19 vs. 92.06)

from skipping. This indicates that training compression parameters on ASR tasks does

not necessarily give an advantage in performance on QA tasks compared to non-trainable

compression methods. On the other hand, the no compression approach still slightly

outperforms all compression methods, with the convolution approach trailing by 3.52

ROUGE-L points (58.27 vs. 54.75) and the averaging approach by 0.65 BERTScore points

(93.20 vs. 92.55).

An aspect to consider is the fact that LibriSQA contains short-form audio. QA is, by

nature, very sensitive. Consequently, the answer to a question can depend on one word.

Altering this word can lead to a change in context, thereby yielding a completely different

answer. When compression is applied to short-form audio, it may induce a greater loss or

change in relevant information, resulting in poorer QA performance. Furthermore, this

results in the convolution-based approach being marginalized compared to the averaging

method.

5.3.3 Same Task, Different Domains: Training on LibriSQA and Testing on ACL
60/60

The convolution-based compression approach achieved better performance in ASR tasks

with ACL 60/60 than the training-free compression methods, outperforming averaging

(compression rate 2) by 4.31 points (19.25 vs. 23.56) and skipping (compression rate 2) by

36

5.3 Results of Trained Compression

Table 5.6: Trained Compression text-to-text results in ROUGE-L (↑) and BERTScore (↑) on
one dataset: LibriSQA (Audio books + questions and answers, short-form audio).

For readability, the results have been scaled by a factor of 100.

QA (LibriSQA)

ROUGE-L BERTScore

Phi-4-multimodal-instruct - e2e (without com-

pression)

58.27 93.20

Phi-4-multimodal-instruct - e2e (skip 2) 50.33 92.06

Phi-4-multimodal-instruct - e2e (avg 2) 53.70 92.55

Phi-4-multimodal-instruct - e2e (conv) 54.75 92.19

14.81 points (19.25 vs. 34.06), as shown in Table 5.7. The no compression approach still

outperforms all other methods, including convolution, by 1.78 points (17.47 vs. 19.25).

However, these results are expected because transcribing corresponds more or less to a

one-to-one projection when it comes to words. By applying compression, words may get

lost, leading to worse ASR performance. The superior performance of the convolution-

based approach among the compression methods may be attributed to the fact that it was

trained on ASR tasks.

Table 5.7: Trained Compression ASR results in WER (↓) on one dataset: ACL 60/60 (ac-

cented speech with varying recording conditions). For readability, the results

have been scaled by a factor of 100.

ASR

ACL 60/60

Phi-4-multimodal-instruct - e2e (without com-

pression)

17.47

Phi-4-multimodal-instruct - e2e (skip 2) 34.06

Phi-4-multimodal-instruct - e2e (avg 2) 23.56

Phi-4-multimodal-instruct - e2e (conv) 19.25

5.3.4 Different Tasks, Different Domains: Training on LibriSQA and Testing on
Nutshell

The compression approaches and the baseline achieve nearly identical performances in

summarization with respect to BERTScore, differing by only a small margin of up to 0.04

BERTScore points, as shown in Table 5.8. In terms of ROUGE-L, both the compression

approaches and the baseline deliver almost identical results, differing by a small margin of

up to 0.41 ROUGE-L points. Overall, for summarization tasks, the compression approaches

deliver almost equal scores across all metrics, including the approach without compression,

indicating that the non-trained compression approaches can compete with both the trained

37

5 Results and Analysis

compression methods and the approach without compression. With abstracts more or less

describing the overall notion and purpose of a text and QA demanding specific details in

the text, it is possible that Summarization is less sensitive to information loss as a result of

compression, especially when applied to long-form audio. Compression can also facilitate

the model in finding long-range dependencies by placing them numerically closer. In fact,

the summarization task and the compression of feature vectors share a similar intention,

which potentially translates into improved summarization performance.

Table 5.8: Trained Compression text-to-text results in ROUGE-L (↑) and BERTScore (↑)
on one dataset: Nutshell (Conference talks + abstracts, long-form audio). For

readability, the results have been scaled by a factor of 100.

Summarization (Nutshell)

ROUGE-L BERTScore

Phi-4-multimodal-instruct - e2e (with-

out compression)

16.52 86.34

Phi-4-multimodal-instruct - e2e (skip 2) 16.27 86.34

Phi-4-multimodal-instruct - e2e (avg 2) 16.68 86.36

Phi-4-multimodal-instruct - e2e (conv) 16.62 86.38

38

6 Conclusion

This paper highlights the need for LLMs to consume substantial computational resources

and the performance degradation they experience when processing lengthy input. The

concept of context compression was introduced as a means to mitigate these challenges.

Thus, both training-free and training-dependent compression approaches were introduced

to investigate whether less resource-intensive, training-free methods can serve as a valid

alternative to training-dependent approaches for compression. These approaches were

tested, and the results were analyzed in light of the following research questions.

RQ1: How can we realize compression without additional training?

Compression can be implemented through simple methods such as skipping, which
retains only every 𝑥-th feature vector, or averaging, which replaces a group of adjacent

vectors with their mean representation. These approaches rely on linear operations

without adjustable parameters, eliminating the need for training and thereby reducing

computational cost.

RQ2: How do these training-free approaches compare to dedicated compression
modules that are trained?

For long-form audio summarization tasks, training-free compression methods approach

the baseline competitively, within a margin of 0.25 ROUGE-L points and 0.02 BERTScore

points. In addition, the training-dependent convolution-based approach, which is trained

on ASR, yields nearly identical results to the training-free approaches, with differences of

only up to 0.04 BERTScore points and 0.35 ROUGE-L points. The findings suggest that

the convolution approach, when trained in ASR, provides only a marginal advantage over

training-free compression methods when applied to summarization tasks on long-form

audio. The near-identical performance of the compression methods and the baseline can be

attributed to the alignment between the goals of the summarization task and the objectives

of the compression modules, both aiming to condense information. The fact that the

audio consists of long-form recordings may also account for the minimal performance

differences between trainable and non-trainable methods. As the relevant information

density decreases with longer audio, the compression can be less fine-grained without

significantly impacting the results, allowing for some tolerance to errors.

In QA, averaging, skipping, and the trainable convolution approach also yield results

that are competitively close regarding BERTscore, differing by a small margin of up to 0.49

BERTScore points. Compared to the baseline, the compression methods perform slightly

worse in terms of BERTScore by a margin of 0.65 to 1.14 BERTScore points. With ROUGE-L,

the performance drops become even more pronounced, with the training-free compression

39

6 Conclusion

approaches performing worse than the convolution-based approach by up to 4.42 ROUGE-

L points, and the convolution-based approach performing worse than the baseline by

3.52 ROUGE-L points. This may be because compression alters the original syntax, and

when applied to short-form audio, it can further distort the structure. Combined with the

tendency of models to paraphrase, this may lead to differences in syntactic accuracy.

As expected, regarding LibriSQA and ACL 60/60, the training-free approaches perform

noticeably worse on ASR tasks by up to 18.87 points compared to the baseline without

compression. This could be due to compression-induced information loss and the ASR

task’s sensitivity to such information loss. The trainable approach outperforms the training-

free approach, achieving a performance comparable to the baseline (within 1.78 points).

The trainable approach, which was explicitly trained in ASR, may be a reason why the

performance drop is mitigated.

When increasing the compression rates for the training-free approaches, performance

consistently degrades across summarization, QA, and ASR, with skipping even outper-

forming averaging at a compression rate of 8.

Nevertheless, the results show that the compression methods can compete with the

baseline in both QA and summarization tasks. In particular, the training-free approaches

are able to perform comparably to the training-dependent methods except for ASR.

RQ3: How do these two types of approaches generalize to different acoustic
conditions and tasks?

When tested on ASR using LibriSQA, the training-dependent convolution-based ap-

proach, which was specifically trained on ASR in LibriSQA, performed the best, outper-

forming both the no-compression baseline and the training-free compression methods,

as expected. The training-free compression methods performed the worst, trailing the

convolution-based approach by up to 18.96 points, due to their indiscriminate discarding

of feature vectors.

When transferred to the same dataset, LibriSQA, but for a different task, namely QA,

all compression methods performed worse than the no-compression baseline by up to

1.14 BERTScore points and 7.94 ROUGE-L points. However, the training-free compression

methods showed significantly better generalization abilities on QA compared to ASR,

approaching the baseline, particularly in terms of BERTScore. The convolution-based ap-

proach, although it also showed some performance drop, especially in regard to BERTScore,

maintained relatively stable performance.

When applying the same ASR task to a different dataset, ACL 60/60, which contains

short-form audio similar to LibriSQA but with accented speech, making the ASR task more

challenging, the overall performance of compression methods dropped considerably. The

convolution-based approach, trained on LibrisQA ASR, trailed the no-compression baseline

by 1.78 points, whereas the training-free methods lagged by up to 16.59 points. Thus,

the training-free compression methods demonstrate similar generalization abilities on

ACL 60/60 as they did on LibrisQA, while the convolution-based approach shows reduced

generalization.

40

When applying a different task, summarization, to a different dataset, Nutshell, all

compression methods exhibited strong generalization abilities, similar to those of the

convolution-based approach on LibrisQA with ASR. The performances of all compression

approaches and the baseline were almost identical, differing by no more than 0.41 ROUGE-

L points and 0.04 BERTScore points, demonstrating the strongest overall generalization

capabilities compared to the different setups.

All compression approaches generalized reasonably well to the summarization of long-

form audio, often performing as strongly as the baseline. They also demonstrated strong

performance in QA, although generalization was not as robust as in summarization.

In contrast, for ASR tasks, performance differences were more pronounced, particularly

on ACL 60/60, which contains accented speech, with compression methods demonstrating

one of the weakest generalization abilities. On LibriSQA, which contains clean audio,

the performance drop was less significant for the convolution-based approach; in fact,

the approach even outperformed the baseline slightly. However, for the training-free

compression approaches, the results were nearly as poor as with ACL 60/60.

Notably, the experiments on long-form summarization and short-form QA showed that

averaging and skipping, despite being training-free compression methods, generalized well

to the tasks and performed competitively with the training-based compression approach.

Overall, the results suggest that compression methods can achieve performance levels

comparable to those of no-compression baselines for QA and summarization, although

this effect is less pronounced for ASR.

Limitations

Due to time and computational resource limitations, only a limited number of compression

methods could be tested. This study focuses on the most essential methods, including

skipping, averaging, and convolution-based compression. Future work should evaluate

other compressionmodules within the same setup, such asMax /Min pooling or windowed-

level Q-formers [29].

In addition to different compression methods, other datasets, especially QA datasets

with long-form audio, should be considered to draw a more comprehensive comparison

with the summarization performance on Nutshell. Furthermore, datasets that allow testing

the compression module capabilities beyond ASR, QA, and Summarization should be

evaluated.

41

Bibliography

[1] Abdelrahman Abouelenin et al. “Phi-4-Mini Technical Report: Compact yet Powerful

Multimodal Language Models via Mixture-of-LoRAs”. In: CoRR abs/2503.01743

(2025). doi: 10.48550/ARXIV.2503.01743. arXiv: 2503.01743. url: https://doi.

org/10.48550/arXiv.2503.01743.

[2] Duarte M. Alves et al. “Tower: An Open Multilingual Large Language Model for

Translation-Related Tasks”. In: CoRR abs/2402.17733 (2024). doi: 10.48550/ARXIV.

2402.17733. arXiv: 2402.17733. url: https://doi.org/10.48550/arXiv.2402.

17733.

[3] Kshitij Ambilduke et al. “From TOWER to SPIRE: Adding the Speech Modality to a

Text-Only LLM”. In: CoRR abs/2503.10620 (2025). doi: 10.48550/ARXIV.2503.10620.

arXiv: 2503.10620. url: https://doi.org/10.48550/arXiv.2503.10620.

[4] Alexei Baevski et al. “wav2vec 2.0: A Framework for Self-Supervised Learning of

Speech Representations”. In: Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual. Ed. by Hugo Larochelle et al. 2020. url: https://

proceedings.neurips.cc/paper/2020/hash/92d1e1eb1cd6f9fba3227870bb6d7f07-

Abstract.html.

[5] Kinjal Basu et al. “SQuARE: Semantics-based Question Answering and Reason-

ing Engine”. In: Proceedings 36th International Conference on Logic Programming
(Technical Communications), ICLP Technical Communications 2020, (Technical Com-
munications) UNICAL, Rende (CS), Italy, 18-24th September 2020. Ed. by Francesco

Ricca et al. Vol. 325. EPTCS. 2020, pp. 73–86. doi: 10.4204/EPTCS.325.13. url:

https://doi.org/10.4204/EPTCS.325.13.

[6] Tom B. Brown et al. “Language Models are Few-Shot Learners”. In: Advances in
Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual. Ed. by Hugo

Larochelle et al. 2020. url: https://proceedings.neurips.cc/paper/2020/hash/

1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

[7] Zhehuai Chen et al. “SALM: Speech-Augmented Language Model with in-Context

Learning for Speech Recognition and Translation”. In: IEEE International Conference
on Acoustics, Speech and Signal Processing, ICASSP 2024, Seoul, Republic of Korea, April
14-19, 2024. IEEE, 2024, pp. 13521–13525. doi: 10.1109/ICASSP48485.2024.10447553.
url: https://doi.org/10.1109/ICASSP48485.2024.10447553.

43

https://doi.org/10.48550/ARXIV.2503.01743
https://arxiv.org/abs/2503.01743
https://doi.org/10.48550/arXiv.2503.01743
https://doi.org/10.48550/arXiv.2503.01743
https://doi.org/10.48550/ARXIV.2402.17733
https://doi.org/10.48550/ARXIV.2402.17733
https://arxiv.org/abs/2402.17733
https://doi.org/10.48550/arXiv.2402.17733
https://doi.org/10.48550/arXiv.2402.17733
https://doi.org/10.48550/ARXIV.2503.10620
https://arxiv.org/abs/2503.10620
https://doi.org/10.48550/arXiv.2503.10620
https://proceedings.neurips.cc/paper/2020/hash/92d1e1eb1cd6f9fba3227870bb6d7f07-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/92d1e1eb1cd6f9fba3227870bb6d7f07-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/92d1e1eb1cd6f9fba3227870bb6d7f07-Abstract.html
https://doi.org/10.4204/EPTCS.325.13
https://doi.org/10.4204/EPTCS.325.13
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1109/ICASSP48485.2024.10447553
https://doi.org/10.1109/ICASSP48485.2024.10447553

Bibliography

[8] Alexis Chevalier et al. “Adapting Language Models to Compress Contexts”. In: Pro-
ceedings of the 2023 Conference on Empirical Methods in Natural Language Processing.
Ed. by Houda Bouamor, Juan Pino, and Kalika Bali. Singapore: Association for Com-

putational Linguistics, Dec. 2023, pp. 3829–3846. doi: 10.18653/v1/2023.emnlp-

main.232. url: https://aclanthology.org/2023.emnlp-main.232/.

[9] Zihang Dai et al. “Transformer-XL: Attentive Language Models beyond a Fixed-

Length Context”. In: Proceedings of the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long
Papers. Ed. by Anna Korhonen, David R. Traum, and Lluís Màrquez. Association for

Computational Linguistics, 2019, pp. 2978–2988. doi: 10.18653/V1/P19-1285. url:

https://doi.org/10.18653/v1/p19-1285.

[10] Tri Dao et al. “FlashAttention: Fast and Memory-Efficient Exact Attention with

IO-Awareness”. In: Advances in Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Or-
leans, LA, USA, November 28 - December 9, 2022. Ed. by Sanmi Koyejo et al. 2022.

url: https : / / proceedings . neurips . cc / paper _ files / paper / 2022 / hash /

67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html.

[11] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Lan-

guage Understanding”. In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and
Short Papers). Ed. by Jill Burstein, Christy Doran, and Thamar Solorio. Association

for Computational Linguistics, 2019, pp. 4171–4186. doi: 10.18653/V1/N19-1423.

url: https://doi.org/10.18653/v1/n19-1423.

[12] Yehoshua Dissen et al. “Enhanced ASR Robustness to Packet Loss with a Front-

End Adaptation Network”. In: 25th Annual Conference of the International Speech
Communication Association, Interspeech 2024, Kos, Greece, September 1-5, 2024. Ed. by
Itshak Lapidot and Sharon Gannot. ISCA, 2024. doi: 10.21437/INTERSPEECH.2024-

306. url: https://doi.org/10.21437/Interspeech.2024-306.

[13] Abhimanyu Dubey et al. “The Llama 3 Herd of Models”. In: CoRR abs/2407.21783

(2024). doi: 10.48550/ARXIV.2407.21783. arXiv: 2407.21783. url: https://doi.

org/10.48550/arXiv.2407.21783.

[14] Yassir Fathullah et al. “AudioChatLlama: Towards General-Purpose Speech Abilities

for LLMs”. In: Proceedings of the 2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies (Volume
1: Long Papers). Ed. by Kevin Duh, Helena Gomez, and Steven Bethard. Mexico

City, Mexico: Association for Computational Linguistics, June 2024, pp. 5522–5532.

doi: 10.18653/v1/2024.naacl-long.309. url: https://aclanthology.org/2024.

naacl-long.309/.

[15] Marco Gaido et al. “CTC-based Compression for Direct Speech Translation”. In:

Proceedings of the 16th Conference of the European Chapter of the Association for
Computational Linguistics: Main Volume, EACL 2021, Online, April 19 - 23, 2021. Ed. by

44

https://doi.org/10.18653/v1/2023.emnlp-main.232
https://doi.org/10.18653/v1/2023.emnlp-main.232
https://aclanthology.org/2023.emnlp-main.232/
https://doi.org/10.18653/V1/P19-1285
https://doi.org/10.18653/v1/p19-1285
https://proceedings.neurips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.21437/INTERSPEECH.2024-306
https://doi.org/10.21437/INTERSPEECH.2024-306
https://doi.org/10.21437/Interspeech.2024-306
https://doi.org/10.48550/ARXIV.2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.18653/v1/2024.naacl-long.309
https://aclanthology.org/2024.naacl-long.309/
https://aclanthology.org/2024.naacl-long.309/

Paola Merlo, Jörg Tiedemann, and Reut Tsarfaty. Association for Computational

Linguistics, 2021, pp. 690–696. doi: 10.18653/V1/2021.EACL-MAIN.57. url: https:

//doi.org/10.18653/v1/2021.eacl-main.57.

[16] Marco Gaido et al. “Speech Translation with Speech Foundation Models and Large

Language Models: What is There and What is Missing?” In: Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). Ed. by Lun-Wei Ku, Andre Martins, and Vivek Srikumar. Bangkok,

Thailand: Association for Computational Linguistics, Aug. 2024, pp. 14760–14778.

doi: 10.18653/v1/2024.acl-long.789. url: https://aclanthology.org/2024.

acl-long.789/.

[17] Leo Gao et al. “The Pile: An 800GB Dataset of Diverse Text for Language Modeling”.

In: CoRR abs/2101.00027 (2021). arXiv: 2101.00027. url: https://arxiv.org/abs/

2101.00027.

[18] Tao Ge et al. “In-context Autoencoder for Context Compression in a Large Lan-

guage Model”. In: The Twelfth International Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. url: https :
//openreview.net/forum?id=uREj4ZuGJE.

[19] Lukas Hilgert, Danni Liu, and Jan Niehues. “Evaluating and Training Long-Context

Large Language Models for Question Answering on Scientific Papers”. In: Proceed-
ings of the 1st Workshop on Customizable NLP: Progress and Challenges in Customiz-
ing NLP for a Domain, Application, Group, or Individual (CustomNLP4U). Ed. by
Sachin Kumar et al. Miami, Florida, USA: Association for Computational Linguis-

tics, Nov. 2024, pp. 220–236. doi: 10.18653/v1/2024.customnlp4u- 1.17. url:

https://aclanthology.org/2024.customnlp4u-1.17/.

[20] Cheng-Ping Hsieh et al. “RULER:What’s the Real Context Size of Your Long-Context

Language Models?” In: CoRR abs/2404.06654 (2024). doi: 10.48550/ARXIV.2404.

06654. arXiv: 2404.06654. url: https://doi.org/10.48550/arXiv.2404.06654.

[21] Wei-Ning Hsu et al. “HuBERT: Self-Supervised Speech Representation Learning

by Masked Prediction of Hidden Units”. In: IEEE ACM Trans. Audio Speech Lang.
Process. 29 (2021), pp. 3451–3460. doi: 10.1109/TASLP.2021.3122291. url: https:
//doi.org/10.1109/TASLP.2021.3122291.

[22] Edward J. Hu et al. “LoRA: Low-Rank Adaptation of Large Language Models”. In:

The Tenth International Conference on Learning Representations, ICLR 2022, Virtual
Event, April 25-29, 2022. OpenReview.net, 2022. url: https://openreview.net/
forum?id=nZeVKeeFYf9.

[23] Jacob Kahn et al. “Libri-Light: A Benchmark for ASRwith Limited or No Supervision”.

In: 2020 IEEE International Conference on Acoustics, Speech and Signal Processing,
ICASSP 2020, Barcelona, Spain, May 4-8, 2020. IEEE, 2020, pp. 7669–7673. doi: 10.
1109/ICASSP40776.2020.9052942. url: https://doi.org/10.1109/ICASSP40776.

2020.9052942.

[24] Jared Kaplan et al. “Scaling Laws for Neural LanguageModels”. In:CoRR abs/2001.08361
(2020). arXiv: 2001.08361. url: https://arxiv.org/abs/2001.08361.

45

https://doi.org/10.18653/V1/2021.EACL-MAIN.57
https://doi.org/10.18653/v1/2021.eacl-main.57
https://doi.org/10.18653/v1/2021.eacl-main.57
https://doi.org/10.18653/v1/2024.acl-long.789
https://aclanthology.org/2024.acl-long.789/
https://aclanthology.org/2024.acl-long.789/
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://openreview.net/forum?id=uREj4ZuGJE
https://openreview.net/forum?id=uREj4ZuGJE
https://doi.org/10.18653/v1/2024.customnlp4u-1.17
https://aclanthology.org/2024.customnlp4u-1.17/
https://doi.org/10.48550/ARXIV.2404.06654
https://doi.org/10.48550/ARXIV.2404.06654
https://arxiv.org/abs/2404.06654
https://doi.org/10.48550/arXiv.2404.06654
https://doi.org/10.1109/TASLP.2021.3122291
https://doi.org/10.1109/TASLP.2021.3122291
https://doi.org/10.1109/TASLP.2021.3122291
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.1109/ICASSP40776.2020.9052942
https://doi.org/10.1109/ICASSP40776.2020.9052942
https://doi.org/10.1109/ICASSP40776.2020.9052942
https://doi.org/10.1109/ICASSP40776.2020.9052942
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361

Bibliography

[25] Sai Koneru et al. “KIT’s Offline Speech Translation and Instruction Following Submis-

sion for IWSLT 2025”. In: Proceedings of the 22nd International Conference on Spoken
Language Translation (IWSLT 2025). Ed. by Elizabeth Salesky, Marcello Federico,

and Antonis Anastasopoulos. Vienna, Austria (in-person and online): Association

for Computational Linguistics, July 2025, pp. 232–244. isbn: 979-8-89176-272-5. doi:

10.18653/v1/2025.iwslt-1.22. url: https://aclanthology.org/2025.iwslt-

1.22/.

[26] Chia-ying Lee and James R. Glass. “A Nonparametric Bayesian Approach to Acoustic

Model Discovery”. In: The 50th Annual Meeting of the Association for Computational
Linguistics, Proceedings of the Conference, July 8-14, 2012, Jeju Island, Korea - Volume
1: Long Papers. The Association for Computer Linguistics, 2012, pp. 40–49. url:

https://aclanthology.org/P12-1005/.

[27] Hyunjae Lee et al. “Enhancing Semantic Understanding with Self-Supervised Meth-

ods for Abstractive Dialogue Summarization”. In: 22nd Annual Conference of the
International Speech Communication Association, Interspeech 2021, Brno, Czechia,
August 30 - September 3, 2021. Ed. by Hynek Hermansky et al. ISCA, 2021, pp. 796–

800. doi: 10.21437/INTERSPEECH.2021-1270. url: https://doi.org/10.21437/

Interspeech.2021-1270.

[28] Woong-Hee Lee et al. “Noise Learning-Based Denoising Autoencoder”. In: IEEE
Commun. Lett. 25.9 (2021), pp. 2983–2987. doi: 10.1109/LCOMM.2021.3091800. url:
https://doi.org/10.1109/LCOMM.2021.3091800.

[29] Junnan Li et al. “BLIP-2: Bootstrapping Language-Image Pre-training with Frozen

Image Encoders and Large Language Models”. In: International Conference on Ma-
chine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA. Ed. by Andreas

Krause et al. Vol. 202. Proceedings of Machine Learning Research. PMLR, 2023,

pp. 19730–19742. url: https://proceedings.mlr.press/v202/li23q.html.

[30] Mohan Li et al. “WHISMA: A Speech-LLM to Perform Zero-Shot Spoken Language

Understanding”. In: IEEE Spoken Language Technology Workshop, SLT 2024, Macao,
December 2-5, 2024. IEEE, 2024, pp. 1115–1122. doi: 10 . 1109 / SLT61566 . 2024 .
10832156. url: https://doi.org/10.1109/SLT61566.2024.10832156.

[31] Chin-Yew Lin. “ROUGE: A Package for Automatic Evaluation of Summaries”. In:

Text Summarization Branches Out. Barcelona, Spain: Association for Computational

Linguistics, July 2004, pp. 74–81. url: https://aclanthology.org/W04-1013/.

[32] Nelson F. Liu et al. “Lost in the Middle: How Language Models Use Long Contexts”.

In: Transactions of the Association for Computational Linguistics 12 (2024), pp. 157–173.
doi: 10.1162/tacl_a_00638. url: https://aclanthology.org/2024.tacl-1.9/.

[33] Yinhan Liu et al. “RoBERTa: A Robustly Optimized BERT Pretraining Approach”.

In: CoRR abs/1907.11692 (2019). arXiv: 1907.11692. url: http://arxiv.org/abs/

1907.11692.

46

https://doi.org/10.18653/v1/2025.iwslt-1.22
https://aclanthology.org/2025.iwslt-1.22/
https://aclanthology.org/2025.iwslt-1.22/
https://aclanthology.org/P12-1005/
https://doi.org/10.21437/INTERSPEECH.2021-1270
https://doi.org/10.21437/Interspeech.2021-1270
https://doi.org/10.21437/Interspeech.2021-1270
https://doi.org/10.1109/LCOMM.2021.3091800
https://doi.org/10.1109/LCOMM.2021.3091800
https://proceedings.mlr.press/v202/li23q.html
https://doi.org/10.1109/SLT61566.2024.10832156
https://doi.org/10.1109/SLT61566.2024.10832156
https://doi.org/10.1109/SLT61566.2024.10832156
https://aclanthology.org/W04-1013/
https://doi.org/10.1162/tacl_a_00638
https://aclanthology.org/2024.tacl-1.9/
https://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692

[34] Ilya Loshchilov and Frank Hutter. “Decoupled Weight Decay Regularization”. In: 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net, 2019. url: https://openreview.net/forum?
id=Bkg6RiCqY7.

[35] Nicolo Micheletti et al. “Exploration of Masked and Causal Language Modelling for

Text Generation”. In: CoRR abs/2405.12630 (2024). doi: 10.48550/ARXIV.2405.12630.

arXiv: 2405.12630. url: https://doi.org/10.48550/arXiv.2405.12630.

[36] Eliya Nachmani et al. “Spoken Question Answering and Speech Continuation Using

Spectrogram-Powered LLM”. In: The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.
url: https://openreview.net/forum?id=izrOLJov5y.

[37] OpenAI. “GPT-4 Technical Report”. In: CoRR abs/2303.08774 (2023). doi: 10.48550/

ARXIV.2303.08774. arXiv: 2303.08774. url: https://doi.org/10.48550/arXiv.

2303.08774.

[38] Long Ouyang et al. “Training language models to follow instructions with hu-

man feedback”. In: Advances in Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Or-
leans, LA, USA, November 28 - December 9, 2022. Ed. by Sanmi Koyejo et al. 2022.

url: https : / / proceedings . neurips . cc / paper _ files / paper / 2022 / hash /

b1efde53be364a73914f58805a001731-Abstract-Conference.html.

[39] Jing Pan et al. “COSMIC: Data Efficient Instruction-tuning For Speech In-Context

Learning”. In: 25th Annual Conference of the International Speech Communication
Association, Interspeech 2024, Kos, Greece, September 1-5, 2024. Ed. by Itshak Lapidot

and Sharon Gannot. ISCA, 2024. doi: 10.21437/INTERSPEECH.2024- 1346. url:

https://doi.org/10.21437/Interspeech.2024-1346.

[40] Vassil Panayotov et al. “Librispeech: An ASR corpus based on public domain audio

books”. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing, ICASSP 2015, South Brisbane, Queensland, Australia, April 19-24, 2015. IEEE,
2015, pp. 5206–5210. doi: 10.1109/ICASSP.2015.7178964. url: https://doi.org/

10.1109/ICASSP.2015.7178964.

[41] Van Tung Pham et al. “A Comprehensive Solution to Connect Speech Encoder and

Large Language Model for ASR”. In: CoRR abs/2406.17272 (2024). doi: 10.48550/

ARXIV.2406.17272. arXiv: 2406.17272. url: https://doi.org/10.48550/arXiv.

2406.17272.

[42] Michael Poli et al. “Hyena Hierarchy: Towards Larger Convolutional Language

Models”. In: International Conference onMachine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA. Ed. by Andreas Krause et al. Vol. 202. Proceedings of Machine

Learning Research. PMLR, 2023, pp. 28043–28078. url: https://proceedings.mlr.

press/v202/poli23a.html.

47

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.48550/ARXIV.2405.12630
https://arxiv.org/abs/2405.12630
https://doi.org/10.48550/arXiv.2405.12630
https://openreview.net/forum?id=izrOLJov5y
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/ARXIV.2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://proceedings.neurips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.21437/INTERSPEECH.2024-1346
https://doi.org/10.21437/Interspeech.2024-1346
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.48550/ARXIV.2406.17272
https://doi.org/10.48550/ARXIV.2406.17272
https://arxiv.org/abs/2406.17272
https://doi.org/10.48550/arXiv.2406.17272
https://doi.org/10.48550/arXiv.2406.17272
https://proceedings.mlr.press/v202/poli23a.html
https://proceedings.mlr.press/v202/poli23a.html

Bibliography

[43] Alec Radford et al. “Robust Speech Recognition via Large-Scale Weak Supervision”.

In: International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Hon-
olulu, Hawaii, USA. Ed. by Andreas Krause et al. Vol. 202. Proceedings of Machine

Learning Research. PMLR, 2023, pp. 28492–28518. url: https://proceedings.mlr.

press/v202/radford23a.html.

[44] Srijith Radhakrishnan et al. “Whispering LLaMA: A Cross-Modal Generative Error

Correction Framework for Speech Recognition”. In: Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore,
December 6-10, 2023. Ed. by Houda Bouamor, Juan Pino, and Kalika Bali. Association

for Computational Linguistics, 2023, pp. 10007–10016. doi: 10.18653/V1/2023.

EMNLP-MAIN.618. url: https://doi.org/10.18653/v1/2023.emnlp-main.618.

[45] Stephen Roller et al. “Recipes for Building an Open-Domain Chatbot”. In: Proceedings
of the 16th Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume, EACL 2021, Online, April 19 - 23, 2021. Ed. by Paola Merlo,

Jörg Tiedemann, and Reut Tsarfaty. Association for Computational Linguistics, 2021,

pp. 300–325. doi: 10.18653/V1/2021.EACL-MAIN.24. url: https://doi.org/10.

18653/v1/2021.eacl-main.24.

[46] Elizabeth Salesky et al. “Evaluating Multilingual Speech Translation under Realistic

Conditions with Resegmentation and Terminology”. In: Proceedings of the 20th
International Conference on Spoken Language Translation, IWSLT@ACL 2023, Toronto,
Canada (in-person and online), 13-14 July, 2023. Ed. by Elizabeth Salesky, Marcello

Federico, and Marine Carpuat. Association for Computational Linguistics, 2023,

pp. 62–78. doi: 10.18653/V1/2023.IWSLT-1.2. url: https://doi.org/10.18653/

v1/2023.iwslt-1.2.

[47] Teven Le Scao et al. “BLOOM: A 176B-Parameter Open-Access Multilingual Lan-

guage Model”. In: CoRR abs/2211.05100 (2022). doi: 10.48550/ARXIV.2211.05100.

arXiv: 2211.05100. url: https://doi.org/10.48550/arXiv.2211.05100.

[48] Hengchao Shang et al. “An End-to-End Speech Summarization Using Large Lan-

guage Model”. In: 25th Annual Conference of the International Speech Communication
Association, Interspeech 2024, Kos, Greece, September 1-5, 2024. Ed. by Itshak Lapidot

and Sharon Gannot. ISCA, 2024. doi: 10.21437/INTERSPEECH.2024- 1428. url:

https://doi.org/10.21437/Interspeech.2024-1428.

[49] Minghao Shao et al. “Survey of Different Large Language Model Architectures:

Trends, Benchmarks, and Challenges”. In: IEEE Access 12 (2024), pp. 188664–188706.
doi: 10.1109/ACCESS.2024.3482107. url: https://doi.org/10.1109/ACCESS.

2024.3482107.

[50] Changli Tang et al. “SALMONN: Towards Generic Hearing Abilities for Large

Language Models”. In: The Twelfth International Conference on Learning Represen-
tations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. url:
https://openreview.net/forum?id=14rn7HpKVk.

48

https://proceedings.mlr.press/v202/radford23a.html
https://proceedings.mlr.press/v202/radford23a.html
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.618
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.618
https://doi.org/10.18653/v1/2023.emnlp-main.618
https://doi.org/10.18653/V1/2021.EACL-MAIN.24
https://doi.org/10.18653/v1/2021.eacl-main.24
https://doi.org/10.18653/v1/2021.eacl-main.24
https://doi.org/10.18653/V1/2023.IWSLT-1.2
https://doi.org/10.18653/v1/2023.iwslt-1.2
https://doi.org/10.18653/v1/2023.iwslt-1.2
https://doi.org/10.48550/ARXIV.2211.05100
https://arxiv.org/abs/2211.05100
https://doi.org/10.48550/arXiv.2211.05100
https://doi.org/10.21437/INTERSPEECH.2024-1428
https://doi.org/10.21437/Interspeech.2024-1428
https://doi.org/10.1109/ACCESS.2024.3482107
https://doi.org/10.1109/ACCESS.2024.3482107
https://doi.org/10.1109/ACCESS.2024.3482107
https://openreview.net/forum?id=14rn7HpKVk

[51] Yi Tay et al. “Long Range Arena : A Benchmark for Efficient Transformers”. In:

9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021. url: https://openreview.net/
forum?id=qVyeW-grC2k.

[52] Hugo Touvron et al. “Llama 2: Open Foundation and Fine-Tuned Chat Models”. In:

CoRR abs/2307.09288 (2023). doi: 10.48550/ARXIV.2307.09288. arXiv: 2307.09288.

url: https://doi.org/10.48550/arXiv.2307.09288.

[53] Hugo Touvron et al. “LLaMA: Open and Efficient Foundation Language Models”. In:

CoRR abs/2302.13971 (2023). doi: 10.48550/ARXIV.2302.13971. arXiv: 2302.13971.

url: https://doi.org/10.48550/arXiv.2302.13971.

[54] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural Infor-
mation Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA. Ed. by Isabelle Guyon et al.

2017, pp. 5998–6008. url: https://proceedings.neurips.cc/paper/2017/hash/

3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

[55] Mingqiu Wang et al. “SLM: Bridge the Thin Gap Between Speech and Text Foun-

dation Models”. In: IEEE Automatic Speech Recognition and Understanding Work-
shop, ASRU 2023, Taipei, Taiwan, December 16-20, 2023. IEEE, 2023, pp. 1–8. doi:
10.1109/ASRU57964.2023.10389703. url: https://doi.org/10.1109/ASRU57964.

2023.10389703.

[56] Jason Wei et al. “Chain-of-Thought Prompting Elicits Reasoning in Large Language

Models”. In: Advances in Neural Information Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022. Ed. by Sanmi Koyejo et al. 2022. url: https://

proceedings.neurips.cc/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-

Abstract-Conference.html.

[57] Jason Wei et al. “Emergent Abilities of Large Language Models”. In: Trans. Mach.
Learn. Res. 2022 (2022). url: https://openreview.net/forum?id=yzkSU5zdwD.

[58] Thomas Wolf et al. “Transformers: State-of-the-Art Natural Language Processing”.

In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, EMNLP 2020 - Demos, Online, November 16-
20, 2020. Ed. by Qun Liu and David Schlangen. Association for Computational

Linguistics, 2020, pp. 38–45. doi: 10.18653/V1/2020.EMNLP-DEMOS.6. url: https:

//doi.org/10.18653/v1/2020.emnlp-demos.6.

[59] Chenfei Wu et al. “Qwen-Image Technical Report”. In: CoRR abs/2508.02324 (2025).

doi: 10.48550/ARXIV.2508.02324. arXiv: 2508.02324. url: https://doi.org/10.

48550/arXiv.2508.02324.

[60] Jian Wu et al. “On Decoder-Only Architecture For Speech-to-Text and Large Lan-

guage Model Integration”. In: IEEE Automatic Speech Recognition and Understanding
Workshop, ASRU 2023, Taipei, Taiwan, December 16-20, 2023. IEEE, 2023, pp. 1–8. doi:
10.1109/ASRU57964.2023.10389705. url: https://doi.org/10.1109/ASRU57964.

2023.10389705.

49

https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://doi.org/10.48550/ARXIV.2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/ARXIV.2302.13971
https://arxiv.org/abs/2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1109/ASRU57964.2023.10389703
https://doi.org/10.1109/ASRU57964.2023.10389703
https://doi.org/10.1109/ASRU57964.2023.10389703
https://proceedings.neurips.cc/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://openreview.net/forum?id=yzkSU5zdwD
https://doi.org/10.18653/V1/2020.EMNLP-DEMOS.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.48550/ARXIV.2508.02324
https://arxiv.org/abs/2508.02324
https://doi.org/10.48550/arXiv.2508.02324
https://doi.org/10.48550/arXiv.2508.02324
https://doi.org/10.1109/ASRU57964.2023.10389705
https://doi.org/10.1109/ASRU57964.2023.10389705
https://doi.org/10.1109/ASRU57964.2023.10389705

Bibliography

[61] Frank F. Xu et al. “A systematic evaluation of large language models of code”.

In: MAPS@PLDI 2022: 6th ACM SIGPLAN International Symposium on Machine
Programming, San Diego, CA, USA, 13 June 2022. Ed. by Swarat Chaudhuri and

Charles Sutton. ACM, 2022, pp. 1–10. doi: 10.1145/3520312.3534862. url: https:

//doi.org/10.1145/3520312.3534862.

[62] Wenyi Yu et al. “Connecting Speech Encoder and Large Language Model for ASR”.

In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP
2024, Seoul, Republic of Korea, April 14-19, 2024. IEEE, 2024, pp. 12637–12641. doi: 10.
1109/ICASSP48485.2024.10445874. url: https://doi.org/10.1109/ICASSP48485.

2024.10445874.

[63] Hao Zhang et al. “Tuning Large language model for End-to-end Speech Translation”.

In: CoRR abs/2310.02050 (2023). doi: 10.48550/ARXIV.2310.02050. arXiv: 2310.

02050. url: https://doi.org/10.48550/arXiv.2310.02050.

[64] Shengyu Zhang et al. “Instruction Tuning for Large Language Models: A Survey”. In:

CoRR abs/2308.10792 (2023). doi: 10.48550/ARXIV.2308.10792. arXiv: 2308.10792.

url: https://doi.org/10.48550/arXiv.2308.10792.

[65] Tianyi Zhang et al. “BERTScore: Evaluating Text Generation with BERT”. In: 8th In-
ternational Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. url: https://openreview.net/forum?id=
SkeHuCVFDr.

[66] WayneXin Zhao et al. “A Survey of Large LanguageModels”. In:CoRR abs/2303.18223
(2023). doi: 10.48550/ARXIV.2303.18223. arXiv: 2303.18223. url: https://doi.

org/10.48550/arXiv.2303.18223.

[67] Zihan Zhao et al. “LibriSQA: Advancing Free-form andOpen-ended SpokenQuestion

Answering with a Novel Dataset and Framework”. In: CoRR abs/2308.10390 (2023).

doi: 10.48550/ARXIV.2308.10390. arXiv: 2308.10390. url: https://doi.org/10.

48550/arXiv.2308.10390.

[68] Maike Züfle et al. “NUTSHELL: A Dataset for Abstract Generation from Scientific

Talks”. In: Proceedings of the 22nd International Conference on Spoken Language
Translation (IWSLT 2025). Ed. by Elizabeth Salesky, Marcello Federico, and Antonis

Anastasopoulos. Vienna, Austria (in-person and online): Association for Computa-

tional Linguistics, July 2025, pp. 19–32. isbn: 979-8-89176-272-5. doi: 10.18653/v1/

2025.iwslt-1.2. url: https://aclanthology.org/2025.iwslt-1.2/.

50

https://doi.org/10.1145/3520312.3534862
https://doi.org/10.1145/3520312.3534862
https://doi.org/10.1145/3520312.3534862
https://doi.org/10.1109/ICASSP48485.2024.10445874
https://doi.org/10.1109/ICASSP48485.2024.10445874
https://doi.org/10.1109/ICASSP48485.2024.10445874
https://doi.org/10.1109/ICASSP48485.2024.10445874
https://doi.org/10.48550/ARXIV.2310.02050
https://arxiv.org/abs/2310.02050
https://arxiv.org/abs/2310.02050
https://doi.org/10.48550/arXiv.2310.02050
https://doi.org/10.48550/ARXIV.2308.10792
https://arxiv.org/abs/2308.10792
https://doi.org/10.48550/arXiv.2308.10792
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.48550/ARXIV.2303.18223
https://arxiv.org/abs/2303.18223
https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.48550/ARXIV.2308.10390
https://arxiv.org/abs/2308.10390
https://doi.org/10.48550/arXiv.2308.10390
https://doi.org/10.48550/arXiv.2308.10390
https://doi.org/10.18653/v1/2025.iwslt-1.2
https://doi.org/10.18653/v1/2025.iwslt-1.2
https://aclanthology.org/2025.iwslt-1.2/

	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Problem Statement
	Research Questions of the Study

	Background and Related Work
	Text-Only LLM
	Formalization
	Large Language Model (LLM)
	Overview of Training Stages
	Specific Models

	Speech LLM
	Speech Encoders
	Connection Speech Encoders and Text LLMs

	LLM and Long Context
	Context Compression

	Methodology
	Inference-Time Compression
	Simple Chunking
	Skipping and Averaging

	Trained Compression Module

	Experimental setup
	Tasks and Datasets
	Tasks
	Datasets

	Baselines
	Text-Based Two-Stage Pipeline
	Discrete-Token-Based Two-Stage Pipeline
	End-To-End Pipeline

	Model Configuration
	ASR (Whisper) + Text LLM (Llama) Pipeline
	Discrete-Unit Adapted ASR (HuBERT) + LLM (Spire) Pipeline
	Phi-4-Multimodal-Instruct Pipeline
	Compression Modules

	Evaluation
	Quality Metrics
	Compression Metrics

	Results and Analysis
	Baseline Results
	ASR Results
	QA and Summarization Results

	Inference-Time Compression Results
	Compression Rate Comparison to Baselines
	Performance Comparison to Baselines
	Impact of Increasing Compression Rate

	Results of Trained Compression
	Training and Testing Both on LibriSQA
	Same Domain, Different Tasks: Training on ASR, Testing on QA
	Same Task, Different Domains: Training on LibriSQA and Testing on ACL 60/60
	Different Tasks, Different Domains: Training on LibriSQA and Testing on Nutshell

	Conclusion
	Bibliography

