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Abstract

This work investigates the syntactical abilities of transformer networks, focusing on their

performance in tasks designed to assess their understanding of tree structures, as encoun-

tered for context-free grammars. The hypothesis posits that while transformers excel

in many natural language processing tasks, their syntactical capabilities may be limited.

Instead of relying on true generative principles, these models may employ what we term

as "statistical heuristics" —- mechanisms that prioritize statistical patterns and heuristics

rather than a deep understanding of syntactical structures. These statistical heuristics

may involve a reliance on lower-level syntactical features to construct approximations for

higher-level structures.

Two tasks, BRACKET and MASK, were designed to evaluate the ability to learn

syntactical structures and dependencies of various transformer models, as well as one long

short-term memory serving as a baseline. In BRACKET, models generate parse trees

for sequences based on an unknown grammar, revealing that incentives are necessary to

drive the learning of syntactical structures. The results suggest that transformers tend to

prioritize lower-level syntactical features, using them as building blocks for approximating

higher-level structures. Task design and tokenization strategies significantly influence

the models’ learning behaviors in this context. In MASK, models predict the class of

a masked word within a sequence, highlighting the models’ tendency to compute over

linear word order rather than syntactical distance. The study further explores the models’

dependency on data distributions, revealing that stochastically learned heuristics break

for out-of-distribution data.

We discuss the implications of these observations, acknowledging the inherent limita-

tions of our study. In addition, we propose promising directions for future research to

further illuminate the intricate ways in which neural networks navigate and approximate

the complex realm of syntax in human language.
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Zusammenfassung

In dieser Arbeit werden die syntaktischen Fähigkeiten von Transformernetzen untersucht;

mit dem Schwerpunkt auf Baum-Strukturen, wie sie bei kontextfreie Grammatiken be-

gegnet werden. Unsere Hypothese besagt, dass Transformer zwar in vielen Aufgaben

der Verarbeitung natürlicher Sprache herausragen, ihre syntaktischen Fähigkeiten jedoch

begrenzt sein könnten. Anstatt sich auf echte generative Prinzipien zu stützen, verwenden

diese Modelle möglicherweise das, was wir als statistische Heuristiken bezeichnen - Mecha-

nismen, die statistischen Mustern und Heuristiken Vorrang vor einem tiefen Verständnis

der syntaktischen Strukturen geben. Über Heuristiken über Distributionen einfacherer

syntaktischer Strukturen können Netze hiermit höhere, möglicherweise unerreichbare

Stukturen approximieren, insoweit sie für ihre jeweilige Aufgabe von Nöten sind.

Zwei Experimentreihen, BRACKET und MASK, wurden entwickelt, um die Fähigkeit

verschiedener Transformer und einem long short-term memory (LSTM) zu bewerten,

syntaktische Strukturen und Abhängigkeiten zu lernen. In BRACKET generieren die

Modelle Parse-Bäume für Sequenzen, die auf einer unbekannten formalen Grammatik

basieren. Es stellt sich heraus, dass Anreize notwendig sind, um das Erlernen von syntak-

tischen Strukturen zu steuern. Die Ergebnisse deuten darauf hin, dass Transformatoren

dazu neigen, syntaktische Merkmale auf niedrigerer Ebene zu priorisieren und sie als

Bausteine für die Annäherung an Strukturen auf höherer Ebene zu verwenden. Das Aufga-

benentwurf und die Tokenisierungsstrategien beeinflussen das Lernverhalten der Modelle

in diesem Zusammenhang nicht vernachläsigbar. Bei MASK sagen die Modelle die Klasse

eines maskierten Wortes innerhalb einer Sequenz voraus, was die Tendenz der Modelle

verdeutlicht, eher lineare Wortreihenfolge als syntaktische Distanz zu benutzen. Die Studie

untersucht außerdem die Abhängigkeit der Modelle von der Datenverteilung und zeigt,

dass stochastisch gelernte Heuristiken bei Daten außerhalb der Verteilung versagen.

Wir erörtern die Implikationen dieser Beobachtungen, wobei wir die inhärenten Grenzen

unserer Studie anerkennen. Darüber hinaus schlagen wir vielversprechende Richtungen

für künftige Forschungen vor, um die komplizierten Wege, auf denen neuronale Netze den

komplexen Bereich der Syntax in der menschlichen Sprache navigieren und approximieren,

weiter zu beleuchten.
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1 Introduction

1.1 Why is syntax important for understanding?

Language can be viewed from three different perspectives: that of semantics, i.e. mean-

ing, that of pragmatics, i.e. how language is used, and that of grammar, i.e. how and in

what form language is expressed. Grammar may be broadly divided into syntax, mor-

phology and phonology. Phonology deals with the structure of the sounds of language,

morphology deals with the structure of components of words and syntax deals with the

structure of sentences. All of those components may interact. In a broader sense, we

may include morphology into syntax. For the task of sequence modeling we need limited

access to sound or pragmatics, but are especially interested in the question of how to

form proper, i.e. syntactically correct, andmeaningful, i.e. semantically enriched, sentences.

While semantics captures the content of language, syntax captures its form. The seman-

tical representation of a sentence expresses a structure of objects or notions, whereas its

syntax captures the structure of their respective signifiers, i.e. words or sub-words. Here

it might become apparent that the distinction between semantics and syntax cannot be

strictly uphold. Syntactical information largely influences how to semantically interpret a

sentence, whereas contextual information obtained from previous sentence meaning may

influence the way a sentence is parsed.

Figure 1.1: Two pseudo parse trees for “I shot an elephant in my pajamas.”

Take, for example, the sentence: “I shot an elephant in my pajamas.”. The sentence may

be interpreted in two ways. The narrator wears pajamas or the elephant does. Although

the sequence remains the same, the underlying syntactical representations give a clear

1



1 Introduction

idea of what the sentence intended to convey.

Thus, generating a meaningful sentence, linguist Noam Chomsky argues [12], implies

generating the underlying syntactical structure. This is achieved through a sequence of

generative operations, that may partially be influenced by “semantical” features. On the

surface, this representation will be transformed into a sequence of words. Understanding

a sentence will therefore involve running this process in the opposite way, i.e. parsing a

sequence into a higher level syntactical representation that imposes semantical meaning.

1.2 What does this have to do with transformers?

Transformer networks, like all artificial language models, are man-made tools for perform-

ing language-related semantic transduction tasks, whether they may be text summarizing,

translating, or answering questions. All these tasks require the models to have semantic

knowledge. To obtain this knowledge, as argued previously, a model must have to learn

syntax. As we will see, this behavior can also be observed emerging somewhat in “self-

taught” artificial models, where the models seem forced to parse syntactical features first

to obtain semantic information in higher layers.

In the example above, humans parsing that sentence would vaguely form the depicted

trees, that impose meaning. If we want language models to model natural language

successfully, they should approach such sentences in a similar way. In fact, to make sure

that a model correctly interpreted a sentence, there is a point to be made that it should

parse them in the same way as humans do. For this, two things are needed: models need

to have the computational capability to learn human language and must be intrigued to

do so during training. Syntactical capacity in regard to computational systems is greatly

formalized in a way that we can form hierarchies: the Chomsky hierarchy tells us what

kind of languages can be processed by what kind of system. Human language is thought

to be located between type-1 and type-2. Transformers seem to already struggle learning

languages of type-3. This might be suprising, considering their overwhelming success in

NLP tasks. We call this the theory-practice gap.

1.3 How might transformers process natural language?

Our work contributes to making sense of the theory-practice gap. From what we have

said, we hypothesize that transformers might employ the limited capacities they have to

findwhatwe call statistical heuristics for the syntactical distributions they are suppliedwith.

It’s crucial to recognize that the notion of statistical heuristics should not merely imply

that models learn simple Markov chains over individual tokens. Models may, in fact,

integrate different, somewhat nontrivial lower-level syntactical features to approximate

higher-level generative principles that would else be unattainable. This means, that they

2



1.4 Our Research questions

may find vast amounts of correlations over syntactical features of differing complexities.

This approach would not impair performance much for conventional language tasks,

but may indicate a substantial deficit regarding learned syntactical representations.

1.4 Our Research questions

From this hypothesis, we may form the following more specific research questions.

Q0 Does a given transformer model learn the structure with which a language was

generated?

Q1 Are there inductive biases that force the model to learn complex solutions involving

generalizable high-level features instead of “lazy” statistical ones?

Q2 What aspects of real-world implementations have an effect on the motivation to

learn generalizable, high-level structures?

Q3 How sensible are those statistical heuristics to training and evaluation data distribu-

tions?

We design two tasks that deal with aspects of our research questions: BRACKET
andMASK. BRACKET will be our main task, covering most of our work. It will try to

analyze how far transformers learn the real structure with which a language was generated

(Q0, Q1) and what factors can influence its tendency to do so (Q2). The task will also

try to show how strong the inductive bias of the model leans towards finding statistical

heuristics, instead of structure. MASK resembles common pretraining tasks, increasing

the transferability of our results to field observation. With it we will try to confirm notions

that the model employs statistical heuristics that may depend greatly on data distributions

seen during training (Q3), which would be consistent with our hypothesis.

For this, we will first clarify preliminary knowledge in chapter 2 and elaborate on

the state of related research in chapter 3. Here, research revolving our aforementioned

theory-practice gap will be further illuminated.

In chapter 4 our hypothesis will be discussed and an overview and the reasoning behind

our conducted experiments will be provided, aspects of which will be more precisely

defined in chapter 5. Our results and analysis thereof will be presented in chapter 6.

Finally, wewill conduct a broader reflection of our work and discuss limitations in chapter 7,

culminating in our conclusion in chapter 8.

3





2 Concepts

2.1 Formal Grammars

2.1.1 Formalism

Formally, a language 𝐿 is a potentially infinite set of sequences𝑤𝑖 = 𝑥
𝑖
0
𝑥𝑖

1
. . . consisting of

elements, called letters, that are part of the languages alphabet Σ = {𝑥1, 𝑥2, . . . }. In most

cases, the alphabet is finite. A grammar 𝐺 provides a set of rules to generate a language

𝐿(𝐺). This is achieved by defining a start symbol 𝑆 and production rules 𝑃 = {𝑟0, 𝑟1, . . . },
which are pairs of sequences 𝑟𝑖 = (𝛼𝑖, 𝛽𝑖) of variables 𝑉 : 𝛼𝑖, 𝛽𝑖 ∈ 𝑉 . The rules are most

commonly pictured as 𝛼𝑖 → 𝛽𝑖 . The grammars derivation operation (

𝐺⇒: 𝑉 ∗ → 𝑉 ∗)
takes a sequence 𝑎 = 𝑎0𝑎1 . . . 𝑎𝑛 and produces a new sequence 𝑏 = 𝑎0 . . . 𝑎𝑡−1𝛽𝑖𝑎𝑡+𝑘+1 . . . 𝑎𝑛
by replacing a subsequence 𝛼𝑖 = 𝑎𝑡𝑎𝑡+1 . . . 𝑎𝑎𝑡+𝑘 by 𝛽𝑖 if (𝛼𝑖, 𝛽𝑖) ∈ 𝑃 . To define which of

these produced sequences is part of the generated language and not a mere intermediary

computation step, we split 𝑉 into two complementary sets: nonterminals 𝑁 and termi-
nals 𝑇 . Terminals are precisely the alphabet of the produced language and nonterminals

are arbitrary syntactical symbols used in the intermediary production process that do not

occur in the produced words, like the starting symbol.

As there may be multiple possible applicable rules for a sequence, we can define

(⇒: [𝑉 ∗] → [𝑉 ∗]) more broadly as taking a set of sequences and producing the set

of all possible derivations. Furthermore, if

𝑘⇒ means applying this operation k times and

∗⇒ means applying it arbitrary number of times, we may define the produced language

𝐿(𝐺) as follows: 𝐿(𝐺) = {𝑤 |𝑆 ∗⇒ 𝑤 ∧ ∀𝑤𝑖∈𝑤𝑤𝑖 ∈ 𝑇 }.

To be more precise, such grammars are called phrase structure grammars or con-
stituency grammars.

The following sections will explain some fundamental concepts about the algebraic

theory of formal languages laid out in 1959 by Chomsky and Schüzenberger [11].
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2.1.2 Chomsky-Schützenberger Hierarchy

Figure 2.1: Chomsky hierachy with corresponding automata. Note, that Transformers

were placed in the regular class by Deletang et al. (2022).

Source: [15]

2.1.2.1 General

By restricting the types of possible rules, we obtain a hierarchy in terms of expressiveness of

grammars with the corresponding difficulty of computability. This can be further illustrated

by constructing automata with certain computational capacities that accept the according

language. The automaton will hereby iteratively receive a word as its input and will have

to decide, by stopping in a predefined set of states, called the accepting states, whether

or not the word belongs to the desired language. If grammar and automaton produce the

same set of words, i.e. the language, they are equivalent in terms of expressiveness and

computability.

For illustrative reasons, we will be using 𝐴, 𝐵 ∈ 𝑁 ;𝑎, 𝑏 ∈ 𝑇 ;𝛼, 𝛽 ∈ 𝑉 ∗;𝛾 ∈ 𝑉+; 𝜖 as the
empty word and 𝑆 ∈ 𝑁 as the starting symbol.

2.1.2.2 Regular Grammars

A regular grammar or a Type-3 grammar generates a regular language. Its production

rules are constrained in the following way:

• The left-hand side (LHS) may only contain a singular nonterminal

• The right-hand side (RHS) may either be the empty word 𝜖 or a nonterminal

followed by a terminal

• The form could be described as: 𝐴→ 𝑎𝐵 | 𝜖

More precisely, this kind of regular grammar is called right-regular. When swapping

the terminal and nonterminal on the RHS we obtain a left-regular grammar. Both are

equivalent in terms of expressiveness and computability.
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Intuition One can imagine the production process of a regular grammar as successively

adding the next letter to the word based on the current state, i.e. the previously underived

nonterminal, and producing one new state, i.e. the new nonterminal or terminal. Letters

at a certain position may therefore, through the currently underived nonterminal, only

have a one-way dependency to letters to their left (or to their right, in case of left-regular

languages). In other words, the next letter may, therefore, only be dependent on the

current state.

Computational equivalence It might therefore be quite intuitive why regular languages

are precisely the languages that can be accepted by finite-state automata.

Closure properties Regular languages can, in addition to the previous rule-based approach

above, be described through their closure properties: Let the class of basic languages contain
the single letter language {𝑎} for 𝑎 ∈ Σ, the empty set empty set ∅ and the set of the empty

word {𝜖}. This class of basic languages is part of the regular languages. Any other regular

language can only be obtained by its closure over union ∪, concatenation ◦ and the

Kleene star ∗, where 𝐴∗ denotes the set of arbitrary many repetitions of 𝐴, including

none.

Regular languages are additionally closed under intersection ∩, set minus \, homomor-

phisms, and complements □, among others.

2.1.2.3 Context-free Grammars

A context-free grammar or Type-2 grammar generates a context-free language. Here,

the production rules are constrained in the following way:

• Again, the LHS may only contain a singular nonterminal

• The LHS may contain a non-empty, arbitrary combination of nonterminals and

terminals

• The form could be described as: 𝐴→ 𝛾

Moreover, the rule 𝑆 → 𝜖 may be added if 𝑆 does not occur on a RHS of any other rule.

This allows the empty word to be part of a context-free language.

Intuition Here, the production process is rather similar to the generation of a tree with

nonterminals as its non-leafs and terminals as its leafs. A production step can be equated to

taking a certain unfinished tree and expanding all of the leaf nodes that are nonterminals

until all leafs are terminals. Each tree node would then resemble a certain area of the

final word, the deeper the more granular. Thus two or more letters or areas may depend

upon each other only via their tree nodes’ common ancestors. Here, it might be evident

why context-free languages cannot produce words in which two pairs of letters have

cross-dependencies, i.e. variables within a region enclosed by two dependent nodes (or
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variables) may only depend upon other variables within this area, not outside of which.

This will be eluded clearer in the section on mildly context-sensitive grammars.

Computational equivalence context-free grammars are the languages that can be accepted

by a finite-state automaton employing an additional stack, i.e. a pushdown automaton.

The automaton may push and pop symbols of a predefined stack-alphabet onto the stack

and consider the uppermost element for its state transition.

Closure properties Context-free grammars are closed under ∪, ◦ , ∗, intersection with

regular languages, and homomorphism, among others.

2.1.2.4 Context-sensitive Grammars

A context-sensitive grammar or Type-1 grammar generates a context-sensitive language.

Here, the production rules are constrained in the following way:

• The LHS contains a nonterminal, that is enclosed by two arbitrary sequences of

nonterminals and terminals which can be seen as its context

• The RHS contains an arbitrary non-empty sequence of variables enclosed by the

context

• The general form can be described as: 𝛼𝐴𝛽 → 𝛼𝛾𝛽

Intuition It is more complex to imagine the production process of context-sensitive

grammars. As the name tells, rules here may depend on the variables that are near a given

nonterminal.

Computational equivalence Context-sensitive grammars generate precisely the languages

that can be accepted by a nondeterministic Turing machine, whose tape is linearly bounded,

i.e., a linearly bounded automaton.

2.1.2.5 Unrestricted Grammars

Unrestricted Grammars or Type-0 grammars generate the class of recursively enumerable
languages. They do not have any restriction on the kind of production rules, except that

the LHS has to contain at least one nonterminal.

Computational equivalence This class covers all known formal languages. They corre-

spond to all the languages that a Turing machine accepts. More precisely, the Turing

machine has to halt on and accept strings belonging to that language, but does not neces-

sarily have to halt on strings not part of that language.
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2.1.3 Further concepts

2.1.3.1 Star-free regular languages

If we restrict regular languages to not use the Kleene star during construction, we can

define a subset of regular languages: star-free regular languages. They are, among others,

closed under boolean operations and concatenation. The restriction, however, does not

prevent star-free languages to express repetitions:

Example: 𝑎∗ is star-free

𝑎∗ = ∅ ◦ (Σ \ 𝑎) ◦ ∅

Rather, star-free grammars intuitively generate the kind of language where a language,

when repetitions are involved, can be accepted without counting parts of the repetition.

As such, they are equivalent to counter-free languages as described by McNaughton and

Seymour (1971) [38]. Note that this is not the same as the complement to counter languages,

which we will define further below. In natural language, we rarely count the number

of syntactical objects to verify that a sentence is syntactical. The biggest part of regular

expressions in natural language is thus star-free.

Definition: Dot-depth

Suppose now that we define a closure operator𝔅, which closes a class of languages

under boolean operators, and an operator 𝔐, that closes a class of languages under

concatenation. Let 𝔈 denote the class of basic languages as defined in subsubsec-

tion 2.1.2.2. We may now alternately apply our operators to 𝔈 to obtain star-free

regular languages. The number of times we apply both of these operators is called

the dot-depth of our language class. We may then form a hierarchy of star-free

languages: the dot-depth hierarchy[43] [13]. For dot-depth 𝑛 class B𝑛 can thus be

obtained inductively:

B0 = 𝔈,∀𝑛∈N : B𝑛 = 𝔅𝔐B𝑛−1

.

Example: Dot-depth

Following the above construction for 𝑎∗„ we find that we have to first apply boolean

operators to 𝑎, Σ and ∅, then concatenate them and finally use boolean inversion □. We

end up with 1.5 operations, which belongs to dot-depth 2.

2.1.3.2 Counter languages

Counter languages are languages that can be accepted by a deterministic finite automaton

employing one or more counters. As such, they are a subset of regular languages. During

state-transition the automaton may increase the values of the counters by an arbitrary
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𝑚 ∈ Z or set them to zero according to the current state. The state transition, in addition

to the current state and the input symbol, may depend on zero checks per counter. For
each counter the automaton may hereby know whether it is zero or not. A word will

then be accepted if the state is in an accepting state 𝐹 with a predefined configuration of

zero-checked counter states.

For a single counter, counter languages are a sub-set of context-free languages, where

the counter may simply be simulated by the stack. For more than one counter, it can be

shown that there is an nontrivial construction that is equivalent to a Turing machine.

2.1.3.3 Mildly context-sensitive Grammars

Mildly context-sensitive grammars [28] are conceptually situated between context-free

and context-sensitive grammars. They do not occur in the original Chomsky hierarchy but

were explored a little bit later as they seem to be a better approximation of the capacity of

natural language than the other ones. Through the findings of certain attributes in some

natural languages that exceed the abilities of context-free grammars, e.g. cross references

in Swiss German [47], one could argue that the natural language may be stronger than

context-free languages. On the other side, context-sensitivity seems to be a too loose

definition to capture natural language.

The class of mildly context-sensitive languages does not have a unified grammar for-

malism like the other grammars. The class is instead defined by the following attributes:

• Larger than context-free
The grammars generate (at least) all context-free languages.

• Cross-serial dependencies
The grammars are able to generate a limited amount of cross-serial dependencies. As

discussed previously, this is an attribute that cannot be obtained from context-free

languages. This is equivalent for being able to solve the COPY task, i.e. being able

to generate {𝑤𝑛 |𝑤 ∈ 𝑇∗} for a 𝑛 ≥ 2.

• Constant growth
The lengths of the generated words grow linearly.

• Polynomial parsing
The languages’ membership problem must be solvable in deterministic polynomial

time. This restriction ensures demands of efficient parsing by humans.

There exists a variety of formalisms that cover areas of the mildly context-sensitive

grammar class, but up to this date none cover all possible languages. For instances, a way

to achieve cross-serial dependencies for context-free languages is to add an operation

that could alter a derived tree by expanding an inner node by adjoining a new tree at the

respective node. This so called tree-adjoining grammar (TAG) formalism was the first to

be introduced in the mildly context-sensitive grammar class. Now there have been found

more various formalisms weakly equivalent to TAG [56] and even formalisms, that further
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generalize similar grammar formalisms within this class ( see Linear context-free rewriting

systems (LCFRS) [30] and multiple context-free grammars (MCFG) [46]). However, even

the more generalized form of the formalisms found here seems to not cover certain mildly

context-sensitive languages. [29]. Note furthermore that “weakly equivalent” means

that two grammar formalisms generate the equivalent sets of languages, not necessarily

equivalent sets of syntactical representation. This is indeed not the same, as semantical

information of a sentence relies vastly on the underlying syntactical representation.

Computational equivalence Automaton equivalences depend on the formalism employed.

It has been shown, for instances, that tree-adjoining grammars generate the languages

that can be accepted by an embedded pushdown automaton, i.e. an automaton with a

stack of stacks.

2.1.3.4 Dyck-Languages

Definition: Brackets of N types

Brackets of N types are symbols of the unification of a pair of arbitrary, but equally

sized finite alphabets𝑇 ∪𝑇 , where |𝑇 | = |𝑇 | = 𝑁 . Furthermore, this implies a defined

bijective mapping𝜓 : 𝑇 → 𝑇 . For an arbitrary, but fixed enumeration of 𝑇 we will

denote𝑇𝑖 as BR𝑖 and call it the opening bracket of type 𝑖 and𝜓 (𝑇𝑖) as BL𝑖 and call
it its respective closing bracket of type 𝑖 . For our following thoughts the choice
of 𝑇,𝑇 and𝜓 will not be of interest.

Definition: Correctly bracketed and hierarchically bracketed

Let 𝑠 = 𝑠0𝑠1 . . . 𝑠𝑚 be a sequence of brackets of 𝑁 types, 𝑠0:𝑘 = 𝑠0 . . . 𝑠𝑘 , 𝑘 ≤ 𝑚 denote

a sub-sequence thereof and let B𝑡 : Σ∗ → N be a function that returns the number

of opened (B𝑂𝑡 ) and closed (B𝐶𝑡 ) brackets of type 𝑡 in a given sequence. Further, let

BΔ = B𝑂 − B𝐶 . We may then define:

𝑠 is correctly bracketed⇔ ∀𝑡∈𝑁∀𝑘≤𝑚 BΔ𝑡 (𝑠0:𝑘) ≥ 0 and BΔ𝑡 (𝑠) = 0

𝑠 is hierachically bracketed⇔ ∀𝑠𝑖∈𝑠∃𝑠 𝑗∈𝑠𝑠𝑚𝑖𝑛(𝑖, 𝑗):𝑚𝑎𝑥 (𝑖, 𝑗)is correctly bracketed

Note:
𝑠 is hierarchically bracketed⇒ 𝑠 is correctly bracketed

Named after the mathematician Walther von Dyck, Dyck-languages represent the class

of context-free languages containing all hierarchically bracketed bracket expressions

of 𝑁 types. We will denote the Dyck language consisting of 𝑁 types of brackets as D𝑁 .

Dyck-languages cannot be regular. For an automaton sequentially parsing a Dyck string

to accept the next symbol, it has to track not only the count of open brackets (correct) ,
but also the order in which they have been encountered (hierachical). For arbitrary strings

this is only possible with infinitely many states. In contrast, a pushdown automaton can
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track both of these things by pushing the open bracket symbols on the stack and popping

them off when the respective closing bracket has been encountered.

Dyck-languages are a sub-sets of Shuffle Dyck languages. Shuffle-N Dyck will

hereby denote a language consisting of 𝑁 brackets that is correctly bracketed, but not
necessarily hierarchical. It will therefore hold that 𝐿(D𝑘) ⊆ 𝐿(Shuffle-N Dyck). By our

previous analysis, this language is also not regular, but can instead be accepted by a counter

automaton employing one counter per bracket type.

2.1.3.5 Chomsky-Schützenberger representation theorem

There is a deep connection between context-free languages and Dyck languages. For a

small intuition, we should take a closer look on how pushdown automatons accept context-

free languages. Consider a context-free grammar 𝐺 . We want to accept and only accept

all 𝑠 ∈ L(G). 𝑠 will precisely be part of 𝐺 , when it can be generated out of the starting

symbol 𝑆 . As previously described, the generation of 𝑠 from 𝑆 will hereby look like a tree,

with the nonterminals being the inner nodes and the terminals or words being the leafs.

As we will later see, such trees are representable as bracket expressions, where each kind

of node, i.e. each variable, will be assigned a bracket type. String of context-free gramars

are therefore hidden bracket expressions. The Chomsky-Schützenberger representation

theorem validates our intuition, stating the following:

Definition: Chomsky-Schützenberger representation theorem

A language 𝐿 over the alphabet Σ is context-free iff there exists a matched alphabet

alphabet𝑇 ∪𝑇 , a regular language 𝑅 over𝑇 ∪𝑇 , and a homomorphismℎ : (𝑇 ∪𝑇 )∗ →
Σ∗ such that

𝐿 = ℎ(D|𝑇 | ∩ 𝑅)

Context-free languages can thus be represented by a homomorphism over a Dyck-𝑁

language interesected with a regular one. Most proofs thereof are constructed in a way,

that 𝑁 will be precisely the number of terminals and nonterminals of our our grammar,

e.g. [3]. As we will see, a lot of research is thus revolved around the question whether

certain systems can modelD𝑁 . If so, they should also be strong enough to model any other

context-free language. More precisely, already showing that a system can modelD2 might

be sufficient. The intuition behind this is that for any 𝑁 we can construct a hierarchical

bracket language 𝐷2 = D2 ∩ 𝑅2 for some regular language 𝑅2 that can be transformed

to D𝑁 via a morphism ℎ2 : (𝑇2 ∪ 𝑇2)∗ → (𝑇𝑁 ∪ 𝑇𝑁 )∗. The language will simply binary

encode each bracket type using its two bracket types, making sure that the encodings are

suffix-free, and then decode the encodings ℎ2. When viewing the corresponding pushdown

automata instead, this is equivalent to binary encoding the stack alphabet in the same way,

employing additional states to decode and encode such symbols. This is not possible for

only a single bracket type (D1) as then the encoding would necessarily be non suffix-free

and the homomorphism impossible.
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2.2 Language Generation Models

2.2.1 Formalism

A sequence-to-sequence (Seq2Seq) or transduction task TASK consists of pairs TASK =

{(𝑆𝑏,𝑇𝑏) | 1 ≤ 𝑏 ≤ 𝐵} of sequences 𝑆𝑏 = {𝑠𝑏𝑖 |1 ≤ 𝑖 ≤ 𝑛, 𝑠𝑏𝑖 ∈ Σ𝑆 } and 𝑇𝑏 = {𝑡𝑏𝑖 |1 ≤ 𝑖 ≤
𝑚, 𝑡𝑏𝑖 ∈ Σ𝑇 }, where for an arbitrary pair (𝑆,𝑇 ) = (𝑆𝑏,𝑇𝑏) ∈ TASK a computational model

M, equipped with 𝑆 has to predict 𝑇 , so that 𝑇 and 𝑇 are as near as possible according to

a predefined loss metric.

Common tasks for natural language include translation into another language or text

summarizing. For this, the model has to learn to extract semantical information, and thus

necessarily syntactical information. In order to produce an according output sequence the

extracted semantical information needs to be transformed into a new form, according to the

respective task, after which it has to be poured into its final syntactical form. Therefore, we

can observe two phases of a Seq2Seq process: information retrieval and output generation.

In natural language processing for this kind of task the standard approach is to employ an

encoder-decoder architecture. The encoder E : Σ𝑛
𝑆
→ Θ will hereby cover the retrieval

of information by converting the input sequence to a hidden state 𝜃 ∈ Θ. The decoder
will use this state to generate the output sequence. As squeezing all the information from

the sequence into a single hidden state often ends up being a major bottleneck regarding

information flow, most encoders instead produce a hidden state
¤𝜃𝑖 for each 𝑠𝑖 of our

sequence: E : Σ𝑛
𝑆
→ ¤Θ𝑛 , which den can be flexibly aggregated together 𝜃 = aggr( ¤𝜃0 . . . ¤𝜃𝑠).

For this, auto-regressive generation is the go-to approach. A decoder model D𝜃 ,
equipped with the inner state 𝜃 = E(𝑆), will hereby iteratively produce a probability distri-
bution 𝑇𝑖 over Σ𝑇 , from which one can sample 𝑡𝑖 ∼ 𝑇𝑖 . For this, the model will have access

to its previously sampled predictions 𝑡0 ∼ 𝑇0 . . . 𝑡𝑖−1 ∼ 𝑇𝑖−1. Thus, we can view our model as

a probability function conditioned on previously predicted samples𝑇𝑗 = D𝜃 (Σ𝑇 |𝑡0 . . . 𝑡 𝑗−1).
Some models instead only use a window of previous predictions or solely rely on their

inner state. For window size 𝑘 , we can denote this as 𝑇𝑗 = D𝜃 (Σ𝑇 |𝑡 𝑗−𝑘−1 . . . 𝑡 𝑗−1).
In the course of the iterative generation process, the decoder will update its inner state,

making it time dependent: 𝑇𝑗 = D𝜃 | (Σ𝑇 |𝑡0 . . . 𝑡 𝑗−1). Furthermore, to accelerate and stabilize

the training process, the decoder will often be provided with the left context of the ground

truth: 𝑇
training
𝑗

= D𝜃 (Σ𝑇 |𝑡0 . . . 𝑡 𝑗−1). This is called teacher forcing.
In the following, we will alter our current definition of formal languages to consider

sentences instead of words. For this, we will define a language 𝐿 as a set of sequences,

called sentences: 𝐿 = {𝑠𝑖 = 𝑥𝑖0𝑥𝑖1 . . . |1 ≤ 𝑖} consisting of words or sub-words instead of

letters. This doesn’t change the formalism, but is just a redefinition of terms.

2.2.2 Tokenization and embedding

When employing language models, we need to find a way of transforming sequences

of text into mathematical objects. For this, we will first have to cut our sequence into

granular parts that carry semantical or syntactical meaning. These will then be the

elements of what our model will perceive of a sequence. The elements that are obtained

from this process are called tokens and thus the process is called tokenization. Our
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sequence 𝑆 = {𝑠𝑖 |1 ≤ 𝑖 ≤ 𝑛, 𝑠𝑖 ∈ Σ𝑆 } will therefore be transformed into another sequence

¤𝑆 = {¤𝑠𝑖 |1 ≤ 𝑖 ≤ ¤𝑛, 𝑠𝑖 ∈ Σ𝑡𝑜𝑘} using a reversible morphism 𝑡𝑜𝑘 : Σ+
𝑆
→ Σ+

𝑡𝑜𝑘
. While

theoretically possible, it is uncommon for a tokenizer to join successive words or sub-

words thereof into one token. Instead, words will rather be split into granular sub-words.

Therefore, we can define 𝑡𝑜𝑘 : Σ𝑆 → ¤Σ+
𝑆
. The most simple tokenization strategy is

word-wise tokenization, where tokenization is just the identity function (𝑡𝑜𝑘 = ∞).

Having obtained the final model vocabulary Σ𝑡𝑜𝑘 = {𝜎0 . . . 𝜎𝑁 }, we finally need to

convert the tokens into tensors, so that our model can compute them. This is achieved by

representing each token 𝜎𝑖 as a basis vector of the 𝑁 dimensional vector space R𝑁 . More

precisely, if we call this transformation ℎ we can represent it as

ℎ( ¤𝑠𝑖) = (𝑥0 ... 𝑥𝑁 ) 𝑇 , where 𝑥𝑖 =

{
1 if 𝑖 = 𝑗

0 if 𝑖 ≠ 𝑗

This is called one-hot encoding.

As tokenization vocabularies tend to get quite large, so does this vector space. We thus

need to reduce the dimensionality of our vectors. This is achieved by an embedding
operation embed : R𝑁 → R𝐻 , which in most cases is just a simple fully collected linear

layer that transforms vectors of dimensionality 𝑁 to dimensionality 𝐻 , which is the

hidden size. By choosing this layer to be part of our model, it may choose which kind of

transformation suits its desires best.

2.2.3 Recurrent neural networks

A recurrent neural network is designed to process a sequence 𝑆 = {𝑠𝑖 |1 ≤ 𝑖 ≤ 𝑛, 𝑠𝑖 ∈ Σ𝑆 }
iteratively. Starting with an initial hidden state ℎ0, for a given time step 𝑡 it will take the

next element 𝑠𝑡 of the sequence and its current hidden state ℎ𝑡 to produce a new hidden

state ℎ𝑡+1. The output sequence will then be obtained by transforming the hidden states

through an easy transformation. When training such a network using backpropagation
through time (bptt), the gradients for each time step will be multiplied according to the

derivative chain run. For long sequences and activation functions, that may produce small

gradients. This leads to exponentially small values, which cause numerical errors. As

a result, long-range dependencies may get lost. This problem is called the vanishing
gradient problem.
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Figure 2.2: A basic RNN cell employing tanh activation.

Source: [39]

2.2.4 Long short-term memory

Long Short TermMemories (LSTMs) were introduced in 1997 by Hochreiter and Schmid-

huber [27] and had been state-of-the-art in NLP, before transformers took over the field.

A LSTM is a recurrent network consisting of one or more LSTM cells. These cells are

designed to give the model explicit control over the information flow within a time step,

weakening the problem of vanishing gradients. In addition to the hidden state, the so-called

cell state 𝑐 , which contains long-distance information, will be implicitly passed from

cell to cell. Using the current sequence element 𝑥𝑡 and the previous hidden state ℎ𝑡−1 the

model can alter the cell state 𝑐𝑡−1. It may forget aspects of it, using the so-called forget
gate, update it, using the input gate, and decide how to assemble the next hidden state

ℎ𝑡 , using the output gate. Thus, LSTMs have a window size of 𝑘 = 1.

Figure 2.3: A basic LSTM cell. The upper horizontal arrow symbolizes the information flow

of the cell state. To alter states, the three gates employ the sigmoid activation

function in combination with element wise multiplication.

Source: [39]
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2.2.5 Transformers

Transformers were introduced by Vaswani et al. in 2017 in their paper “Attention Is All

You Need” [55]. There is an encoder and a decoder part to the model, but LLMs can also

only employ encoder layers, such as BERT [16], decoder layers, such as GPT-3 ([10]) or

use both, such as BART [34]. The core of transformers consists of self-attention, which
allows it to compute powerful word embeddings, i.e. hidden states, by enabling token

positions to attend to each other. In the following, we will discuss the architecture a little

more in detail.

2.2.5.1 Positional Encoding

After tokenization, we end up with a sequence ¤𝑆 = {¤𝑠𝑖 |1 ≤ 𝑖 ≤ 𝑛, ¤𝑠𝑖 ∈ Σ𝑡𝑜𝑘} of tokens.
Using aforementioned operations we obtain 𝑛 vectors of size R𝐻 , 𝐸 = { ¤𝑒𝑖 | 1 ≤ 𝑖 ≤ 𝑛, 𝑒 =
embed(ℎ( ¤𝑠𝑖))}. As we will see, transformers are permutation-invariant, making them

highly parallelisable and thus efficient to train. However, language vastly relies on word

order. Positional information thus needs to be encoded into our embeddings, so our

model can infer syntactical dependencies. This can be achieved explicitly by adding either

fixed or learnable, position-dependent vectors to our embedding; or it can be achieved

implicitly in the decoder of our model (positional masking). The original paper proposes
sinusoid positional encoding, which is an explicit and fixed positional encoding approach.

Sinusoid functions with different frequencies will be computed over the dimensions of

our embedding space. Based on the position of ¤𝑒𝑖 , these functions will be evaluated at

the position 𝑖 . By doing this, any neighboring positional embedding vector is obtainable

through a linear transformation. However, LLMs usually employ learnable positional

encodings, as such are more adaptable to data distributions.

2.2.5.2 Attention mechanism

We first need to understand how the core part works: the attention mechanism. In most

cases, all the information will be provided by only one set of embeddings. If so, this process

is called self-attention as opposed to cross-attention, which will be explained later.
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Figure 2.4: The self attention mechanism. The scaling factor is 𝑑
− 1

2

𝑘
, 𝑑𝑘 being the dimension

of our keys and queries.

Source: [55]

As in the name, the attention block takes in 𝑛 embeddings and transforms them by

letting them attend to each other. Each embedding will hereby have the possibility of

viewing all the other embeddings and decide which parts of itself to update. This enables

finding dependencies between each other, as is often the case in language. For this, there

are three weight matrices: the query matrix𝑊𝑄 , the key matrix𝑊𝐾 and the value matrix

𝑊𝑉 . Each embedding 𝑒𝑖 , using these matrices, will generate its query 𝑞𝑖 , key 𝑘𝑖 and value

𝑣𝑖 . Intuitively, 𝑞𝑖 expresses what our word is searching for, 𝑘𝑖 a description of what it

has to offer, and 𝑣𝑖 the content it has to offer. Therefore we will compare our query to

every key, including our own, to obtain a weighting over all the embeddings and use this

weighting in combination with the values to update our embedding. Mathematically, this

is done by stacking all keys, values, and queries to the matrices 𝑄,𝐾 and 𝑉 and applying

according operations. The comparison between queries and keys will be performed using

dot product multiplication, which is equivalent to multiplying the matrices 𝑄 and 𝐾

. The product will then be down-scaled to mitigate the problem of vanishing gradients.

After that, to obtain a weighting factor between 0 and 1 , our product will be normalized

through the 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 function. The weighting factors will then be multiplied by our value

matrix 𝑉 to obtain the final result.

2.2.5.3 Multi-head attention

In reality, these operations are not performed along the entire embedding dimension.

Instead, we define a number of heads, each possessing their own query, key, and value

matrices. Each head will be supplied with a portion of the embedding dimension, for which

it will then compute the above attention mechanism. The results will then be combined

again to obtain a vector of the initial embedding dimension. This construction allows

17



2 Concepts

the transformer to learn different subspace features more easily, as each head will focus

on another aspect of the embeddings. Note, however, that the split between heads is

only logical. The splitting is mathematically equivalent to partitioning our matrices into

independent vector spaces by masking off all cross-dependencies of them. Thus, we end

up with block matrices for 𝑄 , 𝐾 and 𝑉 , with equal block sizes =
hidden dim

number of heads
.

Figure 2.5: Multi-head attention.

Source: [55]

2.2.5.4 Cross-attention

In addition to self-attention, our model will employ cross-attention in the decoder. This

serves the purpose of incorporating the input embeddings provided by the encoder into

the decoding process. Following our former formalism, this can be described as using the

yielded hidden states
¤𝜃0 . . . ¤𝜃𝑠 to update the current decoder state 𝜃𝑡 using the attention

mechanism. For this, the cross-attention block will be provided by queries of the output

embeddings 𝑄out
and the keys and values of the input embeddings 𝐾 in

and 𝑉 in
.
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2.2.5.5 Assembling it all together

Figure 2.6: The Vanilla transformer introduced be Vaswani et al. (2017). The left and right

blocks are part of the encoder and decoder, respectively.

Source: [55]

We are now equipped with the basic tools to assemble our transformer. The architecture

can be seen in Figure 2.6. After embedding our words, we obtain our hidden vectors.

These will then be processed through a number of encoder layers. Each of these layers

consists of two sublayers; first a self-attention sublayer and then a feedforward sublayer.

Each of these sub-layers will have a residual connection around it [25] followed by layer

normalization [4]. The Encoder is build in a way that the model will iteratively per-lay

first find dependencies in the embeddings and the have some “thinking time” in the feed

forward sub-layer.

During training with teacher forcing, the decoder will also have a number of output

embeddings at hand. These will similarly first pass an attention sublayer. We do not want

our model to peek to embeddings it has not produced yet, so the attention matrices have to

be masked in a way, so that embeddings can only attend to previous positions. The block is

therefore calledmasked multi-head attention. After that we enter our cross-attention block,
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again with a residual connection and layer normalization. Finally, we pass the embeddings

through a feedforward sublayer to obtain our layer-wise result. For the prediction, the

yielded embeddings need to be transformed back to a distribution in R𝑁 . For this, the
dimension of our embeddings is first expanded to 𝑁 , using a linear layer, after which we

obtain our probabilities by softmaxing them.

During inference the decoder will not have the output embedding at hand. Instead the

decoder is fed the output sequence in an auto-regressive way. For time step 𝑖 ≤ 𝑛 it will

be supplied by 𝑡0:𝑖 and predict 𝑡𝑖+1. The window size is thus 𝑘 = 𝑛.
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3.1 Field research

3.1.1 Transformers success in NLP

Since introduction by Vaswani et al. [55], transformers have been out-performing com-

parable architectures in most NLP tasks: The original transformer scores top results in

translation and constituency parsing with far less training cost. For example. Lakew et al.

(2018) show how transformer-based models outperform recurrent networks reliably in

neural machine translation [32].

Transformers employed as large language models (LLMs), like BERT [16], T5 [44] or

GPT-3 [10], perform extraordinary results on established language benchmarks like GLUE

or SuperGLUE, i.e. multitask general language understanding benchmarks [57, 58], so that

as of October 2023 nine of the top ten scoring models on SuperGlue employ transformers

with the only exception being the human base line. All of this success would be quite

impossible without building up dedicated syntactical knowledge. Naturally one would ask,

what features of natural language they seem to understand so well and where difficulties

may lie. A number of researchers have dedicated their work to investigating the syntactical

abilities of transformers employed as LLMs.

3.1.2 Field research regarding syntactical abilities

This part of research focuses on finding syntactical knowledge in LLMs trained on natural

field data as opposed to constructed laboratory data.

Quantitatively, syntactical capacities are measured by testing the comperative perfor-

mance of LLMs on various superficial syntactical tasks, like part of speech (POS) tagging

or named entity recognition (NER), finding those models to perform extraordinary well.

For example Goldberg (2019) tests BERTs’ ability on subject-verb agreement using zero-

shot examples and finds that it outperforms regular LSTMs. Although this may be due to

the larger training sets and bidirectionality, he argues that “real syntactical generalization

is taking place” [22].

Our work is driven by the question of whether the abilities of transformers only suffice

to complete traditional natural language processing tasks, or if they can create syntactical

structures of the sophistication of those of humans. By a quantitative approach, this knowl-

edge is difficult to attain. As previously argued, sequences may not be a good indicator
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of what the output of the human language generating capacity might be, so it might also

not be the best predictor of a language models capacity. Two identical sentences may be

produced through arbitrary syntactical constructs, including nonsensical ones. A model

that reaches high perplexity scores and reliably predicts masked-out words may therefore

not necessarily have learned any complex syntactical structures. As we will see in our

experiments (see subsection 6.3.2), the comparative results measured by Goldberg (2019)

do not necessarily express whether a model understands the syntactical principles that

dictate which subject agrees with which verb.

Performance of LLMs measured by black-box language modeling tasks is therefore

in some way decoupled from syntax understanding. Instead, empirical research on the

syntactical abilities of artificial models should be complemented by qualitative analysis

that aims to reveal knowledge about the generated syntactical features.

Qualitatively, field research is often conducted by performing probing tasks. Hereby
it is assumed that if syntactical knowledge of a certain degree is encoded into model

weights, a classifier equipped with those weights should be able to perform better on other

syntactical tasks. Varying probing tasks and comparing performance between different

models will yield statements about syntactical abilities.

A broad study by Jawahar et al. (2019) hints, among others, that BERT encodes tree-like

structures in the upper layers, while lower levels focus on surface-level phrasal syntax

[21]. In a more elaborate way, Hewitt and Manning (2019) used probing tasks to explore

syntactical information in LLM word representations. They find that through linear trans-

formations, one can extract syntactical metrics like dependency tree distance or depth

and obtain the original dependency tree. Examining the size of syntactical information

encoded in vector space, they find it to be rather small, where probes of dimensionality of

around 64 to 128 stop increasing performance. [26].

As this finding is quite similar to what we want to assess, we shall elaborate a little

more on the limitations of it. For one, as noted by the authors, their construction is

quite strict and is “designed not to test for some notion of syntactic knowledge broadly

construed”. Instead, their work tries to extract the kind of knowledge a LLM already

contains. Dependency grammars, especially those without labeled nodes, as used here,

generally construct fewer (or no) explicit grammatical nodes. Subphrases will therefore

only be reconstructable by grouping child nodes. It would be interesting to know whether

more sophisticated grammar formalisms with explicit abstract syntactical objects (e.g.

tree nodes) could also be obtainable by this formalism. Contrary to this grammar, we

will, as described below, construct phrase grammars with explicit, syntactical nodes. This

will instead enable us to classify the computational power of our model using common

theoretical concepts.

The underlying assumption of optimism in regard to this kind of research is that syn-

tactical structure will naturally emerge out of the data. According to this, by successively

combining trivial inductions, these may approach human level sophistication. If this pre-
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vails, then surface level performance, e.g. perplexity and BLEU scores, should be predictors

for the emerging of human level syntactical abilities. This is due to the fact that, following

the assumption, data by its nature drives models to learn the right rules. A parallel can be

drawn here to the same notion of human language acquisition that empiricist linguists
uphold, which is highly challenged in the field of linguistics. On the contrary, nativists
emphasize an innate mechanism or inductive bias that guides the language acquisition

process. For this, the poverty of the stimulus arguments (POS arguments) state that all

children learn in a short period of time a identical set of rules out of nearly infinitely

many while only being exposed to little, erroneous and incomplete data (compare to e.g.

[33], [24] and [35] for such findings). This knowledge could therefore not have been

attained by general induction principles and the data alone. Humans must therefore have

explicit or implicit a priori knowledge, hence the name nativisim. A big part of syntactical

information about the structure of human languages will therfore not be found in that

data. If so, the architectural biases of model will be of great importance. A perfect model

would then have to entail the same inductive biases or a priory principles as humans do.

In our work, we will thus particularly emphasize findings about inductive biases.

Explicit research thereof is rather hidden. One such example is a study conducted by Liu

et al. (2019), where they test the generalizability of syntactical and semantical representa-

tions within LLMs using a variety of probing tasks. They find that for one, LSTMs seem to

encode general syntactical knowledge in the lower levels, getting more task specific in

the higher ones. For transformer models, this hierarchy cannot be upheld, with the most

generalizable encodings in the middle layers. Furthermore, pretrained models seem to

perform worse than models trained on related tasks, implying that pretraining seems to

incentivize the model to learn pretraining specific task representations. They validated

this with an empirical finding showing how layers that perform worse on probing tasks

are the ones that perform better on conventional language modeling tasks, indicating

a trade-off between generalizability and task specificity. Generalizable or fine-grained

linguistic features seem accordingly only to be learned insofar they relate to pretraining

objectives, resulting in rather course-grained syntactical knowledge [37]. On the contrary,

models with strong syntactical biases should be rather driven to learn generalizable fea-

tures, irrespective of, or rather complementary to, task-specific behavior.

This insight can be key in understanding similar findings like that of Tenney et al. (2019)

and similar work, who find that BERT encodes surface-level syntactical knowledge, like

POS tags, in the lower layers to obtain high-level semantic information, like co-reference,

in higher layers. This is consistent with our construction in chapter 1 and the general

linguistic parsing approach, thus titling their work “BERT rediscovers the classical NLP

pipeline” [54]. Liu et al. argue that this behavior, rather than indicating that LLMs extract

generalizable features in lower level to gradually build higher level representations, may

be due to the nature of the pre-training tasks, making semantical knowledge rather useful

in higher layers. The sophistication to which those syntactical features are built up may

therefore not exceed what is task-relevant, most probably resulting in rather surface-level

syntactical features that stem from task incentives rather than from inductive biases.
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3.2 Laboratory research

3.2.1 Theory

Laboratory research focuses on the theoretical abilities of transformer networks and aims

to find the limits of computational capacity when trained on specific syntactical tasks. For

this, researchers usually examine the ability or disability of a given transformer architec-

ture to learn recognizing classes of formal languages with certain computational power,

e.g. levels of the Chomsky hierarchy. Chosen grammars will therefore serve the purpose

of encapsulating attributes of computational importance, e.g. counting, periodicity, and

hierarchy, rather than covering syntactical phenomena of natural language. Those are

instead believed to be composed of the base features or emerge out of them. This can be

achieved by using mathematical proofs (theory) or by examining their performance on

certain language formalisms (empirics).

In the best case, transformers are just Turing-complete. There are several papers that

claim to prove Turing completeness for transformer networks. For instances, Peréz et

al. (2019, 2021), assuming infinite precision, as not uncommon, supply a finite depth

transformer construction that may simulate a given Turing-machine computation [42]

[41]. Hereby the token positions take on the role of the computation steps, which a

Turing machine would go through. However, to make their construction work, the width

of the network will be bounded by the number of steps of the computation. Similarly,

Bhattamishra et al. (2020a) tried to prove Turing-completeness for the vanilla transformer.

Their construction has similarities to previous constructions in so far as the width of the

Transformer will once again be bounded by metrics of the specific computation instance;

in this case, the memory usage [7]. Both of these constructions do not prove Turing com-

pleteness in the proper sense, as one could even construct finite state automata through

those restrictions. We refer to [2] for a clearer presentation of this issue. In contrast, RNNs

are Turing complete in the proper sense, following famous findings by Siegelmann and

Sonntag (1992, 1994) [51][50] and Siegelmann (1999) [49] for Elman-RNNs (1990) [18].

Under more practical assumptions, as we will see, Weiss et al. (2018) find LSTMs and

Elmain-RNNs to only be capable of modeling counter automata, with weaker simple RNNs

only capable of recognizing regular languages [61].

Consistent with our assessment, Hahn (2020) proved theoretically that soft-attention-

based sequence models, contrary to LSTMs, even with infinite precision are not able to

achieve perfect cross-entropy scores for periodic regular languages or hierarchical struc-

ture, namely Dyck-2, which are two core aspects of natural language. For hard attention,

this restriction is even stronger, stating impossibility and thus theoretically condemning

such models to sub-regularity. He proved this by providing a procedure that, by carefully

choosing input embeddings that force the network to focus on parts and this to ignore

other parts of the sequence, constructs inputs that a given model mislabels by nature of

the attention-based aggregation. This is possible for sufficiently sensitive languages, like

parity. His findings are asymptotic, i.e. for fixed-size inputs one can, in fact, still construct

a transformer that could correctly label all input data. As the aforementioned procedure

24



3.2 Laboratory research

might require the construction of large inputs, he admits that further research on the

practicality of this discovery should be carried out [23].

Taken together, these discoveries tell us that transformer capabilities are strongly

asymptotic. That means, given a suitably bounded computation, transformers are in

theory capable of computing it, although they break down for inputs whose computation

exceeds said bounds.

Ackermann and Cybenko (2020) summarized research regarding networks’ computa-

tional capacity in a more realistic manner by assuming linearly bounded computation time

with regard to input size and finite precision. They denote this by 𝐼𝐵𝐹𝑃 (input-bounded

finite-precision). They state that, asymptotically, while RNNs seem to correlate to regular

languages

L(IBFP − GRU ) = L(IBFP − SRNN ) = 𝑅𝐸𝐺𝑈𝐿𝐴𝑅𝑅𝐸𝐺𝑈𝐿𝐴𝑅𝑅𝐸𝐺𝑈𝐿𝐴𝑅

and LSTMs seem to be enclosed by the set of simplified k-counter languages (SKCLSKCLSKCL) and

the general set of counter languages (CLCLCL) as shown by Weiss et al. (2018) [61]

𝑆𝐾𝐶𝐿𝑆𝐾𝐶𝐿𝑆𝐾𝐶𝐿 ⊆ L(IBFP − LSTM) ⊆ 𝐶𝐿𝐶𝐿𝐶𝐿

transformers do not even contain all regular languages:

𝑅𝐸𝐺𝑈𝐿𝐴𝑅𝑅𝐸𝐺𝑈𝐿𝐴𝑅𝑅𝐸𝐺𝑈𝐿𝐴𝑅 ⊄ L(IBFP − TRANSFORMER)

Note, however, that they assume transformers without positional encoding, which miti-

gates its abilities to learn position-dependent tasks. They admit that this insight may not

hold for positional encodings that do not repeat on sufficiently large inputs. Furthermore,

they discuss how access to memory might overcome computational limits as contemporary

networks are forced to drag syntactical information implicitly from layer to layer. They

expand on this thought by arguing how memory-augmented neural networks (MANN)

show potential in climbing the Chomsky hierarchy, as we will see later. [1]

3.2.2 Empirics

Theoretical research provides us with an upper bound for what transformers are in theory

capable of and for what they, in practice, may be incapable of. While the theoretical

upper bound (bounded “Turing-completeness”) seemed promising, each sequence model

trained by stochastic gradient descent (SGD) comes with inductive biases, i.e. preferences

of directions to choose when iterating through parameter space. Although this might help

in finding an acceptable solution, it might also inhibit finding the optimal one. Therefore,

it is crucial to explore the de facto capabilities of transformers.

3.2.2.1 Regular languages

Bhattamishra et al. (2020) showed that transformers, even with a single layer, are theo-

retically able to learn some counter-languages that do not require reset operations, like
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Shuffle-Dyck. They generalize their proof to a simplified version of stateless counter-
languages 𝑅𝐶𝐿. This is a specific, fairly restricted set that does not include all regular

languages and only some nonregular, somewhat permutations-invariant counter languages.

Aside from this, they also show that transformers seem to perform well only on a weak

subset of regular languages, namely star-free languages with dot depth 1. This behavior is

greatly influenced by the chosen positional encoding scheme, where implicit positional

encoding via masking, as employed in above construction, may generalize well on Dyck-1,

but fails to do so for some star-free languages, where instead it may profit from an ex-

plicit positional encoding. This oddly does even apply to permutation-invariant tasks, e.g.

checking an input sequence for parity. For non-star-free languages, transformers fail even

for simple ones like (𝑎𝑎)∗. [6]

Deletang et al. (2022) further complemented research by providing a broad empirical

study of neural network architecture performance on transduction tasks ranging over the

complexity classes regular (𝑅), context-free (𝐶𝐹 ), and context-sensitive (𝐶𝑆), as well as

covering attributes such as permutation-invariance and counting necessity. In addition to

previous research, they also employ memory-augmented models. The authors find that

LSTMs accurately and reliably learn regular tasks and even a counting-reliant context-

sensitive task. Transformers seem to show nontrivial learning only on permutation-

invariant tasks, but not even all of them, irrespective of positional encoding. For the

residual ones, including three out of four regular tasks, transformers seem to not generalize

well. The bottleneck again seems to be the positional encoding, since positional encodings

for embeddings of unseen indices may fall out of distribution. They validated this by

visualizing first-layer activations by sequence lengths, indicating that large sequences

diverge in resemblance compared to those for smaller ones. On the other hand, as expected,

RNNs seem to generally solve regular tasks, Stack-RNNs context-free tasks, and Tape-

RNNs tasks up to the level of context sensitivity. Some irregularities occurred that can be

attributed to subtleties of task design and training, but the Chomsky hierarchy proved

more or less accurate for RNNs [15].

3.2.2.2 Dyck languages

We may briefly summarize that for regular languages, transformers seem to perform well

only on permutation-invariant and star-free regular languages. Furthermore, they are

capable of learning Shuffle-Dyck by iteratively counting occurrences of symbols from left

to right, as long as such counting is somewhat permutation invariant. This finding can be

transferred to D1 = Shuffle-1 Dyck. Here, one has to note that while accepting D1 by the

given construction, the model does not per-se “match” brackets, but only counts number

of open and closed brackets in a similar way as our definition of correctly bracketed
expressions in subsubsection 2.1.3.4. For 𝑘 = 1 correctly bracketed and hierarchically
bracketed coincide. We thus still need to find out, whether transformers can also model

hierarchies, i.e. D>1. Various researches find this not to be the case. For example, experi-

ments conducted by Suzgun et al. (2019) show that RNNs enhanced with differentiable

stacks (Stack-RNN) are well suited to learn D𝑛: 𝑛 ∈ {1, 2, 3, 6}, contrary to conventional
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LSTMs and transformers. [53]

We find papers trying to mitigate this deficit. For example, when adding an arbitrary

starting symbol 𝑇 to the beginning of sequences, Ebrahami et al. (2020) found that

the models’ ability to learn D2 drastically increased, being on par with LSTMs. The

starting symbol enabled the transformer to approximate the simulation of an automaton

by attending to it at the end of a clause, i.e. a correctly bracketed sub-string, or at the end

of the sequence. This resembles the popping operation of a stack-based automaton, which

is also the operation that the stateless counter automaton mentioned above lacks. [17].

However, both models remain insufficient for learning D2 (compare with [52] for LSTMs).

A more promising approach has been provided by Yao et al. (2021). Here, the performance

for D𝑁,𝑘 languages was evaluated, where 𝐷 denotes the maximum nesting depth of that

language. In addition, they employ a “single fixed scalar monotonic positional encoding”,

namely 𝑝𝑜𝑠/𝑛. They theoretically prove that for soft attention:

”∀𝑁,𝑘 ∈ N+, there exists a 2-layer soft-attention network that can generate D𝑁,𝑘”

This assumes an input size of 𝑛 O(log n) precision and O(log k) memory size per layer.

Through these assumptions and the nesting depth bound, they circumvent Hahns [23]

theorem. In their construction, the first layer would calculate depths for each bracket and

the second would match brackets according to their depth score. These insights could

be experimentally validated, showing that transformers are well suited to learn D𝑁,𝑘

languages, even for 𝐷 ∈ [2, 128] and 𝑘 ∈ [3, 15]. They constantly outperform LSTMs that

have much more trouble for increasing nesting depths. Furthermore, their construction

predicts why the second-layer attentions of two-layer transformers produce virtual hard

attentions; a pattern often observed in larger language models [64].

However, in our branch of research, this finding is not as positive as one might think. To

realize this, it should first be noted that the restriction of a bounded hierarchy condemns

D𝑁,𝑘 to regularity. To sketch a proof, we would first define:

extend 𝑗 (𝐴) = (BL 𝑗 ◦ 𝐴 ∗ ◦ BR 𝑗 ) ∪𝐴
extend(𝑥1 ...𝑥𝑁 ) (𝐴) = extend𝑥𝑁 (. . . extend𝑥1

(𝐴) . . . )

It follows:

D𝑁,0 = { 𝜖 }
D𝑁,𝑘+1 = (

⋃
(𝑥1 ...𝑥𝑛)∈P(𝑁,𝑁 )

extend(𝑥1 ...𝑥𝑁 ) ( D𝑁,𝑘 ) ) ∗

E.g. D2,1 =(extend(1,2) ( D𝑁,0 ) ∗ ∪ extend(2,1) ( D𝑁,0 )∗)∗
=((BL2 ◦ (BL1 ◦ 𝜖 ◦ BR1) ∗ ◦ BR2) ∗ ∪(BL1 ◦ (BL2 ◦ 𝜖 ◦ BR2) ∗ ◦ BR1)∗)∗

Here, P(𝑎, 𝑏) denotes all the possible configurations for 𝑎 out of 𝑏 entries. In the case

of 𝑎 = 𝑏, there will be 𝑎! possibilities. Our proof is possible because regular grammars are,
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among others, completed in terms of ∪, ∗ and ◦ . Furthermore, this procedure is finite,

that is, for all 𝑁 and 𝑘 this procedure tells us how to define D𝑁,𝑘 in a finite way with the

given operators. It takes advantage of the fact that any tree structure restricted by depth

can be reduced to tree structures of a lower depth, which can be enumerated in the end

without “vertical recursion”.

Practically, this means, with respect to hierarchies, that the supposed recursivity, a be-

lieved core feature of natural language, will be approximated by limited enumeration, given

sufficient capacities. Furthermore, the produced underlying syntactical objects (tree-like

for CFGs, sequence-like for regular grammars) are qualitatively different: Given a string

𝑠 of nesting depth ≤ 𝑘 two parsers 𝑃𝐶𝐹𝐺 , 𝑃𝑅 equipped with D𝑁 and D𝑁,𝑘 , respectively,

while both accepting 𝑠 , produce rather different syntactical structures. In fact, it cannot

be said of 𝑃𝑅 to model tree structures, and therefore recursive hierarchies, at all, just as a

parser memorizing 80.000 examples of D𝑁,𝑘 produces no syntactical objects of interest

whatsoever. Consequently, when an LLM produces a sequence like 𝑠 , because it was theo-

retically shown that it cannot learnD𝑁 , but it can very well do so forD𝑁,𝑘 , the underlying

generation and its abstract syntactical representation may also not be (recursively) hi-

erarchical. This is consistent with the findings of Ebrahimi et al. (2020) and Yao et al. (2021).

Although initially not sounding like one, the given restriction is thus both theoretically

and practically a hard restriction of our grammar, making the Chomsky-Schützenberger
theorem not applicable. Therefore, the finding that transformers can learn D𝑁,𝑘 may be

a rather negative than positive finding with respect to their ability to model sup-regular

grammars.

3.2.3 Transformers and the Chomsky Hierarchy

All these results proved it hard, compared to RNNs or LSTMS, to place transformers in

a designated drawer of the Chomsky hierarchy, as their computational system does not

fit the automata-based theories thereof. It could be argued that this is due to the paral-

lelism in which a transformer computes the tokens compared to the sequential folding

operations RNNs and classical automata conduct. In contrast, Liu et al. (2023) show that

transformers of o(T) layer size, 𝑇 being input size, are not only able to asymptotically

simulate automata, but reliably find "shortcuts" for such computations, vastly reducing

the amount of "computation steps", i.e. layers, to 𝐿 ≪ 𝑇 . [36]. We will therefore assume

that transformers are theoretically capable of simulating automata equivalent to levels

of the Chomsky hierarchy. Through our prior analysis we remain inconclusive about its

de-facto capacity. Depending on architectural specifics, we find that transformers cover

some areas of regular languages and some specific kinds of counter languages, but they

seem to be very likely sub-context-free and quite possibly even sub-regular.

Another approach would be to accept that transformers do not conform to the automata-

based models. To establish a new computational model for transformer models, Weiss et

al. (2021) constructed a programming language, restricted access sequence processing
(RASP), for transformer networks. RASP consists of element-wise operations and selection
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and aggregation operations, which resemble the ones done by a transformers’ feedforward

and attention components, respectively. They show how solving a given task using RASP

helps predict model parameters and may be a good indicator for how the model approaches

the task. By doing so, they provide an upper bound for what kind of computations are

feasible and an intuition for the complexity of certain computations from a transformer’s

point of view. Certain tasks easily learnable for automata-like models, like LSTMs, might

therefore be highly nontrivial for transformers and vice versa [62]. However, this model

seems to be too specific to compare its computational capability with conventional models,

and not much research has been done so far. Furthermore, formal language theory is built

around conventional automata-based models. We will thus remain in the conventional

frame work until RASP has been somewhat integrated into it.

3.3 The theory-practice gap

In summary, vanilla transformers employing common position encoding schemes seem in-

capable of learning regular non-star-free languages and are strongly restricted to learning

hierarchical context-free languages likeD>1. As natural language is expected to be situated

above the context-free language class, quite possibly within the mildly context-sensitive

class, this seems surprising [29]. After all, following the Chomsky-Schützenberger theorem

[11], each Context-Free language may be represented by a homomorphism of the inter-

section of a D𝑛 and a regular language. If a transformer is incable of modeling D2, then

it would follow that neither can it model context-free, let alone mildly context-sensitive.

How can we then explain its overwhelming empirical success regarding natural language

data? We refer to this problem as the theory-practice gap.

One way to resolve this might be to argue, as some researchers have done, that contem-

porary linguistic models for human language might not be restrictive enough. Jäger and

Rogers (2012) argue that the overwhelming majority of regular utterances are star-free,

where a vanilla transformer already suffices. Similarly, Karlsson (2007) tried to show em-

pirically that the maximum centre embedding depth of written sentences is around three

[31]. This is why Yao et al. (2022) imply that their construction for restrictively nested

languages may already be employed by large transformers trained on natural language, as

natural data already meets the restriction of nesting depth [64]. If human language indeed

is bounded, just as the grammars that transformers seem to learn, then the syntactical

representations of such models might indeed be not far away from human representations,

which allows one to ascribe real understanding to such models.

However, one has to note that natural sentences following a generally assumed gen-

erative grammar are hierarchical in construction per se, irrespective of occurrences of

embedded clauses. Assuming boundedness of hierarchy would furthermore render nat-

ural language regular, contradicting most of linguistic research and assumptions. More

importantly, one has to be generally cautious when inferring statements about the human

language capability from empirical findings in externalized sequences, as discussed in

chapter 1. Statistical findings of that kind may instead fall into the domain of pragmatics
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and not necessarily syntax. To form arguments about the capability, one had to argue

rather biolinguistically. For example, in the case of boundedness of hierarchy, one would

have to find neurocomputational reasons to disprove the general assumption of (hierarchi-

cal) recursion, an assumed core aspect of human cognitive computation (compare to [14],

[19] and especially [9]). We refer to Watumull et al. (2014) for a clearer disentanglement of

the relevance of such empirical findings in regard to statements about the human capability

for recursion [60].
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4.1 Hypothesis

We have seen that transformers perform extraordinarily well on NLP tasks, but posses quite

limited syntactical capabilities. We are thus left explaining how an assumed weak model,

i.e. transformers, can process a complex computation, i.e., natural language. We have

found various reasonings that tried to either lower assumption regarding the complexity

of the computation or increase assumptions about the capability of the model. In chapter 3

we tried to sketch how attempts of lowering assumptions about the complexity of natural

language are highly controversial. Furthermore, theoretical and empirical research seems

to imply that transformers are rather unsuitable for learning sup-regular, let alone natural

language.

We instead hypothesize that large transformer networks, although possibly suited well

enough to model a quantitatively large portion of externalized human language, do have

rather weak computational power that restricts them from finding general generative

principles of languages.

They may instead employ their limited capacities, like modeling star-free languages and

restricted hierarchies, to find approximations over distributions of syntax. We call this

behaviour “finding statistical heuristics”.

The most straightforward statistical heuristic on could think of involves leveraging data

distributions to create a Markov chain based on raw input tokens. This approach might

be already effective enough for predicting a substantial number of tokens that rely on

preceding ones – such as predicting that the word “am” is likely to follow the word “I”.

A more refined version of this heuristic entails initially predicting part-of-speech tags

using simple Markov chains and then constructing a higher-level Markov chain over these

features. Subsequently, these features can be utilized to model various types of sentence

sub-phrases and higher-level features.
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Example: Solving subject-verb agreements with statistical heuristics

Consider howmodels might learn subject-verb agreement when explicitly trained on this

task. Here, for a given subject or verb, the model needs to identify the predictor word,

which is entangled via a grammatical notion, e.g. grammatical number. The human

approach would be to simply parse the sentence into the syntactical representation it

was generated with, as we do implicitly all the time, and find the respective, syntactically

near word. For a model where this process is unavailable or too complex, a simpler

approach would be to predict POS-tags of all words and find distributions. The simplest

one, picking the nearest verb or noun in the sequence, would already suffice for a vast

majority of sentences. On top of this, the model might build more sophisticated features

that identifies edge cases, like embedded sentences. Later, our second taskMASK will

confirm this intuition.

The process of attaining higher-level features is only possible as far as such features

are attainable by the models’ capabilities. But even when so, the model might not employ

such: identifying suitable, complex features may demand more computational resources

than forming heuristics based on statistical occurrences of less complex features. With

stochastic gradient descent, models might therefore be unmotivated to learn more intricate

structures, particularly when an increase in strategy complexity fails to substantially re-

duce loss or even increase it. This effect might be magnified by the given data distribution,

if the biggest part of it can already be approximated with lower level features.

In a sense, the term heuristic already implies that any strategy that does not involve the

real generative principle is some kind of statistical heuristic. However, we would rather like
to emphasize the differing complexity levels at which such heuristics can be formed. The

higher level the learned features are, the more we can attribute the strategy generalizablity

and thus real understanding as far as that term would be applicable.

We posit that the extent to which more complex structures are learned is a result of the

interplay between the models’ theoretically limited capabilities and their inductive bias.

The complexity of these features is, therefore, bounded by the models’ capacity, and their

utilization depends on the inductive bias and the specific incentives of the given task. For

our first task, BRACKET, we thus especially looked out for parameters of models and

task designs that incentivize the model to learn syntax.

In the following we want to illustrate the design of our experiment and motivate the

reasoning behind choices. For a more detailed description of these aspects we refer to

chapter 5.
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4.2 General approach

Our research follows a primarily theoretical approach, drawing parallels to the theoretical

laboratory research discussed in section 3.2. In essence, our general methodology aligns

with this approach: we prepared models for evaluation, including baseline models, and

selected appropriate grammars to generate large datasets. With these datasets and models

in place, we designed syntactical tasks to evaluate the models’ performance on the selected

grammars. Further evaluation, employing various metrics, allowed us to analyze how well

the models learned specific aspects of the tasks, such as syntactical structures.

The study encompasses a comprehensive comparative analysis, considering various

models, grammars, and settings. The chosen tasks enable us to make informed statements

about our research focus—the models’ ability to learn structure. The grammars employed

(denoted as 1D, 2D, SF,NSF, and LARGE) are crafted not only to cover computational

classes but also to address a range of syntactical phenomena. Our model’s design, includ-

ing the positional encoding strategy, and evaluation settings, such as sequence lengths,

draw inspiration from "real-world" examples to ensure comparability with fieldwork.

Our work is exploratory in essence and thus subject to limited expressivity in areas

where more detailed analyses would go beyond the scope. As such, it spans a broad field

of research areas for which more fine-grained future work would be possible. Instead, this

work attempts to pave the way for such research both by testing our assumptions through

wide-ranging comparisons and by presenting methodological and analytical tools in the

process. The limitations of our methods and our general approach will be discussed both

in our analysis of our results in chapter 6 and in our general discussion in chapter 7.

The following sections provide a rough overview of aspects and reasoning behind our

experiments. Each aspect will be illuminated in greater detail in chapter 5.

4.3 Grammars

4.3.1 General idea

As natural language does not have a holistic formalization of syntactical structures of sen-

tences, we must restrict ourselves to formal grammars whose syntactical representations

are well studied. For this, four rule-based grammars have been designed for the purpose

of fitting both formal computational classes, i.e. regular and context-free grammars, and

covering natural syntactical phenomena, i.e. (linguistic) agreement and recursion.

All grammars will produce natural-like sentences using words in the English or German

vocabulary and permissible sentence structures with the exception of the large grammar,

which by design may also produce odd sentences. By doing so, LLMs pre-trained on large

sets of natural language may be more compatible with the training set. To ensure this, we

will use the repectively versions of our pretrained models that were trained on English or
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German data, respectively. Furthermore, by doing so we mitigate the risk of using idealized

forms of syntax that may influence performance on field data. One of such idealizations is

the tokenization strategy, that might split words into different tokens in real world setups.

We will explain this aspect in further detail in subsubsection 4.4.1.2.

4.3.2 Dyck languages

1D and 2D are two context-free grammars that test grammatical agreement. They are

constructed so that they resemble Dyck-1 and Dyck-2, respectively. In fact, they can be

obtained by morphisms from these two. Instead of matching parentheses, we employ

logically matched words: subjects and verbs that share a common grammatical number

(singular, plural).

Example: Constructed context-free grammars

• 𝐿(1D) ∋ die Mutter , deren Tochter schwimmt , singt⇔ (())

• 𝐿(2D) ∋ die Katja , deren Hündin tanzt und deren Teller fliegen , spielt↔ (()[])

Additionally to the previously mentioned advantages of natural-like sentences, this

construction enables us to avoid another idealization of laboratory work. To explain this,

it is necessary to shortly recall the general theoretical motivation of evaluating on D𝑁>1.

As discussed in chapter 2, the Chomsky-Schützenberger theorem lets us divide every

context-free language 𝐿 into a regular language 𝑅 and a Dyck-N language D𝑁 , such that

we can find a homomorphism ℎ for which to which applies:

𝐿 = ℎ(𝑅 ∩ D𝑁 )

We also showed how D2 is sufficient to mock D𝑁 . Thus, to conclude whether a given

model can learn context-free languages, it seems sufficient to investigate whether it can

learn D2, as reasonably undertaken by related laboratory work. A concrete instance

of a context-free language 𝐿0, however, will be vastly reliant on 𝑅0. Intuitively, in the

above construction the Dyck language will build the hierarchical skeleton of 𝐿, but it

will be the task of 𝑅 to choose which parts of this skeleton concretely define 𝐿, e.g.,

which branches of all the possible D𝑁 trees will be cut off. 𝑅 ∩ D𝑁 will thus symbolize a

concrete distribution of tree structures over D𝑁 . The more restricted and nuanced this

distribution is, the easier will it be for a model to approximate distributions of such trees.

If evaluating models onD𝑁 ∩Σ∗ = D𝑁 only, the results undermine the fact that real world

performance may vastly rely on modeling 𝑅 . This is especially the case, when assuming,

as we do, that transformers are only capable of approximating D𝑁 , but are very good

in approximating distributions over low-level syntactical features. Employing “normal”

context-free languages will therefore enable the model to exploit distributions more easily,

which can then be contrasted with how much structure was instead learned.
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4.3.3 Star-Free Regular Languages

SF and NSF are two regular grammars that test large-scale recursion. The languages are

equivalent to 𝑎 ∗ 𝑏 and (𝑎 ∗ 𝑏)∗. Both of these are star-free, i.e. the kind of regular type

that is commonly encountered in natural language. NSF is a bit more complex than SF.
We employ these grammars mainly as baselines for comparisons.

Example: Constructed regular grammars

• Sunny denkt, dass Toni denkt, dass Sunny sagt, dass alles ok ist. ∈ 𝐿(SF)

• Sunny sagt, dass es morgen schneit und Toni denkt, dass Sunny sagt, dass alles ok
∈ 𝐿(NSF)

4.3.4 Large language

Furthermore, a fifth large language LARGE has been used with a large number of pro-

duction rules and variables that serve the purpose of quantitatively approximating nat-

ural language. For constructing training sets, it proved nearly impossible to construct a

meaningful distribution of our grammar that does not break computational boundaries, i.e.

memory. The LARGE set will therefore not include all terminals, let alone all nonterminals.

Evaluation on this set shows how important this fact seemed to be to task performance.

Example: Larger grammar

• is there a flight from memphis to los angeles.

• please show me the flights from chicago to detroit that arrive at six p.m. next tuesday.

• i need a flight from philadelphia to westchester county.

4.3.5 Further remarks

We expect general performance on those grammars to follow computational theory, where

regular languages will be less complex than context-free languages. From our constructed

grammars, 2D is the most complex. A more detailed definition of our grammars and

examples thereof will be provided in section 5.1.

To generate the training data, it is hard to follow implicit approaches, as is commonly

done for regular grammars in theoretical research. Instead, we follow a rule-based approach

and provide a generator written in Java for this purpose. Employing rule-based grammars,

instead of implicit ones, yields the benefit of being more flexible in terms of sentence

structure and available grammar formalisms, but comes with difficulties in design and

generation. The design and difficulties of such generations are discussed in section 5.3.
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4.4 Tasks

4.4.1 BRACKET

Figure 4.1: Depiction of BRACKET. Tree node colors symbolize different variables.

4.4.1.1 General design

Common pretraining tasks (e.g., word shuffling, masking, etc.) do not explicitly give an

incentive to learn syntactical structures. In fact, it is hard to think of such a task design

when dealing with natural language, as we are not sure how such structures would look

like. For most NLP tasks, those representations don’t matter much as long as the sequen-

tialized output of those models can properly be interpreted by humans. This design makes

it hard to judge what kind of structure the model has learned and also hard to measure its

ability to do so in relation to a variety of factors. Our task will therefore need to explicitly

provide syntactical structure.

We choose BRACKET for this, which is the task of producing a parse tree for a given

sequence of an unknown grammar 𝐺 . This is done by sequentializing the parse tree in a

way in which every pair of brackets represents one subtree. The respective sequence ele-

ments, i.e. words, will be injected in between the respective brackets. BRACKET mocks

the parsing process that a model should otherwise implicitly conduct if it is equipped

with such capabilities. As such, it is equivalent to being able to accept D𝑁 , where 𝑁

is equivalent to the number of nonterminals of the respective grammar. By explicitly

forcing our model to perform this task, we will be able to evaluate which parts of this

task it succeeds on and which parts it fails on. For a more detailed description and a more

elaborate reasoning of this task and according metrics we refer to subsection 5.2.1.

Furthermore, from inaccuracies regarding the brackets, which resemble the parse tree

nodes, conclusions about the syntactical abilities can be drawn. We will compare the
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general accuracy to predict the right tokens with the accuracy restricted to bracket tokens

(bracket accuracy) to see how much of the task performance can be attributed to learning

syntax. This effect will be compared with various variables mentioned in the following.

As there is no explicit prioritization of aspects of the predictions, by doing so, we may

judge which task variables incentivize models to learn real syntax as opposed to statistical

heuristics. Further analysis hereof and results can be found in subsection 6.2.4.

4.4.1.2 Further task variables

We are interested in how theoretical limitations play out in non-idealized real-world

scenarios that might bare subtleties that theoretical work does not capture. One of these

subtleties is the tokenization strategy, which may yield more or less tokens per word. LLMs

vastly rely on byte-pair encoding (bpe), wheras theoretical research is often conducted

using word-wise tokenization, because words of formal grammars are already the smallest

information-baring units. We hypothesize that, at least for our task, but quite possibly

also in field work, this may have an influence on how much structure is learned. Our idea

behind this is that having more tokens that have no syntactical relevance may lead to

deincentivizing the model to learn structure, due to uniformity of weighting during loss

computation. The results of this analysis can be found in subsection 6.2.6.

We further hypothesize that certain predictor tokens may make it easier for the model

to learn where a subphrase starts or ends. For our context-free grammars, one of such

candidates would be commas, which in German are always placed at the start and end

of an embedded sentence. We evaluated the grammar 2DCL, which is the same as 2D but

without commas, and compared the performance with 2D. The results can be viewed in

subsection 6.2.8.

4.4.2 MASK

If our model employs statistical heuristics, they must arise purely from the input data,

whereas syntactical structures, even of the limited complexity of such models, may also

arise from architectural biases. With MASK, we try to sketch how input distributions

may influence its ability to form statistical heuristics. The task consists of predicting

the class, i.e. nonterminal, of a masked word within a sequence. A common property of

natural language (and, in fact, formal language) is that word dependencies are a reflection

of their syntactical distance rather than their sequentialized distance, which is called

“linear” distance. The masked word greatly depends on syntactically near words, which

are not necessarily linearly near. However, these two metrics coincide greatly over large

sets of generated sentences when sampling sentences in an equally distributed way. The

input distribution of our training data may therefore incline the model to learn local

statistical heuristics instead of “real structure”, deliberately tolerating errors on inputs,

where those two distances do not coincide. We thus evaluate our model on sequences

where this correlation breaks to confirm our hypothesis. To measure this, we first define

a metric, span width, which captures the notion of divergence of linear distance and

syntactical distance. Applied to a masked word, it tells us the linear subphrase length

over words that are syntactically near. A clear definition of the metric can be found in
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subsection 5.2.2. We conducted our analysis using both our regular evaluation set that

shares the same residual distribution with the training set and a newly designed set of

a different distribution to see whether other distribution-dependent factors may have

been exploited. We further evaluate how stable assumed stochastic heuristics are by

analyzing how distributions of words of little task relevance have an influence on breaking

them. For a more detailed description of both task and the span width metric we refer to

subsection 5.2.2. Furthermore, the results and a more fine-grained analysis can be found

in subsection 6.3.2.

4.5 Models

We will compare performance of three model architectures: a bidirectional lstm (LSTM),

serving as a baseline, a Vanilla transformer (SIMPLENLayers) with varying layer sizes

𝑁 ∈ {1, 3, 6}, to test the influence of layer sizes, and a pre-trained model (BARTBASE), to

evaluate how structures learned during pretraining may transfer to our task.

The results of influence of layer size can be found in subsection 6.2.5. The role of

pre-training will be elaborated on in subsection 6.2.7.

We equipped the LSTM with bidirectionality to stay comparable to the bidirectional

nature of transformers. Furthermore, as LSTMs often suffer from a bottleneck effect when

aggregating hidden states between the encoder and decoder, we employed Bahdanau

attention [5] as the aggregator function, allowing the decoder to have more flexible access

encodings provided by the encoder.

The transformer models were standard implementations provided by hugging face [63].
We will explain model architectures and reasoning of choices in greater detail in 𝑐ℎ𝑎𝑝𝑡𝑒𝑟 5.

4.6 Evaluation lengths

Theoretical research can be said to assume automata-like sequence processing and thus

tests the generalization ability of the model by evaluating on “out-of-domain” data, i.e.

sequences that exceed lengths during training. Sequence lengths has been found to be a

known modulator for mistakes. The greater of length than seen during training sequence

get, the more likely it is for the model to misclassify. These “out-of-domain” sequences are

employed to verify the models generalization capacity. This assumes that the model learns

folding operations that successively divide and conquer large sequences, i.e. nontrivial

recursive solutions. As experiments show (e.g. [15], [6], [59]) models do not generalize well

on longer sequences. Here it is argued that the positional encoding scheme plays a crucial

role. Token positions that are not seen during training may lead to embeddings that the

model does not recognize at all, as already argued above. While certain positional encoding

strategies seem to restrict this deficit for certain tasks, we are interested in bridging the

theory-practice gap and will therefore employ standard (sinusoidal or learned) positional

encoding as employed by BART/BERT or the Vanilla transformer. Moreover, LLMs do

not necessarily need to generalize syntactical knowledge to out-of-domain sizes if trained

on sufficiently sized inputs. After all, practical lengths of sentences as found in large

38



4.6 Evaluation lengths

text corpora will rarely exceed common LLM input sizes. For comparison: assuming a

common rule of thumb of 0.75 words per token [40], BERT, employing up to 512 token

positions, could be trained on sequences of up to 384 words. In fact, BART is used to

receiving two sentences as input for some pre-training tasks. Furthermore, assuming

the longest distribution of sentence lengths stated by Sichel (1974) (𝜇 = 26.77𝜎 = 18.36)

[48], who performed empirical analysis on large corpora of English and Greek prose

texts, the probability of sentences exceeding 100 words is already much lower than 0. 1 %.

Although the ability to generalize to larger inputs satisfies the conditions of theoretical

automata-based models, it might not play a major role in LLM performance.

We thus evaluate our model on partly on in- and out-of-domain data, attaching not

much importance to generalizing well on sequences that are out-of-domain. You can find

an evaluation of the effect of sequence length in subsection 6.2.1.
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5.1 Grammars

5.1.1 Star Free Regular

Rules: SF

• 𝑆 → 𝑃 sagt, dass 𝑆 .
• 𝑆 → 𝐴

Here 𝑃 can be derived to a set of persons or personal pronouns (e.g. Sarah, Timo, he,
she, someone, etc.) and 𝐴 can be derived to any statement. In general, words may also be

replaced by synonyms to obtain more training data.

Example: Sentences for SF

• Sunny sagt, dass Toni denkt, dass alles ok ist.

• Toni sagt, dass Sunny denkt, dass Tone denkt, dass alles ok ist.

By a homomorphism, 𝑎 ∗ 𝑏 can be obtained from our grammar, from which it is easy

to prove that it is star-free and regular. This follows from the concatenation of 𝑏 and the

known star-free language 𝑎∗, or:

𝑎 ∗ 𝑏 = ∅ ◦ (Σ \ 𝑎) ◦ ∅︸            ︷︷            ︸
𝑎∗

◦ 𝑏

The dot depth of this grammar is thus exactly 2.

5.1.2 𝑁 Star-Free Regular

Rules: NSF

• 𝑇 → 𝑆

• 𝑇 → 𝑆 und 𝑇
• ... Rules from SF

This grammar is an addition to the upper one. It retains all the upper rules, but defines

a new start symbol 𝑇 through which it can repeat multiple expressions of SF successively.
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Example: Sentences for NSF

• Leo sagt, dass Thommy meint, dass es morgen schneit und Marie will, dass alles

ok ist.

• Leo sagt, dass Marie will, dass es morgen schneit und Leo will, dass alles ok ist

und Toni will, dass es morgen schneit.

This language, by the above construction, can be said to be equivalent to the language

(𝑎 ∗ 𝑏)∗, which is also star-free, but more complex as it contains two nested points of

recursion. The proof is roughly:

(𝑎 ∗ 𝑏)∗ = 𝑏 ∪ {𝑎, 𝑏} ∗ ◦ 𝑏

For which:

{𝑎, 𝑏}∗ = ∅ ◦ (Σ \ (𝑎 ∪ 𝑏)) ◦ ∅

5.1.3 Dyck-𝑁 experiments

As mentioned before, Dyck-𝑁 denotes the class of languages of correctly nested bracket

expressions consisting of 𝑁 different bracket types, where crosswise parentheses must

not occur (e.g. “([)]” )
For our Dyck-𝑁 experiments, subject-verb congruence is used in German, specifically in

numerus, that is, in number. In the sentence “Die Bärin schwimmt.” (the bear swims), “Die

Bärin” (the bear) is congruent with “schwimmt” (swims), while the word “schwimmen”

(swim) would instead be congruent with a subject in the plural. Moreover, since there is a

verbal phrase for each nominal phrase, the singular and the plural correspond to different

types of parentheses. To achieve nesting, possessive subordinate clauses are used, which

have the property that a new subject-verb pair can be injected into the same sentence

between the nominal and verbal phrases.

According to this reasoning, the sentence “Die Fische, derenWasser stinkt, schwimmen.” is
of the form “[()]” and the sentence “Der Fisch, dessen Flossen, deren Farbe glänzt, schimmern,
schwimmt.” is of the form “([()])”.

In addition to nesting, parallel bracket expressionsmust be allowed. This is accomplished

with the linking word “und”(and), which makes the expression “Der Fisch, dessen Wasser
stinkt und dessen Flossen, dessen Farbe scheint, schimmern, schwimmt und ein Vogel, dessen
Flügel funktionieren, fliegt.” (The fish, whose water stinks and whose fins, whose color shines,
shimmers, swims and a bird, whose wings work, flies.) equivalent to “[()[()]([])”.
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5.1.4 1D

Rules: 1D

• 𝑆 → 𝑆 und 𝑆 .
• 𝑆 → 𝐷𝑁𝑠 𝑉𝑠
• 𝑆 → 𝐷𝑁𝑠 , 𝑃 , 𝑉𝑠
• 𝑇 → 𝑁𝑠 𝑉𝑠
• 𝑇 → 𝑁𝑠 , 𝑃 , 𝑉𝑠
• 𝑃 → deren 𝑇
• 𝑃 → 𝑃 und 𝑃

For 1-Dyck, the singular form is always used (see assumed “s” on derivation rules).

The top main clause (S) requires a determiner in the case of a singular noun; this is not

used in the possessive subordinate clauses 𝑇 . Therefore, there is some duplication in the

derivational rules of 𝑆 and 𝑇 , since for the main clauses 𝐷𝑁𝑠 (“determiner-noun”) must

be used instead of 𝑁𝑠 . Furthermore, there is duplication in the concatenations of main

clauses and subordinate clauses, since in possessive clauses the possessive pronoun must

precede each noun. Consequently, there are two rules for “parallelise” derivations; one for

“outside” and one for “inside”.

Example: Sentences for 1D

• die Tochter, deren Mutter tanzt, lacht und eine Mutter, deren Tochter lacht, tanzt.

↔ (())(())

• diese Bärin, deren Tochter, deren Katja, deren Mutter spielt, lacht, geht, lebt.↔
(((())))

5.1.5 2D

The language 2-Dyck results from what has been discussed so far by adding corresponding

plural rules. To do this, for each rule containing an imputed s in 1D, an identical one is

added, replacing all occurrences with pl instead. Furthermore, only nouns of the feminine

are used for simplification, since for these, the possessive pronoun “deren” in the singular

agrees with the plural. For the sake of clarity, the rules are not listed here.

Example: Sentences for 2D

• die Mutter, deren Tochter schwimmt, singt und die Bären, deren Teller fallen,

liegen..↔ (())[[]]

• die Flaschen, deren Mutter lebt, fliegen und die Katja, deren Hunde stehen, singt.

↔ [()]([])
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5.1.6 LARGE

Furthermore, a large grammar has been employed. For this atis.cfg was used from the

Python Natural Language Toolkit (NLTK) [8], which contains over 4.5k production rules.

Our data-set produced sentences with 448 different Non-Terminals and 611 words. As

we’ve discussed, it is no easy task producing a data set that captures a relevant distribution

of such large grammars. Furthermore, as grammars like this are rather used to parse

existing sentences, than generating new ones, this grammar by design produces odd

sentences that humans cannot make sense of.

Example: Sentences for LARGE

• i need a flight from charlotte to las vegas that makes a stop in saint louis .

• show me flights from chicago to kansas city leaving around seven p.m. thursday .

• can you tell me about the flights from saint petersburg to toronto again .

• you both had this sixth less and they select less francisco they .
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5.2 Tasks

5.2.1 BRACKET

5.2.1.1 Formalism

Given a tree 𝑇 = (𝑉 , 𝐸 ⊂ 𝑉 × 𝑉 ), a set of 𝑐 colors 𝐶 = { 𝑖 | 1 ≤ 𝑖 ≤ 𝑐 } and a coloring

function color : 𝑉 → 𝐶 , we may sequentialize its structure into a bracket expression

sequence 𝑆 = 𝑠1 ◦ . . . ◦ 𝑠𝑛 of a sequence alphabet 𝐴, ∀1≤ 𝑗≤𝑛 : 𝑠𝑖 ∈ 𝐴 . For this we will

first define a bracket pair for each color ∀𝑖∈𝐶 : BL𝑖 ∈ 𝐴 and BR𝑖 ∈ 𝐴 and use the helper

function children : 𝑉 → [𝑉 ]. Furthermore, we will provide a leaf sequentialization

function serializeLeaf : 𝑉 → sequence of 𝐴. We will use the following recursive depth-

first algorithm:

Algorithm 1 SequentialiseTreeNode(Node, color, serializeLeaf)

1: 𝑁 ← Node

2: 𝑖 ← color(𝑁 )
3: if children(𝑁 ) = ∅ then
4: return serializeLeaf (𝑁 )
5: end if
6: 𝑆𝑒𝑞 ← BL𝑖
7: for Node child in children(𝑁 ) do
8: 𝑆𝑒𝑞 ← 𝑆𝑒𝑞 ◦ SequentaliseTreeNode(child, color, serializeLeaf)
9: end for
10: 𝑆𝑒𝑞 ← 𝑆𝑒𝑞 ◦ BR𝑖
11: return Seq

If we pass our root to our algorithm, we get our desired sequence.

Given a formal grammar G = (𝑆, 𝑁𝑇,𝑇 , 𝑃) , a sentence 𝑠 = 𝑠1 . . . 𝑠𝑛 ∈ L(G) and a parse

tree𝑇 = (𝑉 , 𝐸 = 𝑉 ×𝑉 ) for 𝑠 , we may use the above construction to obtain a sequentialized

parse tree. The node color would hereby be their respective terminal or nonterminal. As

non-terminals can yield different, equivalent words (e.g. 𝑁𝑠𝑖𝑛𝑔𝑙𝑢𝑎𝑟 may yield Herbert, the
table or she) and we do nott wish to add a new color for each one of these, we construct

a dictionary oracle D : 𝑁𝑇 → sequence of 𝐴 that returns a random element out of a

predefined set of sequences. It follows serializeLeaf = D.

The task will be, although without initial knowledge of our grammar, to return the

output of SequentialiseTreeNode for a given sentence 𝑠 .

5.2.1.2 Task metrics: Accuracy scores

To recapitulate on transduction tasks, as described in section 2.2: for a given pair (𝑆,𝑇 ) ∈
BRACKET our model will predict 𝑇 , so that 𝑇 and 𝑇 are as near as possible according to

our loss function. 𝑆 and 𝑇 will hereby be sequences of our tokens. Using the tokenization

strategies described in subsection 5.5.2 we end up with two types of tokens. Tokens that are

part of the sequentialized parse-tree (bracket tokens) and tokens that make up the words of

45



5 Experimental Setup

the input sequence (non-bracket tokens). We will use per-token accuracy on bracket-tokens

to measure how much structure our model has learned as opposed to general per-token

accuracy. Unlike similar theoretical research, that is interested in whether a model can fully

produce a given formal language class, our aim is to measure how much of structure our

model learns during regular performance. However, it’s hard to compare a fully generated,

quite-possibly uninterpretable tree with our ground-truth parse-tree. We will thus rather

measure which nodes of the tree were predicted faulty, assuming everything else to be

correct. This means, providing the ground-truth left context, we will measure the predicted

probability distribution 𝑇𝑗 = D𝜃 (Σ𝑡 |𝑡0 . . . 𝑡 𝑗−1) and greedily retrieve the predicted token

𝑡 𝑗 = argmax(𝑇𝑗 ). We can then average the number of correctly predicted tokens in a

sequence or in a batch of sequences to obtain the general per-token accuracy AccM (𝐺)
for our modelM and our grammar 𝐺 . If we instead average over the bracket tokens only

we end up with the bracket accuracy AccM
𝐵𝑅
(𝐺). Comparing these two metrics tells us

whether our model over or under-proportionally predicted bracket tokens, i.e. structure

nodes, incorrectly.

5.2.1.3 Task metrics: Nesting height

Algorithm 2 NestingHeight(Node)

1: if children(𝑁 ) = ∅ then
2: return 0

3: end if
4: 𝑀 ← 0

5: for Node child in children(𝑁 ) do
6: 𝑀 ←𝑚𝑎𝑥 (𝑀,NestingHeight(child))
7: end for
8: return𝑀 + 1

As not all bracket tokens have the same kind of complexity, we will also evaluate this in

regard to how far up in the parse tree the node of the bracket is. We will thus categorize

the bracket tokens according to their nesting height. This is the depth of the subtree

spanned by the node according to the bracket token, which is equivalent to the longest

downward distance from the said node to any leaf node. Algorithm 2 provides pseudo-code

for computing the nesting height of a given node. Note that leafs, i.e., non-bracket tokens,

will have a nesting height of 0. We hypothesize that modulation of performance through

nesting heights correlates with incentivization and capabilities to model hierarchies in a

non-trivial way, i.e. without resorting to statistical heuristics. The following section may

provide a deeper understanding why we judged this metric to be of use.

5.2.1.4 Analytical assumptions

We can divide BRACKET into two subtasks: parsing the input sequence into a tree

structure (PARSE) and copying the sequence entries to their respective place (COPY).
PARSE is the structural component of our task and mimics the desired and correct parsing
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Figure 5.1: Depiction of analytical division of BRACKET into PARSE and COPY. The
dots int the middle represent the output token positions for both tasks, respec-

tively.
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of context-free grammars. Mastering parse is therefore equivalent to learning D𝑁 , where

𝑁 is the number of Non-Terminals of our grammar. Note that this is irrespective of the

employed grammar. Therefore, even for our regular grammars PARSE and by extension

BRACKET will be of the computational level of pushdown automata.

We hypothesize that PARSE becomes more complex and less likely to be approximated

by simple statistical means the higher the level of the parse tree. This is due to two

interacting reasons.

1D 2D SF NSF LARGE Average

Perc(𝐵𝑅≥0) 100% 100% 100% 100% 100% 100 %

Perc(𝐵𝑅≥1) 53.6% 53.9% 53.5% 54.5% 57.9% 54.4 %

Perc(𝐵𝑅≥2) 14.1% 14.9% 13.6% 17.1% 30.1% 16.9%

Perc(𝐵𝑅≥3) 8.8% 9.3% 13.1% 13.9% 10.4% 10.2%

Perc(𝐵𝑅≥4) 5.0% 5.5% 12.7% 10.1% 3.1% 7.1%

Perc(𝐵𝑅≥5) 1.5% 3.2% 12.3% 8.3% 0.5% 5.6%

Table 5.1: Average percentage of bracket tokens of total tokens per training set for tok-

enization strategy T𝑤𝑜𝑟𝑑𝑠 . 𝐵𝑅≥𝑁 means that only brackets have been counted

whose nesting height, that is, the depth of the appropriate subtree, is greater

than or equal to 𝑁 . Non-brackets have nesting heights of 0. The total percentage

of bracket tokens is equal to 𝐵𝑅≥1.

The first reason is decreasing incentives. Our model might not find motivation to learn

PARSE for higher nesting heights, since the reward, that is, decrease in loss, comparatively

decreases the higher the node in the tree. This is due to the fact that higher-level tree

nodes, i.e. nonterminals, cover an increasingly broader area of the input sequence, making

their respective bracket tokens rarer. As seen in table 5.1, the percentage of brackets

decreases drastically with increasing nesting height. We judge tokens of nesting height

one as being trivial, as they only symbolize the words non-terminal and thus do not need

much effort to infer. On average, only 16.9% of all tokens are nontrivial type brackets. In

fact, only 31% of all bracket tokens are nontrivial. Note, that these numbers are even lower

for tokenization with byte-pair encoding, as here words would be split into separate tokens

yielding comparably more non-bracket tokens. This will be discussed in more detail later.

Depending on grammar and a proper definition of triviality, the percentage may be even

lower. For example, for SF and for most subphrases of NSF, the vast majority of opening

brackets, while having high nesting heights, can be inferred by trivial statistical means.

The second reason is the increasing complexity. For a model using a recursively hier-

archical strategy, even if bounded by the layer count, brackets of higher nesting heights

would not necessarily be more complex to identify. However, a model that cannot resort to

such mechanisms will contrarily have more hardship the higher the nesting heights. This

is due to the fact that higher tree nodes logically depend on lower-level tree nodes when

reconstructing the parse tree bottom-up. With no recursively-hierarchical mechanism
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available, uncertainties of stochastic approximation would exponentially multiply.

Thus, PARSEmight become un-rewarding quite fast, especially for narrowly branching

and deep trees. On the other hand, COPY only relies on a rough idea of the general tree

structure, i.e., how many higher-level bracket tokens separate two adjacent words. For

some words, this might even be constantly 0, if they share a subphrase within the tree.

Moreover, non-bracket tokens or lower-level bracket tokens that can be inferred by local

statistical rules will occur more frequently than (higher level) bracket tokens. This makes

learning COPY more rewarding.

Furthermore, note that the separation between PARSE and COPY is analytical in

essence. This means that it is not unthinkable (or it is rather most likely the case) that

certain strategies learned by the model would be useful for both tasks and, moreover, that

advances in one task are strictly dependent on advances in the other. Nevertheless, this

separation holds explanatory power in the sense that we and was therefore chosen to be

used to illustrate reasoning of choices taken by the model.

We will try to affirm this analysis by finding correlations of errors and higher nesting

heights in our experiment. The results can be seen in subsection 6.2.4.
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5.2.2 MASK

5.2.2.1 Formalism

Given a formal grammar G = (𝑆, 𝑁𝑇,𝑇 , 𝑃) , a sentence 𝑠 = 𝑠1 . . . 𝑠𝑛 ∈ L(G), a mask index

𝑚, the mask token [MASK] and the masked sequence 𝑠 = (𝑠1 . . . 𝑠𝑛)

𝑠𝑖 =

{
𝑠𝑖 𝑖 ≠𝑚

[MASK] 𝑖 =𝑚

the task will be to predict the non-terminal of 𝑠𝑚 , i.e. D−1(𝑠𝑚) ∈ 𝑁𝑇 . For our constructed
context-free grammars (1D, 2D) we restrict masking to nouns and verbs. This will be

especially of importance for our analysis, described in the following.

5.2.2.2 Task metric: span width

Wewill analyze performance according to what we said in chapter 4 using a syntactical dis-

tance metric: span width. In the following, we will define it and describe the experimental

setup in greater detail.

Figure 5.2: Span widths in simplified 2D parse tree for an example sentence. For the yellow

leaf node span widths of rank 1, 2 and 3 are shown. Note that span width counts

variables and not tokens, resulting in: 𝑠𝑝𝑎𝑛1 = 2, 𝑠𝑝𝑎𝑛2 = 5 and 𝑠𝑝𝑎𝑛3 = 7.
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Definition: span width

Let G be a context-free grammar, and 𝑠 ∈ G be a sentence of this grammar. Further,

assume that there is exactly one parse tree TG(s) = (𝑉𝑠, 𝐸𝑠) for that word, where
𝑉𝑠 defines all the nodes of that parse tree and 𝐸𝑠 ⊂ 𝑉𝑠 × 𝑉𝑠 defines all the edges.
Naturally, each word of that sentence is a leaf of that tree: ∀𝑤 ∈ 𝑠𝑤 ∈ 𝑉𝑠 . This tree
may be fully described by defining the following 𝑝𝑎𝑟𝑒𝑛𝑡𝑇 : 𝑉𝑠 → 𝑉𝑠 function:

𝑝𝑎𝑟𝑒𝑛𝑡𝑇 (𝑒) =
{
p if ∃!𝑝∈𝑉𝑠 (𝑝, 𝑒) ∈ 𝐸𝑠
e if �!𝑝∈𝑉𝑠 (𝑝, 𝑒) ∈ 𝐸𝑠

Further define the set of Rank 𝑟 ∈ N+ grand-parents by the following:

𝑔𝑟𝑎𝑛𝑑𝑝𝑎𝑟𝑒𝑛𝑡𝑠𝑇𝑟 (𝑒) =
{
{𝑒} if 𝑟 = 0

{𝑝𝑎𝑟𝑒𝑛𝑡𝑇 (𝑔) |𝑔 ∈ 𝑔𝑟𝑎𝑛𝑑𝑝𝑎𝑟𝑒𝑛𝑡𝑠𝑇𝑟−1
(𝑒)} ∪ 𝑔𝑟𝑎𝑛𝑑𝑝𝑎𝑟𝑒𝑛𝑡𝑠𝑇𝑟−1

(𝑒) if 𝑟 > 0

Then we can define the span width of Rank r of a word𝑤 ∈ 𝑠 like so:

𝑠𝑝𝑎𝑛𝑇𝑟 (𝑤) = |{𝑣 |𝑣 ∈ 𝑠 and 𝑔𝑟𝑎𝑛𝑑𝑝𝑎𝑟𝑒𝑛𝑡𝑠𝑇𝑟 (𝑤) ∩ 𝑔𝑟𝑎𝑛𝑑𝑝𝑎𝑟𝑒𝑛𝑡𝑠𝑇𝑟 (𝑣) ≠ ∅}|

So 𝑠𝑝𝑎𝑛𝑇𝑟 (𝑤) denotes the number of words that share a common grandparent with𝑤

up to rank 𝑟 . For context-free grammars those words form a sub-string of 𝑠 . This is due

the tree-structure of their parse trees.

5.2.2.3 Experimental setup

Wewill analyze our task using a combination of our span width metric and the 2D grammar.

By restricting masked words to the verbs and nouns (which resemble the brackets Dyck-2

grammar), we ensure that there will always be a predictor word. The syntactical distance

between those two words will always be the same, while their linear distance may differ.

We will use this to evaluate the data dependency and stability of assumed stochastic

heuristics as described in chapter 4.

More precisely, in the 2D setup, there will be an entangled subject-predicate sharing

a common grammatical number (𝑡 ), whose one part will be masked. For clarity, we will

assume that the verb will be masked and the subject will be visible, but the same will

apply vice versa. In our case, the only word that reliably predicts 𝑡 will be our predictor

noun. The task will now be to pick the right predictor of multiple other possible ones, i.e.

attractors, similarly to subject-verb congruency tests as conducted by Goldberg (2019) [22].

He already showed that performance in the presence of so called“attractors” decreases,

but we will further examine this empirically according to our hypothesis. For this, we

measure the performance with respect to different span widths. For 2D, 𝑠𝑝𝑎𝑛1 will be

especially important, as this will be precisely the length of the subphrase that specifies

the grammatical number of the subject-predicate pair, i.e. the distance between the

masked word and the predictor. Other 𝑠𝑝𝑎𝑛𝑠≥2 should have negligible influence on task

performance as they express broader contexts that do not add any informational value
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to predictions. This can be assumed for idealized, uniformly distributed sentences. If we

still find correlations here, this may hint that predictions are highly dependent on data

distributions learned during training.

5.3 Data Generation

Data generation has the goal of generating a finite number of samples from which an

infinite principle is reconstructable. Therefore, it should aim to produce a representa-
tive distribution of data samples. What representable means remains unclear. The most

straightforward approach would have been to use a probabilisitic context-free gram-
mar (PCFG). Here, each rule for a given Non-Terminal will be assigned a probability. By

iteratively sampling possible derivations, one would then acquire a set of sentences. When

using uneven probabilities, this approach yields unbalanced trees. This might incentivize

the model to learn statistical heuristics. However, using equally distributed probabilities

may lead to gigantic trees that are hard to compute and unsuitable for our models. Instead,

we employed a hybrid approach. Generation is split into two parts: tree building and

derivation.

Given a grammar 𝐺 and a starting symbol 𝑆 during tree building the tree of all possible

derivations would be lazily computed. For this, our tree would have two alternating kinds

of nodes: choice nodes and product nodes.

Example: Computing the possibility tree

Rules: 𝐺𝑒𝑥𝑎𝑚𝑝𝑙𝑒

• 𝑆 → 𝑇𝑈𝑇

• 𝑇 → 𝑆𝑈 | 𝑆𝑆 |𝑈𝑈𝑆
• 𝑈 → 𝑓 𝑖𝑧𝑧 | 𝑏𝑢𝑧𝑧

Suppose we want to compute the possibility tree over 𝑇𝑈𝑇 . This would be equivalent to

all possibilities for 𝑇 concatenated with all posibilities of 𝑈 and concatenated with all

possibilities for 𝑇 again. We may define 𝜋 (𝑋 ) as the set of all possible derivations of 𝑋
and denote our above observation as :

𝜋 (𝑇𝑈𝑇 ) =𝜋 (𝑇 ◦𝑈 ◦ 𝑇 )
=𝜋 (𝑇 ) × 𝜋 (𝑈 ) × 𝜋 (𝑇 ) (5.1)

To compute the possibilities of 𝑇 we get:

𝜋 (𝑇 ) =𝜋 (𝑆𝐼 |𝑆𝑆 |𝑈𝑈𝑆)
=𝜋 (𝑆𝐼 ) ∪ 𝜋 (𝑆𝑆) ∪ 𝜋 (𝑈𝑈𝑆) (5.2)
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We refer to computations like Equation 5.1 as product nodes and to ones like Equation 5.2

as choice nodes. Note, that a product node is constructed by multiplying some choice

nodes, which then again are constructed by multiplying some product nodes etc. We may

recursively compute this tree to some degree, stopping in the case we hit nonterminals.

To retrieve all possible phrases out of a possibility tree we would iteratively collect sub-

phrases from each node, concatenating samples for product nodes and picking one sample

for choice nodes. This was implemented through recursive iterators, upon whom we shall

not further expand here. To make sure the size of our tree does not explode above our

wished data set size, we would only expand leaf nodes after measuring the number of

possibilities. This can be computed by the recursive function defined in algorithm 3.

Algorithm 3 CalculatePossibilities(Node)

1: 𝑁 ← Node

2: childs← children(𝑁 )
3: if childs = ∅ then
4: return 1

5: end if
6: if 𝑁 is of type product node then
7: return Π𝑛𝑖=0

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑃𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 (childs[𝑖])
8: end if
9: if 𝑁 is of type choice node then
10: return Σ𝑛𝑖=0

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑃𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 (childs[𝑖])
11: end if

Given a sample size 𝑇 , the leaf nodes of the lazy tree would then be successively

expanded in a breadth-first manner until the number of possibilities would just exceed

𝑇 . We will thus end up with 𝑃 ≥ 𝑇 leaf nodes, i.e. possible phrases, that may still include

non-terminals. Given 𝑁 ≥ 𝑇 leaf nodes, in the derivation phase those would then be

forcibly derived until the end, i.e., until all variables become terminals. This will be done

in a non-deterministic way, giving production rules that may lead to a faster termination

and were used less frequently a higher chance of being applied.
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Each of these fully derived sentences would then be processed by a task-specific genera-

tor, yielding a number of input-label pairs per sentence.

• For BRACKET, this means bracketing the sentence according to its derivation tree,

as discussed above.

Input: the unaltered sequence.

Label: the parsed tree

• For MASK, this means masking out a single word.

Input: the masked sequence.

Label: the non-terminal representing the class of syntactically equivalent words

This pipeline was generated via a Java generator project spanning over 5.8k lines of

code specifically developed for this purpose. The generator code can be openly retrieved

from Github [45] . The exact data sets used in this work can be obtained by using the

configuration supplied with it, including the random seed.

5.4 Models

5.4.1 Vanilla Sequence-To-Sequence Transformer

For comparison, the Vanilla transformer was used, that is, the original transformer in-

troduced by Vaswani et al. [55]. Prior to passing the input through the Transformer,

the tokens will first be passed through an embedding layer, yielding vectors of the di-

mension of the hidden size on which then the proposed sinusoidal positional encoding

will be conducted. The labels during training will then be passed through the network,

where the decoder is forced to predict next-token probabilities in a left-to-right manner

by supplying a triangular matrix mask to the cross-attention block. This means that for a

given token, only previous predictions may be used to make a choice. After passing the

input through, the predicted token probabilities will then be retrieved by reverting the

embedding through a simple fully connected linear layer, yielding vectors of the size of

the vocabulary. The models performance with 1, 3 and 6 respective encoder and decoder

layers was evaluated. A hidden size of 512 was considered sufficient, as larger sizes did not

contribute to improving model performance. The models will be referenced by SIMPLE1L,
SIMPLE3L, and SIMPLE6L.

5.4.2 Vanilla Classification Transformer

Similarly, a Vanilla classifier transformer was used for the masking and classification task.

After the token prepossessing mentioned above, the input would be passed through a

stacked encoder-only layer on the top of which the BART simple classification head was

placed. For masking experiment, only one configuration was used: 6 encoder and decoder

layers and a hidden size of 512.
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5.4.3 Bidirectional Long Short-Term Memory

A bidirectional long short-term memory was used as a baseline. Once embedded, the

sequence will be successively encoded by one LSTM layer from left to right and then

from right to left, producing vectors of size 2 ∗ hidden size per token. The seq2seq model

will then employ a decoder that aggregates those embeddings using Bahdanau attention

[5]. Similarly, the classification head will instead use this attention mechanism to yield a

probability distribution on the output classes. This mechanism enables the model to focus

on different parts of the input sequence for each step of the output sequence, providing

more flexibility to capture dependencies in variable-length sequences. This mitigates the

bottleneck effect of encoder state aggregation from which most LSTMs suffer, making it

more suitable as a baseline. The model will be referenced by LSTM.

5.4.4 BERT

For the masking task, BERT (Bidirectional Encoder Representations of Transformers) was

used [16]. BERT is, as the name says, a bidirectional encoder-only Transformer. Other

than the vanilla transformer, models build on this architecture are able to access token

positions in both directions during encoding, allowing it to capture intricate language

context. It was trained on large text corpora in an unsupervised way by masking and

then predicting text snippets. The pre-trained model should then be fine-tuned on the

downstream task. As previously described, BERT outperformed most other LLMs when

it was introduced. The two base variants of BERT are BERTBASE and BERTLARGE. For

this work BERTBASE was judged to suffice, having a hidden size of 768 and 12 layers. The

model weights were loaded into huggingfaces BertForSequenceClassification, which is just

BERT with a simple linear layer, normalization and dropout as the classification head. The

model will be referenced by BERTBASE.

5.4.5 BART

For the sequence-to-sequence task, meta’s BART was used [34]. BART is built upon the

BERT bidirectional encoder and the GPT auto-regressive decoder. BART is trained similarly

to BERT by corrupting and predicting large sets of natural language. Due to its encoder-

decoder architecture, its vanilla architecture can be used for sequence-to-sequence tasks,

like the one in this work, more easily. More specifically, the BartForConditionalGenration
model, initialised by the pretrained weights of BARTBASE (6 encoder and 6 decoder layers,

768 hidden size) from huggingface [63] was employed. [34]. The model will be referenced

by BARTBASE.

5.5 Model Configurations

5.5.1 Number of layers

As already mentioned, for the seq2seq task, the effect of the number of layers will be

compared for SIMPLE1, SIMPLE3, and SIMPLE6.
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5.5.2 Tokenization strategy

Byte-Pair Encoding (bpe) is a popular tokenization strategy first described by P. Gage

in 1994 [20]. Starting with characters, it iteratively merges tokens according to their

occurrences within a given corpora. Almost all LLMs prefer bpe over other tokenization

strategies, as they might be too task-specific or unreliant. This leads to rather large

vocabularies with over 50.000 tokens (GPT-3). For comparison: a native English speaker

knows a range of 20.000 to 30.000 vocabulary words.

Although bpe seems a good choice for natural text, subword tokenization, and especially

more granular ones like bpe, do not necessarily contribute anything to formal language

tasks. Formal language tasks have a predefined vocabulary and do not rely on subword

information. However, the language model may exploit subtleties in data sets or grammar-

specific information structures that might be hard for humans to detect. Furthermore,

similar to the findings of Ebrahami et al. (2020) (see chapter 3), the attention mechanisms

may use spare tokens as additional computation space.

In this work, performance of wordwise (T𝑤𝑜𝑟𝑑𝑠 ) tokenization (i.e. each word of the

vocabulary will be a separate token) will be compared to byte-pair encoding (T 𝑏𝑝𝑒 ).
Note furthermore that, regardless of tokenization, bracket tokens used for the tree

parsing task will be tokenized as single tokens. Each respective bracket (opening or

closing) will be tokenized separately. This means that for a grammar containing |𝑁 |
nonterminals and |𝑇 | terminals, there will be 2 ∗ (|𝑁 | + |𝑇 |) bracket tokens. ∀𝑡 ∈ 𝑁 ∪𝑇
we will denote BL𝑖 as the opening token and BR𝑖 as the respective closing bracket token.

5.5.3 Positional Encoding

Transformers are per-se permutation invariant, making them highly parallalizable and

thus efficient to train. On the other hand, this is a disadvantage for position-reliant tasks,

such as language modeling. Thus, some kind of positional information needs to be encoded

into the token embeddings.

We will employ standard positional encodings, meaning that BART and BERT will

keep their learned positional encoding scheme, and the Vanilla transformers will use the

proposed sinusoidal scheme. While other positional encodings, as shown in related work,

may improve model performance for specific tasks, this work focuses on how transformers

employed as LLMs learn syntax in the wild. Performance with different positional encoding

strategies, especially the promising p/n scheme [64], may leave room for future work.

5.6 Training

Allmodels were implemented using PyTorch. Predefinedmodels were loaded fromℎ𝑢𝑔𝑔𝑖𝑛𝑔𝑓 𝑎𝑐𝑒 .

Depending on the task and the model, the following training features were chosen:
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5.6 Training

Dataset entries 80.000 - 120.000

Learning rate {5𝑒 − 7, 5𝑒 − 6, 5𝑒 − 5}
Learning rate scheduler {None, NoamOptim [55]}

Gradient clipping norm {None, 0.5, 1.0}
Token positions {256, 512}

Batch size {4, 8}
Epochs 1-5

Optimizer Adamw
Loss function Cross-Entropy

The training was carried out on a GeForce GTX 1080Ti. Early stopping was used for

models that converged faster, like the pre-trained models, but generally, considering the

size of the data sets, 1-2 epochs would mostly suffice. We tracked validation loss and used

L2 regularization to mitigate the risk of overfitting. Automatic mixed-precission (AMP)

and dynamic batching with rather small batch sizes was used to optimize memory usage,

as our bracket task needed 512 token positions and CUDA memory was running low.

AMP usage, if not carefully conducted, sometimes leads to numerical inaccuracies; due to

this and the nature of task and model design, especially for our Vanilla models, gradient

clipping was occasionally employed to mitigate exploding gradients. Gradients would

hereby be clipped to a threshold value, usally around 0.5. The learning rates would thus

be kept relatively low to allow finding fine adjustments.
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6.1 Notation

For BRACKET we measure bracket accuracies and accuracies for 5 models, 5 grammars

and 2 tokenization strategies.

To provide a clearer notion of which values we are currently talking about, we will

be using (M G TOK) to denote the configuration consisting of modelM, grammar G and

tokenization strategy TOK. If any dimension is missing, we refer to the averaged value

over that dimension. For example,Acc
𝐵𝑅
( (SIMPLE3L T𝑤𝑜𝑟𝑑𝑠 ) ) denotes the bracket accuracy of

SIMPLE3 for word-wise tokenization averaged over all grammars. For only one dimension,

we will not use parentheses. For a given grammar and model, we may also use AccM (𝐺)
to denote the accuracy (or bracket accuracy) averaged over both tokenization strategies.

6.2 Tree Bracketing

6.2.1 Sequence length

a) Loss per input length
b) General accuracy per in-

put length

c) Bracket accuracy per in-

put length

Figure 6.1: Performance in respect to sequence length for BARTBASE and SIMPLE6L on
the grammar 2D.

This section should affirm what we have said so far about modulation by sequence

length. As already stated, we do not necessarily expect our model to generalize well

on out-of-domain data, and thus do not put much emphasis on testing such sequences.

Keeping this in mind, we evaluate our model on data that is both partially in-domain

and out-of-domain. This is done by sampling 30% of the longest string sequences of

our generated data sets, which are not necessarily the longest tokenized sequences. For
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6 Results and analysis

evaluation, we sort our inputs by length to inspect model performance in relation to input

size. The results in Figure 6.1 show that SIMPLE6L and BARTBASE generalize well on this

in-domain training set, although observing a downward trends for the accuracies and an

upward trend for the loss.

Figure 6.2: Full hit accuracy per length. As grammars differ in yielded lengths, the x-axis

denotes the resepctive part of evaluaton set sorted by length. For example, 70%

refers to sequences whose lengths are larger than 70% and smaller than 30% of

the training corpus for their respective grammar.

When measuring the full hit accuracy, i.e., how many sequences were predicted com-

pletely correctly, we observe performance dropping drastically when entering lengths

that were not seen during training. This can be seen in Figure 6.2. This is consistent with

related research and our hypothesis about the limited ability of such models to generalize.

Although not a goal of our research, it would still be interesting to test our models on

even larger inputs to see whether per-token accuracy breaks down completely. We leave

this for future work.

6.2.2 Grammar comparison

1D 2D SF NSF LARGE

Acc 89.6 88.4 93.4 88.8 84.4

AccBR 77.0% 77.0 85.3 78.5 60.3

Table 6.1: Per-token average general (Acc) and bracket (AccBR) accuracy averaged over all

models and tokenization strategies.

For the five grammars 1D, 2D, SF, NSF and LARGE we average scores over all mod-

els and tokenization strategies. The results can be seen in 6.1. As expected, SF per-

formed better than NSF. 1D and 2D, however, performed nearly identical with 1D
only performing slightly better. Furthermore, the constructed context-free grammars

(Acc
𝐵𝑅
(CFG) = 76.97%) performed worse than the regular ones (Acc

𝐵𝑅
(REG) = 81.85%).
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6.2 Tree Bracketing

All the constructed grammars performed overall better than LARGE, where bracket ac-
curacy was especially low. Best performance can be seen on our simple star-free regular

language SF matching expectations.

We are especially surprised to find the bracket accuracies for our context-free grammars

to be nearly identical, as they should rather correlate with tree complexity than general

token accuracy. We hypothesize that the constructed context-free grammars’ complexities

might have been neglectable in contrast to general task complexity. In contrast, the differ-

ence of these two compared to LARGE is substantial, especially apparent regarding the

bracket accuracy. Bracket accuracies, however, were generally subject to more fluctuation,

as they are not per se necessary for low loss values, as we will discuss below.

6.2.3 General model performance

BARTBASE SIMPLE1L SIMPLE3L SIMPLE6L LSTM

1D 99.2% 65.6% 92.2% 92.4% 99.7%

2D 98.5% 59.8% 91.0% 93.3% 99.6%

SF 99.1% 72.0% 98.5% 98.6% 99.5%

NSF 99.2% 67.1% 88.9% 88.9% 100.0%

LARGE 97.2% 59.6% 78.3% 87.2% 99.6%

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 98.6% 64.8% 89.8% 91.9% 99.6%

Table 6.2: Average accuracy scores per model and grammar (AccM (G))

The pretrained BART model outperformed the vanilla model even though both have

the same number of layers. The effects of pre-training will be discussed in subsection 6.2.7.

As seen in the averages scores in Table 6.2, the following hierarchy of model performance

appears to hold more or less:

LSTM ≥ BARTBASE > SIMPLE6L > SIMPLE3L > SIMPLE1L

Matching expectations, LSTM performed slightly better than the best transformer model,

regardless of pretraining. This observation is consistent with related theoretical research,

like [15], who find the syntactical capabilities of LSTMs in theoretical laboratory work to

exceed those of transformer networks.

Furthermore, the layer count turns out to be a modulator of model performance for the

vanilla transformer models.

∀𝐺∈{1𝐷,2𝐷,𝑆𝐹,𝑁𝑆𝐹,𝐿𝐴𝑅𝐺𝐸} AccSIMPLE1L (𝐺) ≤ AccSIMPLE3L (𝐺) ≤ AccSIMPLE6 (𝐺)

underpinning this further. We will illuminate this aspect especially in subsection 6.2.1.
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6 Results and analysis

Figure 6.3: Percentage of erroneously predicted tokens in respect to their nesting height

for (2D T𝑤𝑜𝑟𝑑𝑠 ) .

6.2.4 Performance on structure

6.2.4.1 Performance per nesting height

The data in Table 5.1 already gave a small indication to what we discussed in chapter 5.

Grammars whose bracket heights occur more evenly distributed, like SF and NSF, were
judged less complex and were performed better on, as seen previously in subsection 6.2.2.

To further verify this hypothesis, 10.000 random sequences from our evaluation set were

sampled. The nesting heights of the erroneous tokens were compared, which yielded

the results in Figure 6.3. We observe that our transformer models, except for SIMPLE6L,
were generally more likely to make errors with increasing nesting heights. For these

models, the effect seems to start taking place after a certain threshold. For SIMPLE1L, we
already experience this taking place at nesting height 1 with a jump after nesting height

2. When equipped with two more layers, the vanilla transformer first begins omitting

this effect after nesting height 5. The bracket error percentage for our pre-trained model

only starts to gradually rise after nesting height 7. We hypothesize that these thresholds

might be correlated with the depth limit 𝑁 for learning D𝑘,𝑁 as discussed in chapter 3.

Following this, for nesting heights higher than that bound, our model would need to or be

incentivized to resort to statistical methods, resulting in the observed effect. We observe

these bounds to correlate with model capacities, i.e, number of parameters. To state this
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6.2 Tree Bracketing

with greater certainty, a more detailed analysis regarding those depth bounds would be

appropriate, which we will leave for future work.

In contrast to this, SIMPLE6L and LSTM appeared to have no problem learning even

higher nesting heights. This might mean that either a non-trivial hierarchical strategy

was learned or that the formerly assumed bound was sufficient for this data set. As the

same architecture employing less layers still suffered under said effect, we assume the

latter for the transformer, although future experiments would need to confirm or deny

this assumption.

Predicted Non-Bracket Bracket

True Non-Bracket Bracket Non-Bracket Bracket

BARTBASE 14.4% 3.0% 4.7% 77.9%

SIMPLE1L 69.8% 0.00% 1.0% 29.2%

SIMPLE3L 47.9% 0.5% 0.3% 51.3%

SIMPLE6L 43.3% 6.6% 0.1% 55.0%

LSTM 60.5% 17.9% 16.4% 5.2%

Average 47.18% 5.6% 4.5% 43.72%

Table 6.3: Match percentages of token kinds (non-bracket, bracket) of model mistakes.

We further analyze the kind of errors that our models made in respect to whether they

at least expected the kind of token (non-bracket or bracket token). The data can be found

in Table 6.3. We find that on average, 90.9% of predictions predicted the right kind of

token. Analyzing our data further, we find, although still for our limited sample, nearly

half (43.72%) of made mistakes by models could have been mitigated if brackets had no

annotated type. This finding is strongest for our pretrained model BARTBASE. This would

reduce our problem to be loosely equivalent to D1, which transformers have been found

to learn non-trivially (see chapter 3). Furthermore, to solve COPY robustly, the type of

bracket tokens does not play much role. COPY only relies on predicting where the next

non-bracket token should be placed, which means that only the bare skeleton of our tree

would be necessary.

This may indicate that the model might learn a more restricted structural version than is

necessary by this task. Here, a more elaborate analysis would be quite informative, which

might allow one to clarify whether this behavior indeed occurs as hypothesized, and, if so,

whether it is task-specific or whether transformers generally employ Dyck-1-like parsing.

Surely, repeating this experiment without annotated brackets would yield promising data

for this.

6.2.4.2 Comparing token accuracies

Because the models were trained using standard cross-entropy loss, the accuracy scores

correlate greatly with loss: Higher accuracies generally mean lower losses. Loss computa-

tion does not discriminate between ordinary words or bracket tokens: the more predictions

that match the labels, the lower the loss. This is not necessarily true for the precision of
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1D 2D SF NSF LARGE

Non brackets

T𝑤𝑜𝑟𝑑𝑠 18 24 9 15 611

T 𝑏𝑝𝑒 38 47 21 41 695

Brackets 2 ∗ 9 2 ∗ 11 2 ∗ 5 2 ∗ 7 2 ∗ 298

Table 6.5: De-facto number of unique tokens, i.e. output vocabulary, per data set and

tokenization strategy. Note that BARTBASE has 30.522 possible tokens, of which

only a portion was used in our data sets.

the brackets. Strategies that increase overall accuracy may be learned at the expense of

learning structure. In the following, we will take a closer look on the bracket accuracies

regarding this.

As we have seen, in order to achieve as many correctly labeled tokens as possible, the

model may learn COPY and for low-level bracket types PARSE. We may further measure

this when the loss decreases or, more precisely, when the overall accuracy (Acc) increases,
whereas mastering PARSE would result in an increase in bracket accuracy (AccBR).

BARTBASE SIMPLE1L SIMPLE3L SIMPLE6L LSTM Average

Acc 98.6% 64.8% 89.8% 91.9% 99.6% 88.9%

AccBR 90.3% 21.3% 86.0% 84.0% 96.5% 75.6%

Table 6.4: Model-wise average accuracy and bracket accuracy scores

Given the general loss computation and the above, one would expect the bracket accu-

racy to be generally lower than the general accuracy. This can also be found in the data,

seen in 6.4: average general accuracy (88.9%) is higher than average bracket accuracy

(75,6%), which does also hold for nearly all per-grammar and per-model average accuracies.

There are some notable exceptions when using T𝑤𝑜𝑟𝑑𝑠 . More precisely, these exceptions

occur only for the models SIMPLE3L and SIMPLE6L. Here, bracket accuracies for nearly all
grammars exceed general accuracies: e.g. Acc3𝐿 (𝑁𝑆𝐹 ) = 84, 53% > Acc3𝐿

𝐵𝑅
(𝑁𝑆𝐹 ) = 94, 37%.

Only LARGE is exempt from this. In Table 6.6 this effect can be viewed averaged over all

grammars. BARTBASE, LSTM and SIMPLE1L, and no model employing T 𝑏𝑝𝑒 shows this
effect.

We hypothesize that this may be due to the fact that T𝑤𝑜𝑟𝑑𝑠 has fewer non-bracket to-
kens than T 𝑏𝑝𝑒 , as seen in Table 6.5. As we discussed above, the comparative advantage of

learning COPY instead of PARSE can be modulated by increasing the percentage of trivial

or non-bracket tokens. T 𝑏𝑝𝑒 splits words that would otherwise become separate tokens,

thus increasing the comparative amount of non-brackets, while, by our tokenizer construc-

tion (see subsection 5.5.2), the number of bracket tokens stays the same. More non-bracket

tokens mean a comparatively greater reward for learning COPY. Therefore, learning
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structure will not be as appealing as with T𝑤𝑜𝑟𝑑𝑠 . On the other hand, LARGE already

consists of a large number of different tokens and yields the most complex grammatical

structures. Thus, word-wise tokenization may not substantially improve performance.

SIMPLE3L T 𝑏𝑝𝑒 T𝑤𝑜𝑟𝑑𝑠

Acc 92.35% 87.19%

Acc𝐵𝑅 81.69% 90.25%

SIMPLE6L T 𝑏𝑝𝑒 T𝑤𝑜𝑟𝑑𝑠

Acc 94.42% 89.71%

Acc𝐵𝑅 78.11% 89.84%

Table 6.6: Scores averaged over all grammars for the vanilla with employing three (left)

and six (right) layers.

Why this behavior cannot be observed with the other models may be because they

perform either too well or too bad. SIMPLE1L might simply not have the capacity to

approximate PARSE, as already seen in Figure 6.3. This would rely on approximating

recursive hierarchies and, as already discussed, this would most likely require at least two

layers. On the other hand, BARTBASE and LSTM reach quite similar bracket accuracies as

the vanilla networks, but higher general accuracies. Their general architectural advantage

might push the model to finding more general solutions to the problem instead of greedily

focusing on one of the two subtasks.

6.2.5 Layer size

We previously found that layer size enhances the models’ performance, measured in the

overall accuracy scores seen in Table 6.2. Surprisingly, SIMPLE3L performed extraordinarily

well. Despite the fact that it only had half the layers of SIMPLE6L, it had a comparable

performance to it and even exceeded the accuracy of SIMPLE6L regarding bracket accuracy
(see Table 6.4). This could be explained by one of the constructions of Yao et al. (2021) [64],

who showed how a minimum of two layers are needed for a soft attention transformer

to learn or approximate hierarchy, a core part of context-free languages. To verify this,

further experiments with two layers as well as experiments that compare the attention

patterns found by the ones described by the researchers should be conducted. This would

go beyond the scope of this work.

As for bracket accuracy performance, we have to restrict our previous observation:

LSTM ≥ BARTBASE > SIMPLENL

Regarding the modulation by layer size, while this holds when comparing SIMPLE1L
with SIMPLE3L and SIMPLE6L, we find the average bracket accuracy for the three layer

network to be higher than the six layer network. Furthermore, a more fine-grained analysis

of our data also finds this to be the case for nearly each grammar individually. Combining

this with our finding in subsubsection 6.2.4.1, we hypothesize that SIMPLE3L might have

rather focused on finding strategies for lower-level features, while SIMPLE6L focused

on a rather holistic strategy. Because lower lever brackets occur vastly more often than

higher-level brackets, as already discussed in subsection 5.2.1, this strategy might have

lead to a higher bracket accuracy, although learning less complex structure. Rather than
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emitting inductive biases for the opposite behaviour, we thus observe models to rather

follow task incentives, which is consistent with the analysis by Liu et al mentioned in

chapter 3.

6.2.6 Tokenization strategy

BARTBASE SIMPLE1L SIMPLE3L SIMPLE6L LSTM

T 𝑏𝑝𝑒 T𝑤𝑜𝑟𝑑𝑠 T 𝑏𝑝𝑒 T𝑤𝑜𝑟𝑑𝑠 T 𝑏𝑝𝑒 T𝑤𝑜𝑟𝑑𝑠 T 𝑏𝑝𝑒 T𝑤𝑜𝑟𝑑𝑠 T 𝑏𝑝𝑒 T𝑤𝑜𝑟𝑑𝑠

Acc 99.1% 98.1% 73.6% 56.0% 92.4% 87.2% 94.4% 89.7% 99.6% 99.7%
Acc𝐵𝑅 90.5% 90.1% 33.7% 8.8% 81.7% 90.3% 78.1% 89.8% 95.3% 97.6%

Table 6.7: Scores averaged over all grammars

The general accuracy performance was slightly better withT 𝑏𝑝𝑒 , increasingAcc on average
by 10.9%. This can be attributed to the fact that even when mislabeling a given nonbracket

word at a certain position, subparts of that word that are not captured by T𝑤𝑜𝑟𝑑𝑠 , may

randomly still be correctly predicted.

For SIMPLE1L this improvement was more striking, increasing performance by a total

of 17,5 percantage points or by 31,26% comparatively. Here, the restricted capacities of

having only one layer may have been leveraged by having more token positions at hand.

Furthermore, tokens that do not carry any meaning relevant to the task, e.g. when a token

always precedes a certain other predictor token, may be used for additional computations

similarly to how the starting token in the experiments conducted by Ebrahimi et al.

(2020) [17] was used to indicate the end of a sub-sequence. Generally when employing a

statistical solution to data that by nature of it’s generation shows a certain task independent

information structure the model profits from having more data points, i.e. tokens, as this

increases the probability of finding such.

This might also explain why, when examining bracket accuracies this finding becomes

even more apparent. When using byte-pair encoding, for SIMPLE1L accuracy increased

by 24,9 percentage points which more than quadrupled the bracket accuracy (increase

of 282,5%). For wordwise tokenization, PARSE occupies a larger share of the overall

task, making identifying brackets more important. However, it might have been nearly

impossible for the network to predict bracket tokens in a non-trivial way, due reasions

discussed above. Contrary, for T 𝑏𝑝𝑒 spare tokens may have helped the model to find

statistical heuristics for the bracket tokens, instead.

On the other side for SIMPLE3L and SIMPLE6L, comparative performance of T𝑤𝑜𝑟𝑑𝑠
increased bracketing performance by 9.5% and 13%, respectively. As already discussed,

this may be due to the fact that while the models have the capacity to learn PARSE in

a non-trivial way, they are only incentivized to do so for T𝑤𝑜𝑟𝑑𝑠 , making T 𝑏𝑝𝑒 rather
disadvantageous for increasing bracket accuracy. If this arguments prevails the six layer,

T𝑤𝑜𝑟𝑑𝑠 configuration may be a sweet spot of having the capacities to learn non-trivial

syntactical representations and being highly incentivized to do so. As common language

modeling tasks, including the ones LLMs are trained with, give little to no inclination
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to learn explicit syntactical structures (compared to BRACKET) this finding may hint

that additionally to (or maybe due to) their weak theoretical capacities, large transformer

networks rely on explicit motivation to learn more complex syntactical structures, rather

than relying on low-level statistical heuristics.

6.2.7 Influence of pre-training

We may use this small subsection to summarize findings regarding one aspect of our

experiment: in how far pretraining was beneficial. We have seen that general accuracies

of our pretrained model exceeded that of our vanilla transformer in subsection 6.2.3. We

observed the same thing, although not quite as remarkable, for bracket accuracies in

subsubsection 6.2.4.2. When assessing the heights of the brackets in subsubsection 6.2.4.1

however, we find that BARTBASE, in contrast to SIMPLE6L , starts performing worse for

higher bracket heights. We hypothesize that pretraining, following assumptions by Liu et

al., may incentivize models to learn rather course grained, shallow features, which then

may be employed to find statistical heuristics for more complex features. We cannot state

this with certainty as model architectures, e.g. the positional encoding strategies, differed

between both models. We find this area to be highly promising for future research.

6.2.8 Commaless grammar

BARTBASE SIMPLE1L SIMPLE3L SIMPLE6L LSTM

T 𝑏𝑝𝑒 T𝑤𝑜𝑟𝑑𝑠 T 𝑏𝑝𝑒 T𝑤𝑜𝑟𝑑𝑠 T 𝑏𝑝𝑒 T𝑤𝑜𝑟𝑑𝑠 T 𝑏𝑝𝑒 T𝑤𝑜𝑟𝑑𝑠 T 𝑏𝑝𝑒 T𝑤𝑜𝑟𝑑𝑠

2D Acc 99.1% 97.9% 63.7% 55.9% 94.1% 87.9% 95.1% 91.4% 99.7% 99.5%

Acc𝐵𝑅 87.8% 96.6% 15.3% 10.49% 79.0% 92.0% 94.2% 95.2% 98.7% 99.4%

2D𝐶𝐿
Acc 87.6% 96.1% 62.8% 74.7% 93.9% 89.6% 94.8% 89.9% 99.7% 99.7%

Acc𝐵𝑅 80.0% 96.3% 14.3% 9.4% 82.7% 93.6% 91.5% 94.2% 98.7% 98.7%

Table 6.8: Scores on 2D and 2D𝐶𝐿

We conduct a small comparison study by training our model on 2DCL, which is 2Dwithout

commas. As discussed in chapter 4, our idea behind this is that the commas, being situated

before and after each embedded phrase, may be a strong hint for the desired parse tree.

Our results can be seen in Table 6.8.

We surprisingly find performance to be generally quite similar for all models: Average

general accuracy for 2DCL is at 88.9%, as opposed to 88.4% for 2D, and bracket accuracy

is at 75.9% as opposed to 77.0%. We hypothesize that commas might not be as good of a

predictor as classifying verbs and nouns. These, even for unknown grammatical number,

also tell whether embedded sentences start or end at their respective position. Contrary,

commas do not differentiate between these two types making them weaker predictors.

Testing with a grammar, where the start and end allow the same words would be insightful

here. Having said this, other effects of having less words at hand might have played more

important roles.
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6.3 Masking

6.3.1 General model-wise performance

1D 2D SF NSF LARGE

BERTBASE 100% 99,9% 100% 100% 7,8%

LSTM 100% 98,9% 100% 100% 3,6%

SIMPLE6L 99,9% 83,6% 71,6% 58,1% 3,6%

Table 6.9: Masking accuracies of different models and data sets averaged over T𝑤𝑜𝑟𝑑𝑠 and
T 𝑏𝑝𝑒 .

The general performance onMASK as seen in Table 6.9 shows that performance on our

constructed grammars for BERTBASE and 𝐿𝑆𝑇𝑀 was nearly perfect. LARGE seemed quite

hard to predict, which can be explained by considering the vast amount of non-terminals.

SIMPLE6L had more trouble. We observe, that it generally performed worse on 2D than on

1D and worse onNSF than on SF. Performance across context-free and regular grammars is

hardly comparable as we restricted masking to verbs and nouns (as described in chapter 5)

for the context-free grammars, making the task easier as less candidates are available. We

still observe that grammar wise comparison mirrors grammar complexity clearer than for

our previous task. For our context-free grammars this is amplified by the fact, that the

very thing that makes 2D more complex than 1D, namely the additional bracket type, is

precisely what we test our models for. Accuracy on other token positions will thus not

blur the statistics, resulting in a clearer picture of the complexity of our grammars.

6.3.2 Span width

To inspect whether 𝑠𝑝𝑎𝑛𝑁 had an influence on model performance, the errors of 2D were

compared to the respective span width of the masked token. We measured the percentage

of errors in the evaluation data and compared it with 𝑠𝑝𝑎𝑛𝑁 of that word for 𝑛 ∈ {1, 2, 3}.
The results for 𝑠𝑝𝑎𝑛1 can be seen in the diagram 6.4. This was first measured for our regular

evaluation data set, resulting in the diagrams to the left. Note that the drawn lines serve

the purpose of illustrating the possible distributions. Our experiment is discrete in nature

(either the model correctly classifies a token or it does not), and data set span widths are

not equidistant, so assumptions over distributions are necessary. The yellow line assumes

normal distribution per data point, and the blue line is a simple spline interpolation.
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SIMPLE6L

BARTBASE

LSTM

Figure 6.4: Inaccuracy percentages per 𝑠𝑝𝑎𝑛1 for different models on 2D (left) and 2DSPAN
(right). Distributions are not normalized. The strength of the data points

indicate how often they have occurred.
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To further verify this and mitigate the risk of influence of other variables, the model was

tested on a new data set 2DSPAN ⊂ L(2D) that was crafted just for this purpose. As the

sequence length is a known modulator for the performance of the transformer, we ensured

that all sentences in 2DSPAN are more or less the same length (Δ𝐿𝑒𝑛𝑔𝑡ℎ𝑠 ≤ 8). Additionally,

2DSPAN was designed to cover higher spanning widths that did not occur in the original

training set. 2DSPAN could be loosely described in the following way:

Definition: 2DSPAN

Let𝑁 be the desired sequence length. To generate input-label pair, sample𝑛 ∈ [0, 𝑁 ].

𝑆 → 𝑁𝑃𝑠 , deren pump(n) , 𝑉𝑃𝑠 und pump(N − n)
𝑆 → 𝑁𝑃𝑝 , deren pump(n) , 𝑉𝑃𝑝 und pump(N − n)

where pump(n) returns a random sub-phrase of length 𝑛. This was constructed by

using the linking word “und” in combination with arbitrary simple phrases.

As sequences within this data set, while part of the same grammar, were generated using

another sampling and generation method, we will call those samples out-of-distribution,
not to be confused with sequences that exceed span widths seen during training, that

we will call out-of-domain. More precisely, all samples with 𝑠𝑝𝑎𝑛1 > 12 will already be

called out-of-domain as they lay within the last percentage of seen 2D span widths of rank

1 (Regarding 𝑠𝑝𝑎𝑛1 for 2D: 𝜇 = 4.01, 𝜎2 = 14.54,min = 0,max = 47).

The results for 2DSPAN can be viewed on the right-hand side of the figure 6.4. We can

see that, while SIMPLE6L generalizes well on in-domain and in-distribution samples, it

fails to do so for out-of-domain or out-of-distribution samples, indicating both a ten-

dency to employ statistical heuristics and a modulation of performance by span width.

In particular, out-of-distribution samples that lie in-domain seem to confuse it, scoring

accuracies partially far below the (nearly) zero-knowledge probability (50%), approaching

it only for larger out-of-domain inputs. Lack of out-of-distribution generalization can

also be seen for BARTBASE. Here, performance for in-distribution but out-of-domain

span widths is surprisingly well, solving the task reliably even for span widths up to

45. However, this behavior cannot be observed for our out-of-distribution set, where,

similarly to SIMPLE6L, the percentage of inaccuracy increases rapidly after span widths

of around 15. Thus, BARTBASE seems to have found better heuristics for our original data

set that are nevertheless statistical in essence, otherwise the same performance would

have been observed for 2DSPAN. Note here that this distribution overfitting is quite likely

to have occurred, considering that BERTBASE employs twice the number of layers as our

vanilla model. For our LSTM, employing only one layer, we observe an increase in the

percentage of inaccuracies for out-of-domain but in-distribution span widths, similar to

SIMPLE6L. Contrary to our transformer models, for out-of-distribution data, the same

behavior can be observed: only domain seems to modulate inaccuracies, indicating a rather

distribution-invariant learning approach for out task. This is consistent with our prior

hypothesis, stating that Transformer networks, contrary to more automata-like models,
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may be rather vulnerable to settle for statistical heuristics.

To further validate this claim, we look at higher span widths. Following our aforemen-

tioned explanation, those should have a negligible influence on task performance. If we

nevertheless observe a correlation, this could also be an indicator that exceptionally large

sequences break statistical heuristics (which rely on broader contexts).

Figure 6.5: Correlation to 𝑠𝑝𝑎𝑛1 of pure span widths (left) and delta span-widths (right).

However, observing 𝑠𝑝𝑎𝑛2 and 𝑠𝑝𝑎𝑛3 directly might not be a good idea because 𝑠𝑝𝑎𝑛1

correlates with them:

∀𝐿∈𝐿(𝐶𝐹𝐺)∀𝑤∈𝐿∀𝑁∈N+ : 𝑠𝑝𝑎𝑛𝑁 (𝑤) ≤ 𝑠𝑝𝑎𝑛𝑁+1(𝑤)

High 𝑠𝑝𝑎𝑛2 and 𝑠𝑝𝑎𝑛3 therefore may highly correlate with high 𝑠𝑝𝑎𝑛1, as seen in Figure 6.5.

Instead, we examine the correlations of the delta of higher span widths to 𝑠𝑝𝑎𝑛1 (𝑠𝑝𝑎𝑛Δ2

1

and 𝑠𝑝𝑎𝑛Δ3

1

) with inaccuracies. We do this only for in-distribution data, since 2DSPAN, by

construction, has neglectable span deltas. It would be interesting to verify this finding

with another out-of-distribution data-set specifically crafted for this purpose.
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The results can be seen in Figure 6.6. As expected, our LSTM seems to be indifferent

to high delta spans. So does BARTBASE, although we might trace this to its general in-

distribution performance. We find a mild correlation of 𝑠𝑝𝑎𝑛Δ2

1

and a stronger correlation

of 𝑠𝑝𝑎𝑛Δ3

1

to the performance of SIMPLE6L. This seems quite surprising, as theoretically

we could construct arbitrary samples of any 𝑠𝑝𝑎𝑛Δ3

1

with small 𝑠𝑝𝑎𝑛1 that should be just

as easy to solve as the bare sub-phrase of 𝑠𝑝𝑎𝑛1 leaving us with no apparent causal depen-

dency between 𝑠𝑝𝑎𝑛Δ3

1

and 𝑠𝑝𝑎𝑛1. Of course, such dependencies cannot be ruled out for

this specific test set-up.

The size of the super-trees, in which the mask phrase is embedded, seems to modulate

performance here. Assuming a statistical approach, this might not be surprising: if you

have no reliable way of recognizing your sub-phrase (and thus your predictor), you may

want to find statistical regularities that help you in finding its area. Similar to predicting

the kind of leaf node within a simple subtree by statistical means, you can predict the

kind of simple subtree embedded within your larger super tree. This might explain why

larger contexts are considered. Larger supertrees generally occur in a higher variety than

smaller ones. Masked words with smaller contexts (or slimmer sup-trees) are thus more

suitable to be approximated statistically than larger ones. This is amplified by the fact that

if we sample trees in a nearly equally distributed way, larger trees occur less often than

smaller ones. This means that tokens near the masked token are more likely to be similarly

structured the smaller the super tree is. This might explain why even for broader contexts,

an increase in size may influence model performance. For a proper analysis on this part

(and to proof or disproof our assumption for BARTBASE for out-of-distribution data), we

would need to test out-of-distribution examples, too, as well as eliminate the factor of

sequence length, to see if our assumptions uphold. Nevertheless, if this argument prevails,

this may be a hint that transformers employing attention mechanisms, while, by doing

so, theoretically overcoming limitations of restricted context accessibility (compare to

vanishing gradient problem for RNNs), might be inclined to learn large statistical context

dependencies on sufficiently distributed data sets even for tasks where an optimal solution

would require learning efficient and restricted contexts, e.g. congruency in language. Here

may be great potential for future work.
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SIMPLE6L

BARTBASE

LSTM

Figure 6.6: Inaccuracy percentages per 𝑠𝑝𝑎𝑛Δ2

1

(left) and 𝑠𝑝𝑎𝑛Δ3

1

(right) for different models

on 2D. Distributions are not normalized. The strength of the data points

indicates how often they have occurred.
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7 Discussion

7.1 Main insights

We tried to show what kind of research can be conducted under our hypothesis stated in

chapter 4. For our BRACKET task, we found that models need strong incentives to learn

structure, as opposed to statistical heuristics. In subsection 6.2.4 we find evidence that

transformer models focus on lower level syntactical features over which approximations

for higher level structure may be obtained. Rather than finding an inductive bias that

purposely drives the model to build complex grammatical structures, we have reason to

believe that task design rather needs to force it to do so – for example, by increasing

comparative loss for structural components, as we observed for tokenization strategies

in subsection 6.2.6. This is consistent with the analysis shared by Liu et al. (2019) [37],

who emphasize pre-training-specific learning in LLMs. We find hints that models to

approximate the task over less complex structural constructs, i.e. D1, for which related

research has provided us with reasons to believe they are instead capable of. Furthermore,

we observe how sequence level metrics, like our general accuracy metric, but even for

our more refined bracket accuracy metric, do not necessarily justify judgement about

learned syntactical abilities. Performance may very well come at the expense of learning

less complex structures. Having found all of this on a task that provides explicit incentive

to learn structural representations, we may only speculate that this behavior also prevails

for common pretraining tasks.

For our second task,MASK, we find that, rather than containing inductive biases that

drive models to learn syntax-drivenmetrics, as humans do, the models’ induction principles

compute over the linear order of the words. We further find that models seem to be vastly

distribution-dependent, with stochastical heuristics breaking for out-of-distribution data.

In the course of this, we show how not only overly long inputs, but even extremes of other

seemingly irrelevant metrics seem to break approximations, when they correlate with

data distributions. As similar in implementation, our findings could furthermore provide

theoretical understanding of the factors leading to some deficits in agreement tasks.

7.2 Limitations of our work

7.2.1 General limitations of our work

As stated in chapter 4 this is a broad exploratory study with the aim of showing areas where

finer-grained future work may provide further information regarding our hypothesis. We

can therefore only validate findings regarding our specific test setup. We cannot certainly

state that other model architectures using different training methods would have produced

75



7 Discussion

different outcomes. Perhaps small changes to some of our models, like different positional

encoding schemes or different model parameters, would have equipped our models with

the syntactical inductive bias we were hoping to find. Neither can we be sure that other

grammars or sample methods thereof may be more suitable for our models to develop

such abilities.

7.2.2 Task specific limitations

Regarding BRACKET, some aspects of task design may have played a crucial role. Our

metric choice of bracket accuracy could have been too restrictive or too loose. Correct

guessing of brackets might have been more correlated with other factors than with the

incentive of the model to “learn structure” and, as such, might have been too loose. On

the other hand, a given set of sentences can be produced by arbitrarily many grammars.

So, even when provided with the correct bracket types, our model might have learned

different grammars with slightly different syntactical representations whose performance

this task might not have captured. As such, our metrics might have been too restrictive.

Furthermore, our task design, which is similar to parsing some variant of Dyck-N, might

have been simply too complex. Perhaps, choosing brackets to have no types instead,

rendering this task equivalent to Dyck-1, would already suffice to find different behaviors.

Finally, the per-token approach, while more suitable for our purposes, has the downside

of limited expressivity of evaluation data regarding the unguided generation of such

sequences. Depending on the sampling method, the results of our models in real scenarios

would differ. As our research had the ambition to analyze where difficulties may lie, instead

of testing the realizability of our task, we still chose to use it. We must still admit that our

high accuracy scores should not be taken as reasons to believe that our models had only

minor difficulties of learning this task. In fact, even when provided with the entire left

context of the label sequence, only a few percentage of overall produced sequences were

completely correct.

For MASK we can state similar things about span width. We could not rule out the

possibility of other correlations of other more important effects of our data set on span

width performance. As such, a more granular metric, such as counting the syntactical

distance per tree node, might have been more representative. As span widths were rather

unevenly distributed and classifying tasks produce binary results, it proved hard to find

continuous trends or correlations within discrete data points. As such, caution should be

exercised when inferring statements on such results, especially for outliers in the data set.

Therefore, the expressiveness of our results should be further validated.

7.2.3 Limitations of applicability to field work

As we have often noted, it is difficult to assert the applicability of theoretical research to

models “in the wild”. For one, we can only hypothesize that our tasks provide more or

comparable incentives to the model to learn structure than the various pre-training tasks

that are performed with LLMs. For another, our work focused on some formal grammars

that, in the end, may not have as much significance for natural language. Despite the

fact that we tried to mitigate the gap to field research by finding learning tendencies, we
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cannot state for sure which behaviors prevail or emerge for large models, being trained

on a vast amount of real data. Therefore, under our stated hypothesis, only findings in

large, pre-trained language models can fully free us from doubt.

7.2.4 Discussion on the significance of our hypothesis

In our previous chapters, especially chapter 1, chapter 3 and chapter 4 we elaborated on the

broader motivation of our hypothesis. Assuming that our hypothesis can be upheld, LLMs,

as currently employed, may indeed be incapable of learning the true generative process

of context-free languages and, by extension, of human language. We explained briefly

how this deficit implies that the parsed syntactical – and thus semantical – meanings of

sentences will therefore be unavailable for such models. Similarly, language generation

will follow distributions of statistical rules of lower-level grammatical constructs with

only limited knowledge of the meaning of the chosen syntax.

However, it remains unclear to what extent this disability becomes relevant for the pro-

ficiency in translation, summarizing, and other applications in most real-world scenarios.

After all, having access to a vast amount of statistical heuristics, models seem well suited

to produce in-distribution, sound sentences, judged by their overwhelming success. For

sufficient bounds of language, research can show that the approximation abilities of such

models are extraordinary. As an example, the finding of the ability to recognize bounded

hierarchical constructs by Yao et al. (2021) can be named [64]. Regardless of the heated

linguistic debate, in how far such findings are relevant to questions about the power of

human language, externalized human language distributions seem to be well encaged by

such bounds. One might thus justifiably question the importance of such measures of

syntax for the design of LLMs. LLMs, one could argue, do not serve theoretical linguistic

curiosity. They should rather be viewed as sophisticated, engineered tools to take over

language related tasks. Just as an image generating network may have no “real” under-

standing of what characterizes a dog, both networks nonetheless may produce sufficient

approximations for the purposes they are used for.

Following this view, one would be rather interested in where the limits of such ap-

proaches, i.e. statistical approximations over vast amount of data, lie. These limits would

be rather qualitative in essence and thus not easily attainable. One possible approach

would be to examine field findings in terms of nesting depth, to state with greater certainty

whether transformers generally learn depth restricted languages and if so, whether 𝑘 lies

in dimensions that reveal this deficit in real world scenarios.

In conclusion, the significance of this work depends on the goals one seeks to achieve.

For tasks such as text summarizing and sentiment analysis, the nuances of linguistic

theory may matter less than the models’ practical effectiveness. Nevertheless, a deeper

exploration of the boundaries of these models’ language understanding capabilities can

provide valuable insights and guide the development of future language technologies.
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7.3 Future work

In the process of conducting our analyzes in chapter 6, we came across many areas where

further work would be necessary to produce more certain statements or complement our

study. We may use this section to emphasize a few and name some more questions that

have arisen during our work.

Regarding BRACKET we would be interested in further analyzing which parts of

grammars are particularly complex for our model to form heuristics about. If we find such,

we might have a better understanding of how far these findings apply to natural language.

Furthermore, as discussed in subsection 6.2.4, we would be interested in conducting our

experiments with untyped brackets, to see whether performance, especially for higher-level

brackets, increases. If so, this could be a hint that such models tend to parse the structure

of sentences, while still hierarchical, without creating explicit syntactical nodes. This

could be complemented by repeating the study by Hewitt and Manning (2019), but instead

by probing with typed trees [26]. Generally, more detailed studies on the inductive biases

of learned syntactical structures and approximation strategies would be quite enlightening.

Further work regarding other aspects of our methodology and model and data design

aspects should also be carried out to verify our findings.

Regarding MASK, we find further experiments concerning the sensibility to data distri-

butions quite promising. Above all, we look forward on narrowing down what features

primarily constitute data distributions. Having figured out what kind of data distributions

force the strongest generalizabilty out of our model, it will be easier to train models that

learn more complex structures and thus solve tasks more reliably. We would also like to

know if the observed effect can be mitigated through different tasks or architectures. We

especially look forward for more research regarding models equipped with differentiable

memory, as related work showed promising results.

Overall, the futurework should aim to deepen our understanding of howneural networks

learn or approximate syntax and shed light on the limits of these models in capturing the

intricacies of human language. By addressing these aspects, future research can provide

valuable insights into the capabilities and boundaries of language models, informing the

development of more advanced and effective language technologies.
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This research addressed the theory-practice gap in understanding how transformer net-

works learn and represent syntactical structures in languages. The central hypothesis

posits that, while transformers can effectively model a substantial portion of human

language, their computational limitations constrain their ability to discover overarching

generative principles of language. Instead, these models may rely on statistical heuristics

to approximate syntax, guided by their inductive biases and task-specific incentives.

Our study explores this hypothesis through two primary tasks: BRACKET andMASK.
For BRACKET, it is revealed that models require strong incentives to learn structure

over statistical heuristics. The findings suggest that models often focus on lower-level

syntactical features, from which approximations of higher-level structures are derived.

The research questions the existence of inductive biases that promote the development of

complex grammatical structures, proposing that task design may need to compel models

in this direction.

MASK and analyzation thereof delves into how models rely on linear word order

rather than syntax-driven metrics, contrasting with human language comprehension.

The research uncovers the model’s dependence on data distributions, with statistical

heuristics breaking when faced with out-of-distribution data. The study demonstrates

how seemingly irrelevant metrics can influence model performance when correlated with

data distributions.

While our research offers valuable insights, we acknowledge certain limitations. It

primarily validates findings within the specific test setup, acknowledging the potential

influence of alternative model architectures, training methods, and grammars. Task-

specific limitations, such as metric choice and task design, are acknowledged, emphasizing

the need for further validation and exploration. The study also highlights the challenges in

applying theoretical research findings to real-world large language models, emphasizing

the significance of future work on such models. We furthermore shortly elaborate on

the the possible significance of our hypothesis, finding that while such behaviours may

indeed prohibit transformers from “real” syntactical and thus semantical understanding,

this might not impair its overwhelming success in its areas of application.

In conclusion, this research contributes to our understanding of how transformer models

learn and represent syntactical structures in language, shedding light on the interplay of

computational limitations, inductive biases, and task design. It paves the way for more fine-

grained future work and complements the broader discourse on the syntactical capabilities

of large language models.

79





Bibliography

[1] Joshua Ackerman and George Cybenko. A Survey of Neural Networks and Formal
Languages. Tech. rep. ZSCC: 0000007 arXiv:2006.01338 [cs] type: article. arXiv, June
2020. doi: 10.48550/arXiv.2006.01338. url: http://arxiv.org/abs/2006.01338

(visited on 09/04/2023).

[2] Hessameddin Akhlaghpour. Transformers Aren’t Turing-complete, But a Good Dis-
guise Is All You Need - Life Is Computation. en-US. ZSCC: NoCitationData[s0]. Apr.
2023. url: https://www.lifeiscomputation.com/transformers-are-not-turing-

complete/ (visited on 11/06/2023).

[3] Jean-Michel Autebert, Jean Berstel, and Luc Boasson. “Context-free languages and

pushdown automata”. In: Handbook of Formal Languages: Volume 1 Word, Language,
Grammar (1997), pp. 111–174.

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization. Tech.
rep. ZSCC: 0009308 arXiv:1607.06450 [cs, stat] type: article. arXiv, July 2016. doi:

10.48550/arXiv.1607.06450. url: http://arxiv.org/abs/1607.06450 (visited on

11/05/2023).

[5] Dzmitry Bahdanau, KyunghyunCho, and Yoshua Bengio.NeuralMachine Translation
by Jointly Learning to Align and Translate. Tech. rep. ZSCC: 0000005 arXiv:1409.0473
[cs, stat] type: article. arXiv, May 2016. doi: 10.48550/arXiv.1409.0473. url:

http://arxiv.org/abs/1409.0473 (visited on 11/12/2023).

[6] Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. “On the Ability and Limitations

of Transformers to Recognize Formal Languages”. In: (Sept. 2020). arXiv: 2009.11264

[cs.CL].

[7] Satwik Bhattamishra, Arkil Patel, and Navin Goyal. On the Computational Power of
Transformers and its Implications in Sequence Modeling. Tech. rep. ZSCC: 0000031
arXiv:2006.09286 [cs, stat] type: article. arXiv, Oct. 2020. doi: 10.48550/arXiv.2006.

09286. url: http://arxiv.org/abs/2006.09286 (visited on 10/03/2023).

[8] Steven Bird, Ewan Klein, and Edward Loper.Natural language processing with Python:
analyzing text with the natural language toolkit. " O’Reilly Media, Inc.", 2009.

[9] Pauli Brattico. “Recursion Hypothesis Considered as a Research Program for Cogni-

tive Science”. en. In: Minds and Machines 20.2 (July 2010). ZSCC: 0000017, pp. 213–

241. issn: 1572-8641. doi: 10.1007/s11023-010-9189-8. url: https://doi.org/10.

1007/s11023-010-9189-8 (visited on 10/30/2023).

[10] TomB. Brown et al. LanguageModels are Few-Shot Learners. Tech. rep. ZSCC: 0015354
arXiv:2005.14165 [cs] type: article. arXiv, July 2020. doi: 10.48550/arXiv.2005.

14165. url: http://arxiv.org/abs/2005.14165 (visited on 10/16/2023).

81

https://doi.org/10.48550/arXiv.2006.01338
http://arxiv.org/abs/2006.01338
https://www.lifeiscomputation.com/transformers-are-not-turing-complete/
https://www.lifeiscomputation.com/transformers-are-not-turing-complete/
https://doi.org/10.48550/arXiv.1607.06450
http://arxiv.org/abs/1607.06450
https://doi.org/10.48550/arXiv.1409.0473
http://arxiv.org/abs/1409.0473
https://arxiv.org/abs/2009.11264
https://arxiv.org/abs/2009.11264
https://doi.org/10.48550/arXiv.2006.09286
https://doi.org/10.48550/arXiv.2006.09286
http://arxiv.org/abs/2006.09286
https://doi.org/10.1007/s11023-010-9189-8
https://doi.org/10.1007/s11023-010-9189-8
https://doi.org/10.1007/s11023-010-9189-8
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.48550/arXiv.2005.14165
http://arxiv.org/abs/2005.14165


Bibliography

[11] N. Chomsky and M.P. Schützenberger. “The Algebraic Theory of Context-Free

Languages”. In: Computer Programming and Formal Systems. Elsevier, 1959, pp. 118–
161. doi: 10.1016/s0049-237x(09)70104-1.

[12] Noam Chomsky. “Deep structure, surface structure and semantic interpretation”.

In: 1971 (1971), pp. 193–216.

[13] Rina S Cohen and Janusz A Brzozowski. “Dot-depth of star-free events”. In: Journal
of Computer and System Sciences 5.1 (1971), pp. 1–16.

[14] Michael C Corballis. “Recursion as the key to the human mind”. In: From Mating to
Mentality. Psychology Press, 2004, pp. 155–171.

[15] Grégoire Delétang et al. “Neural Networks and the Chomsky Hierarchy”. In: (July

2022). arXiv: 2207.02098 [cs.LG].

[16] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding”. In: (Oct. 2018). arXiv: 1810.04805 [cs.CL].

[17] Javid Ebrahimi, Dhruv Gelda, and Wei Zhang. How Can Self-Attention Networks
Recognize Dyck-n Languages? Tech. rep. ZSCC: 0000010 arXiv:2010.04303 [cs] type:
article. arXiv, Oct. 2020. doi: 10.48550/arXiv.2010.04303. url: http://arxiv.

org/abs/2010.04303 (visited on 02/09/2023).

[18] Jeffrey L Elman. “Finding structure in time”. In: Cognitive science 14.2 (1990), pp. 179–
211.

[19] Florian P Fischmeister et al. “Self-similarity and recursion as default modes in human

cognition”. In: Cortex 97 (2017), pp. 183–201.

[20] Philip Gage. “A new algorithm for data compression”. In: The C Users Journal archive
12 (1994), pp. 23–38. url: https://api.semanticscholar.org/CorpusID:59804030.

[21] Seddah Ganesh JawaharBenoît SagotDjamé. “What does BERT learn about the

structure of language?” In: 2019.

[22] Yoav Goldberg. Assessing BERT’s Syntactic Abilities. 2019. doi: 10.48550/ARXIV.
1901.05287.

[23] Michael Hahn. “Theoretical Limitations of Self-Attention in Neural Sequence Mod-

els”. In: Transactions of the Association for Computational Linguistics 8 (Dec. 2020),
pp. 156–171. doi: 10.1162/tacl_a_00306.

[24] Morris Halle. From memory to speech and back: Papers on phonetics and phonology
1954-2002. Vol. 3. Walter de Gruyter, 2013.

[25] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778.

[26] John Hewitt and Christopher D. Manning. “A Structural Probe for Finding Syn-

tax in Word Representations”. In: Proceedings of the 2019 Conference of the North.
Association for Computational Linguistics, 2019. doi: 10.18653/v1/n19-1419.

[27] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-term Memory”. In: Neural
computation 9 (Dec. 1997). ZSCC: 0092980, pp. 1735–80. doi: 10.1162/neco.1997.9.

8.1735.

82

https://doi.org/10.1016/s0049-237x(09)70104-1
https://arxiv.org/abs/2207.02098
https://arxiv.org/abs/1810.04805
https://doi.org/10.48550/arXiv.2010.04303
http://arxiv.org/abs/2010.04303
http://arxiv.org/abs/2010.04303
https://api.semanticscholar.org/CorpusID:59804030
https://doi.org/10.48550/ARXIV.1901.05287
https://doi.org/10.48550/ARXIV.1901.05287
https://doi.org/10.1162/tacl_a_00306
https://doi.org/10.18653/v1/n19-1419
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735


[28] Aravind Krishna Joshi. “Tree adjoining grammars: How much context-sensitivity is

required to provide reasonable structural descriptions?” In: (1985).

[29] Laura Kallemeyer. Seminar Schwach kontextsensitive Grammatikformalismen. 2011.
url: https://user.phil.hhu.de/~kallmeyer/GrammarFormalisms/.

[30] Laura Kallmeyer. “Linear Context-Free Rewriting Systems”. In: Language and Lin-
guistics Compass 7.1 (2013), pp. 22–38.

[31] Fred Karlsson. “Constraints on multiple center-embedding of clauses”. en. In: Journal
of Linguistics 43.2 (July 2007). ZSCC: 0000238, pp. 365–392. issn: 1469-7742, 0022-

2267. doi: 10.1017/S0022226707004616. url: https://www.cambridge.org/core/

journals/journal-of-linguistics/article/abs/constraints-on-multiple-

centerembedding- of- clauses/9FB5CD5B24A8742C7CD18D84BC656CB5 (visited on

10/05/2023).

[32] Surafel M. Lakew, Mauro Cettolo, and Marcello Federico. A Comparison of Trans-
former and Recurrent Neural Networks on Multilingual Neural Machine Translation.
Tech. rep. ZSCC: 0000130 arXiv:1806.06957 [cs] type: article. arXiv, June 2018. doi:

10.48550/arXiv.1806.06957. url: http://arxiv.org/abs/1806.06957 (visited on

10/16/2023).

[33] Howard Lasnik and Jeffrey Lidz. “The argument from the poverty of the stimulus”.

In: (2016).

[34] Mike Lewis et al. BART: Denoising Sequence-to-Sequence Pre-training for Natural
Language Generation, Translation, and Comprehension. Tech. rep. ZSCC: 0006732
arXiv:1910.13461 [cs, stat] type: article. arXiv, Oct. 2019. doi: 10.48550/arXiv.1910.

13461. url: http://arxiv.org/abs/1910.13461 (visited on 10/10/2023).

[35] Jeffrey Lidz, Sandra Waxman, and Jennifer Freedman. “What infants know about

syntax but couldn’t have learned: experimental evidence for syntactic structure at

18 months”. In: Cognition 89.3 (2003), pp. 295–303.

[36] Bingbin Liu et al. Transformers Learn Shortcuts to Automata. Tech. rep. ZSCC:
NoCitationData[s0] arXiv:2210.10749 [cs, stat] type: article. arXiv, May 2023. doi:

10.48550/arXiv.2210.10749. url: http://arxiv.org/abs/2210.10749 (visited on

10/05/2023).

[37] Nelson F. Liu et al. Linguistic Knowledge and Transferability of Contextual Repre-
sentations. Tech. rep. ZSCC: 0000660 arXiv:1903.08855 [cs] type: article. arXiv, Apr.
2019. doi: 10.48550/arXiv.1903.08855. url: http://arxiv.org/abs/1903.08855

(visited on 10/16/2023).

[38] Robert McNaughton and Seymour A Papert. Counter-Free Automata (MIT research
monograph no. 65). The MIT Press, 1971.

[39] Christopher Olah. Understanding LSTM Networks. Aug. 2015. url: https://colah.
github.io/posts/2015-08-Understanding-LSTMs/.

[40] OpenAI. OpenAI Platform. en. ZSCC: NoCitationData[s0]. url: https://platform.

openai.com/tokenizer (visited on 10/15/2023).

83

https://user.phil.hhu.de/~kallmeyer/GrammarFormalisms/
https://doi.org/10.1017/S0022226707004616
https://www.cambridge.org/core/journals/journal-of-linguistics/article/abs/constraints-on-multiple-centerembedding-of-clauses/9FB5CD5B24A8742C7CD18D84BC656CB5
https://www.cambridge.org/core/journals/journal-of-linguistics/article/abs/constraints-on-multiple-centerembedding-of-clauses/9FB5CD5B24A8742C7CD18D84BC656CB5
https://www.cambridge.org/core/journals/journal-of-linguistics/article/abs/constraints-on-multiple-centerembedding-of-clauses/9FB5CD5B24A8742C7CD18D84BC656CB5
https://doi.org/10.48550/arXiv.1806.06957
http://arxiv.org/abs/1806.06957
https://doi.org/10.48550/arXiv.1910.13461
https://doi.org/10.48550/arXiv.1910.13461
http://arxiv.org/abs/1910.13461
https://doi.org/10.48550/arXiv.2210.10749
http://arxiv.org/abs/2210.10749
https://doi.org/10.48550/arXiv.1903.08855
http://arxiv.org/abs/1903.08855
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://platform.openai.com/tokenizer
https://platform.openai.com/tokenizer


Bibliography

[41] Jorge Pérez, Pablo Barceló, and Javier Marinkovic. “Attention is Turing Complete”.

In: J. Mach. Learn. Res. 22.1 (Jan. 2021). issn: 1532-4435.

[42] Jorge Pérez, Javier Marinković, and Pablo Barceló. On the Turing Completeness of
Modern Neural Network Architectures. Tech. rep. ZSCC: 0000109 arXiv:1901.03429
[cs, stat] type: article. arXiv, Jan. 2019. doi: 10.48550/arXiv.1901.03429. url:

http://arxiv.org/abs/1901.03429 (visited on 10/03/2023).

[43] Jean-Éric Pin. “The dot-depth hierarchy, 45 years later”. In: THE ROLE OF THEORY
IN COMPUTER SCIENCE: Essays Dedicated to Janusz Brzozowski (2017), pp. 177–201.

[44] Colin Raffel et al. Exploring the Limits of Transfer Learning with a Unified Text-
to-Text Transformer. Tech. rep. ZSCC: NoCitationData[s0] arXiv:1910.10683 [cs,

stat] type: article. arXiv, Sept. 2023. doi: 10.48550/arXiv.1910.10683. url: http:

//arxiv.org/abs/1910.10683 (visited on 10/16/2023).

[45] randomNumber101. Phrase grammar sentence generator. ZSCC: NoCitationData[s0]
original-date: 2022-12-20T01:02:21Z. Dec. 2022. url: https://github.com/randomNumber101/

PhraseGrammarGenerator (visited on 11/12/2023).

[46] Hiroyuki Seki et al. “On multiple context-free grammars”. In: Theoretical Computer
Science 88.2 (1991), pp. 191–229.

[47] Stuart M Shieber. “Evidence against the context-freeness of natural language”. In:

The Formal complexity of natural language. Springer, 1985, pp. 320–334.

[48] H Sichel. “On a Distribution Representing Sentence-Length in Written Prose”. In:

Journal of the Royal Statistical Society. Series A (General) 137.1 (1974), p. 25. doi:

10.2307/2345142.

[49] Hava T Siegelmann. “Computation beyond the Turing limit”. In: Science 268.5210
(1995), pp. 545–548.

[50] Hava T Siegelmann and Eduardo D Sontag. “Analog computation via neural net-

works”. In: Theoretical Computer Science 131.2 (1994), pp. 331–360.

[51] Hava T Siegelmann and Eduardo D Sontag. “On the computational power of neural

nets”. In: Proceedings of the fifth annual workshop on Computational learning theory.
1992, pp. 440–449.

[52] Mirac Suzgun et al. LSTM Networks Can Perform Dynamic Counting. Tech. rep. ZSCC:
0000053 arXiv:1906.03648 [cs] type: article. arXiv, June 2019. doi: 10.48550/arXiv.

1906.03648. url: http://arxiv.org/abs/1906.03648 (visited on 10/20/2023).

[53] Mirac Suzgun et al.Memory-Augmented Recurrent Neural Networks Can Learn Gener-
alized Dyck Languages. Tech. rep. ZSCC: 0000024 arXiv:1911.03329 [cs] type: article.
arXiv, Nov. 2019. doi: 10.48550/arXiv.1911.03329. url: http://arxiv.org/abs/

1911.03329 (visited on 10/04/2023).

[54] Ian Tenney, Dipanjan Das, and Ellie Pavlick. “BERT Rediscovers the Classical NLP

Pipeline”. In: Proceedings of the 57th Annual Meeting of the Association for Computa-
tional Linguistics (2019) 4593-4601 (May 2019). arXiv: 1905.05950 [cs.CL].

84

https://doi.org/10.48550/arXiv.1901.03429
http://arxiv.org/abs/1901.03429
https://doi.org/10.48550/arXiv.1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://github.com/randomNumber101/PhraseGrammarGenerator
https://github.com/randomNumber101/PhraseGrammarGenerator
https://doi.org/10.2307/2345142
https://doi.org/10.48550/arXiv.1906.03648
https://doi.org/10.48550/arXiv.1906.03648
http://arxiv.org/abs/1906.03648
https://doi.org/10.48550/arXiv.1911.03329
http://arxiv.org/abs/1911.03329
http://arxiv.org/abs/1911.03329
https://arxiv.org/abs/1905.05950


[55] Ashish Vaswani et al. “Attention Is All You Need”. In: (June 2017). arXiv: 1706.03762

[cs.CL].

[56] Krishnamurti Vijay-Shanker and David J Weir. “The equivalence of four extensions

of context-free grammars”. In: Mathematical systems theory 27.6 (1994), pp. 511–546.

[57] Alex Wang et al. GLUE: A Multi-Task Benchmark and Analysis Platform for Natural
Language Understanding. Tech. rep. ZSCC: NoCitationData[s0] arXiv:1804.07461
[cs] type: article. arXiv, Feb. 2019. doi: 10.48550/arXiv.1804.07461. url: http:

//arxiv.org/abs/1804.07461 (visited on 10/16/2023).

[58] Alex Wang et al. SuperGLUE: A Stickier Benchmark for General-Purpose Language
Understanding Systems. Tech. rep. ZSCC: NoCitationData[s0] arXiv:1905.00537 [cs]
type: article. arXiv, Feb. 2020. doi: 10.48550/arXiv.1905.00537. url: http://

arxiv.org/abs/1905.00537 (visited on 10/16/2023).

[59] Yau-Shian Wang, Hung-Yi Lee, and Yun-Nung Chen. “Tree Transformer: Integrating

Tree Structures into Self-Attention”. In: (Sept. 2019). arXiv: 1909.06639 [cs.CL].

[60] Jeffrey Watumull et al. “On recursion”. In: Frontiers in Psychology 4 (2014), p. 1017.

[61] Gail Weiss, Yoav Goldberg, and Eran Yahav. On the Practical Computational Power of
Finite Precision RNNs for Language Recognition. Tech. rep. ZSCC: 0000286 arXiv:1805.04908
[cs, stat] type: article. arXiv, May 2018. doi: 10.48550/arXiv.1805.04908. url:

http://arxiv.org/abs/1805.04908 (visited on 10/04/2023).

[62] Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking Like Transformers. Tech. rep.
network. 2021.

[63] Thomas Wolf et al. HuggingFace’s Transformers: State-of-the-art Natural Language
Processing. 2019. doi: 10.48550/ARXIV.1910.03771.

[64] Shunyu Yao et al. “Self-Attention Networks Can Process Bounded Hierarchical

Languages”. In: (May 2021). arXiv: 2105.11115 [cs.CL].

85

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.48550/arXiv.1804.07461
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
https://doi.org/10.48550/arXiv.1905.00537
http://arxiv.org/abs/1905.00537
http://arxiv.org/abs/1905.00537
https://arxiv.org/abs/1909.06639
https://doi.org/10.48550/arXiv.1805.04908
http://arxiv.org/abs/1805.04908
https://doi.org/10.48550/ARXIV.1910.03771
https://arxiv.org/abs/2105.11115

	Abstract
	Zusammenfassung
	Introduction
	Why is syntax important for understanding?
	What does this have to do with transformers?
	How might transformers process natural language?
	Our Research questions

	Concepts
	Formal Grammars
	Formalism
	Chomsky-Schützenberger Hierarchy
	Further concepts

	Language Generation Models
	Formalism
	Tokenization and embedding
	Recurrent neural networks
	Long short-term memory
	Transformers


	Related work
	Field research
	Transformers success in NLP
	Field research regarding syntactical abilities

	Laboratory research
	Theory
	Empirics
	Transformers and the Chomsky Hierarchy

	The theory-practice gap

	Assessing the syntactical abilities of transformer networks
	Hypothesis
	General approach
	Grammars
	General idea
	Dyck languages
	Star-Free Regular Languages
	Large language
	Further remarks

	Tasks
	bracket
	mask

	Models
	Evaluation lengths

	Experimental Setup
	Grammars
	Star Free Regular
	N Star-Free Regular
	Dyck-N experiments
	1D
	2D
	LARGE

	Tasks
	bracket
	mask

	Data Generation
	Models
	Vanilla Sequence-To-Sequence Transformer
	Vanilla Classification Transformer
	Bidirectional Long Short-Term Memory
	BERT
	BART

	Model Configurations
	Number of layers
	Tokenization strategy
	Positional Encoding

	Training

	Results and analysis
	Notation
	Tree Bracketing
	Sequence length
	Grammar comparison
	General model performance
	Performance on structure
	Layer size
	Tokenization strategy
	Influence of pre-training
	Commaless grammar

	Masking
	General model-wise performance
	Span width


	Discussion
	Main insights
	Limitations of our work
	General limitations of our work
	Task specific limitations
	Limitations of applicability to field work
	Discussion on the significance of our hypothesis

	Future work

	Conclusion
	Bibliography

