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Abstract

Direct speech translation(ST) models often struggle with rare words. Incorrect translation
of these words can severely impact translation quality and user trust. While rare word
translation is inherently challenging for neural models due to sparse learning signals,
real-world scenarios often allow access to translations of past recordings on similar topics.

To leverage these valuable resources, we propose a novel retrieval-and-demonstration
approach to enhance rare word translation accuracy in direct speech translation (ST)
tasks. The basic idea of our approach is to retrieve external sentences containing relevant
rare word information and demonstrate them to the ST system to improve its rare word
translation performance.

Our method involves a three-step process: first, adapting existing ST models to gain
the ability to incorporate examples to enhance rare word translation, similar to in-context
learning (ICL). This step is completed by fine-tuning the ST model with training data
prepended with example sentences. Second, developing a cross-modal (speech-to-speech,
speech-to-text, text-to-text) retrieval model to identify relevant examples from an external
dataset containing the target rare words. The retrieval model is inspired by the Dense Pas-
sage Retrieval architecture, which incorporates a dual-encoder to map query and passage
to the latent space. We propose to use joint speech-and-text encoders for our cross-modal
retrieval tasks. Third, during the inference phase, we retrieve an example sentence for
each sentence to translate as a demonstration to guide the ST model in better translating
rare words.

We utilize the MuST-C dataset to construct a reduced training set by moving rare words
to a synthesized rare words test set for evaluation and a rare-word pool from which
examples are retrieved.

Our experiments demonstrate that standard ST models can be effectively adapted to
leverage examples for rare word translation, improving rare word translation accuracy
over the baseline by 17.6% with gold examples and 8.5% with retrieved examples. Moreover,
our speech-to-speech retrieval approach outperforms other modalities and exhibits higher
robustness to unseen speakers.
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Zusammenfassung

Direkte Sprachübersetzungsmodelle (ST) haben oft Schwierigkeiten mit seltenen Wörtern.
Eine falsche Übersetzung dieser Wörter kann die Übersetzungsqualität und das Vertrau-
en der Nutzer erheblich beeinträchtigen. Da die Übersetzung seltener Wörter aufgrund
spärlicher Lernsignale für neuronale Modelle von Natur aus herausfordernd ist, ermögli-
chen reale Szenarien häufig den Zugang zu Übersetzungen vergangener Aufnahmen zu
ähnlichen Themen.
Um diese wertvollen Ressourcen zu nutzen, schlagen wir einen neuartigen Retrieval-

and-Demonstration-Ansatz vor, um die Genauigkeit der Übersetzung seltener Wörter in
direkten Sprachübersetzungsaufgaben zu verbessern. Die Grundidee unseres Ansatzes
besteht darin, externe Sätze mit relevanten Informationen zu seltenen Wörtern abzurufen
und sie dem ST-System zu demonstrieren, um dessen Leistung bei der Übersetzung seltener
Wörter zu verbessern.

Unsere Methode umfasst einen dreistufigen Prozess: Erstens die Anpassung bestehender
ST-Modelle, um die Fähigkeit zu erlangen, Beispiele zur Verbesserung der Übersetzung
seltener Wörter einzubeziehen, ähnlich wie beim In-Context-Learning (ICL). Dieser Schritt
wird durch Feinabstimmung des ST-Modells mit Trainingsdaten, die mit Beispielsätzen
versehen sind, abgeschlossen. Zweitens die Entwicklung eines cross-modalen (Sprache-
zu-Sprache, Sprache-zu-Text, Text-zu-Text) Retrieval-Modells, um relevante Beispiele aus
einem externen Datensatz mit den Zielwörtern zu identifizieren. Das Retrieval-Modell ist
inspiriert von der Dense Passage Retrieval-Architektur, die einen Dual-Encoder verwendet,
um Abfrage und Passage in den latenten Raum zu überführen. Für unsere cross-modalen
Retrieval-Aufgaben schlagen wir die Verwendung gemeinsamer Sprach-und-Text-Encoder
vor. Drittens rufen wir während der Inferenzphase für jeden zu übersetzenden Satz ein
Beispielsatz als Demonstration ab, um das ST-Modell bei der besseren Übersetzung seltener
Wörter zu unterstützen.

Wir verwenden den MuST-C-Datensatz, um einen reduzierten Trainingssatz zu erstel-
len, indem wir seltene Wörter in einen synthetisierten Testsatz für seltene Wörter zur
Evaluierung und einen seltenen Wörterpool verschieben, aus dem Beispiele abgerufen
werden.

Unsere Experimente zeigen, dass Standard-ST-Modelle effektiv angepasst werden kön-
nen, um Beispiele zur Übersetzung seltener Wörter zu nutzen, was die Genauigkeit der
Übersetzung seltener Wörter im Vergleich zur Basislinie um 17,6% mit goldenen Beispie-
len und um 8,5% mit abgerufenen Beispielen verbessert. Darüber hinaus übertrifft unser
Sprache-zu-Sprache-Retrieval-Ansatz andere Modalitäten und zeigt eine höhere Robustheit
gegenüber unbekannten Sprechern.
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1. Introduction

Speech translation is the process of automatically converting spoken language from one
language (source language) to another (target language). It is a complex task that involves
understanding and processing human speech, recognizing the words being spoken, under-
standing the context and meaning of those words, translating them into another language,
and finally producing the translated speech in the target language. Speech translation
is used in various applications, such as real-time communication between speakers of
different languages, multilingual meetings, and providing accessibility features in multi-
media content. There are generally two common approaches to Speech Translation(ST):
cascade ST and direct ST. The cascaded approach uses an Automatic Speech Recognition
(ASR) model to generate the transcript from the audio in the source language and then a
Machine Translation (MT) model to translate it into the target language. On the contrary,
the direct ST system does not have the intermediate transcript and directly translates the
speech in the source language into the target languages. With the advent of deep learning,
the end-to-end approach has been developed recently and proven to have comparable
performance to the cascaded approach [15]. In this thesis, we focus on end-to-end speech
translation.

1.1. Motivation

End-to-end speech translation, which directly translates spoken language from one lan-
guage to another without intermediate steps (like transcribing the speech into text in the
source language), faces unique challenges in handling rare words due to their sparsity. On
the other hand, the rare words in ST are crucial because they are important to understand
the meaning of a sentence[88] or a speech. This is signified in scientific or academic
scenarios, where rare words with specific meanings are more likely to appear. Mistakes in
translating rare words also can undermine users’ confidence in the translation system.

Compared with common words, the difficulty in translating rare words stems from two
main factors: firstly, from a data perspective, these words are infrequent and have limited
valid translation options. Unlike common words, which can be rendered in the target
language using synonyms or paraphrases, rare words typically have only a few acceptable
translations, restricting expressive freedom. Secondly, from a modeling perspective, the
scarcity of these terms means that during training, the models do not receive enough
examples to learn effectively, making it difficult for them to recognize and translate these
terms accurately.
Improving rare word translation directly boosts the overall accuracy and reliability of

speech translation systems. Research on rare word translation is crucial in 1) developing
methods to learn from rare examples, also known as few-shot learning, which allows

1



1. Introduction

models to learn from a minimal number of examples; 2) developing strategies to improve
the model’s ability to generalize from known data to new, unseen instances.

Hence, this work aims to develop the approach of retrieval-and-demonstration approach
to improve rare word translation accuracy and enhance end-to-end speech translation
performance. The basic idea of our approach is: For each sentence to translate that
potentially contains the rare word, retrieve another sentence that contains the same rare
word as an example. Then, demonstrate this sentence and its translation to the adapted
ST model to facilitate its translation of the original sentence to translate. The adapted ST
model is an existing ST model adapted to instill its ability to extract information from
prepended examples.

The retrieval-and-demonstration approach we proposed tries to address the aforemen-
tioned difficulties as follows: 1) Limited valid translation options: By retrieving and
demonstrating sentences that contain the same rare words to translate, we provide the ST
system additional information about how the rare word should be correctly translated,
which helps to provide translation options. 2) Lack of Data: By instilling the ST model’s
in-context learning ability, the ST model is able to process rare word information better,
even if they only appear once in the demonstration.

1.2. Problem Statement and Research Question

Research Question 1: In what ways can the demonstration of sentences containing specific
rare words from an external dataset improve the accuracy of rare word translation?
The response to this question guides us toward devising a systematic approach for

automatically identifying and retrieving such demonstrative sentences.
Research Question 2: What methodologies can be developed to systematically extract

sentences from an external dataset that share rare words with the sentence targeted for
translation, thereby serving as a demonstrative example?
The effectiveness of this approach must then be gauged by examining the extent to

which these demonstrations affect the overall translation performance and the precision
with which rare words are translated.

ResearchQuestion 3: What criteria should be used to evaluate both the overall translation
performance and the accuracy of rare words? Furthermore, how can we assess the impact
of the retrieval and demonstration of example sentences on these two criteria?

1.3. Thesis Outline

The rest of this work is structured as follows.
Chapter 2 presents the foundational context and research pertinent to this thesis, en-

compassing models of speech translation, existing approaches that are used to improve
rare word translation accuracy in both machine translation and speech translation, as well
as the concept of in-context learning and retrieval-augmented translation.

2



1.3. Thesis Outline

In Chapter 3, we explain the approach we proposed. We suggest a new approach of
retrieving and demonstrating examples to help get better at translating rare words in
speech translation.
In Chapter 4, we introduce the setup of our experiments. We propose a way to syn-

thesize the dataset for a better evaluation of rare word translation performance. Then
we introduces the model configuration during training and inference, and our evaluation
metrics we used.

Chapter 5 details the results and findings derived from our experiments and engages in
a discussion of these outcomes.
Lastly, Chapter 6 summarizes the principal conclusions drawn from this research,

addresses the posited research questions, and outlines the future research directions
to extend this work.

3





2. Background and Related Work

This chapter formally explains the concepts and works related to ST. Firstly, Section 2.1
introduces the background knowledge of ST systems, from cascade ST systems to direct
ST systems. After that, sequence-to-sequence learning approaches and various common
encoder-decoder models for ST encoder-decoder models are presented in Section 2.2,
including the RNN-based encoder-decoder model, transformer model, conformer model,
and toolkits in end-to-end speech translation. In Section 2.3, we present the previous
works focusing on rare words in ASR, MT, and ST. Afterward, Section 2.4 introduces
the in-context learning approach and its application in ASR, MT, and ST. Last not the
least, section 2.5 presents the retrieval approach and retrieval-augmented recognition and
translation methods.

2.1. Speech Translation

Speech Translation is a process that converts spoken language into another target language.
Speech translation systems can be broadly categorized into two types: cascade ST systems
and direct ST systems. This section will focus on introducing these two types of systems
and explain why this thesis focuses on the speech translation of end-to-end systems.

2.1.1. Cascade ST System

Cascade ST systems, also known as pipeline systems, are the traditional approach to speech
translation, which was introduced in [154]. They consist of two components: an ASR and
an MT system. As shown in Figure 2.1, the process involves two main steps: ASR and MT.

ASR
SRC

MT
TRG

Direct ST

SPEECH
In SRC lang

SPEECH
In SRC lang

TRANSLATION
In TRG lang

TRANSCRIPTION
In SRC lang

TRANSLATION
In TRG lang

TRG

Figure 2.1.: Comparison between cascade system and end-to-end system
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2. Background and Related Work

During the ASR, the spoken input in the source language is first transcribed into text.
This step converts the audio signals into a textual representation, capturing the content of
the spoken language as accurately as possible. Then, the output from the ASR system is
fed into the MT component, which translates it into the target language. This step focuses
on understanding the source language text semantically and generating a text translation
in the target language.
However, the cascade system has several challenges. For example, errors from the

ASR component (e.g., misrecognition or misinterpretations) can propagate into the MT
component, affecting the overall translation quality. Also, the MT component may lack
access to the speech’s prosodic features (intonation, stress, rhythm), which can lead to
misinterpretations of context or sentiment.

2.1.2. Direct ST System

In contrast to the two-layer architecture of the cascade system, the direct ST system, in
another way, the end-to-end(E2E) ST systems, aims to directly translate spoken language
into text or speech in another language, bypassing the intermediate textual representation
used in cascade systems as shown in Figure 2.1. This approach was explored by [11,
17, 43] and involves a single model or a tightly integrated system that performs both
recognition and translation simultaneously. Although the end-to-end system requires
large amounts of parallel speech-to-text data in multiple languages, which is harder to
obtain than the training data of cascade system and requires a more complex model to
capture the nuances of both speech recognition and language translation within a single
model, it still has grown popular significantly. The end-to-end system can significantly
reduce error propagation and compounding problems of the cascade system, eliminating
the intermediate transcription step. Also, the end-to-end models have the potential to
better utilize the acoustic features of the speech, such as tone and pause, which can provide
additional context for more accurate translation. Last but not least, end-to-end systems
can be more efficient, as they require only one processing step rather than two, potentially
leading to faster translation times[145]. End-to-end speech translation has gained more
and more use in various areas, and there are lots of works on end-to-end systems that have
shown excellent performance in speech translation[146]. However, at the same time, the
lack of domain-specific training data for terminology translation has exposed challenges
for further end-to-end speech translation performance enhancement. Thus, in this thesis,
we also focus on enhancing the terminology translation end-to-end speech translation.

2.2. Sequence-to-Sequence Learning

Speech translation task involves transforming an input sequence into a desired target
sequence. Similar tasks like automatic speech recognition, automatic summarization, and
machine translation also fall into this category. These tasks can be best expressed as
sequence-to-sequence(Seq2Seq) learning problems, which can be formalized in finding a
mapping 𝑓 from an input sequence of n vectors 𝑋1:𝑛 to a sequence of m target vectors 𝑌1:𝑚 ,
whereas the number of target vectors m is unknown apriori and depends on the input

6



2.2. Sequence-to-Sequence Learning

Encoder
Network

Encoder
Network

Hidden State𝑥!

𝑥"

𝑥#
𝑦!

𝑦#

𝑦"

𝑦$

Figure 2.2.: Encoder-Decoder Models

sequence, as shown in Equation 2.1:

𝑓 : 𝑋1:𝑛 → 𝑌1:𝑚 (2.1)

Seq2Seq Learning can be realized in several ways, with the encoder-decoder model
being the most common. The encoder-decoder architecture was first proposed by [147] in
2014 using recurrent neural networks (RNNs) in tandem as encoder and decoder. In this ap-
proach, the encoder processes the input sequence into a fixed-length vector representation,
which the decoder then uses to generate the output sequence as shown in Figure 2.2. This
architecture laid the foundation for many subsequent advancements. In 2017, Vaswani
et al. introduced the Transformer and thereby gave birth to transformer-based encoder-
decoder models that utilize attention mechanisms to process input[151]. Later in 2020,
Gulati et al.[55] introduced the Conformer model which integrates the strengths of both
convolutional neural networks (CNNs) and Transformers to effectively process sequential
data. This section will delve into a more detailed exploration of these models.

2.2.1. RNN-based Encoder-Decoder Model

The encoder-decodermodel is an architectural framework often used to implement Seq2Seq
models. The encoder neural network reads and encodes a source sentence into a fixed-
length vector in the basic encoder processes. The decoder then generates a translation
based on this encoded vector. The entire encoder-decoder system, which includes both the
encoder and the decoder for a language pair, is jointly trained to maximize the probability
of producing the correct translation given the source sentence [147, 30]. The RNN-based
encoder-decoder model’s structure can be shown in Figure 2.3

A potential issue with the basic RNN-based encoder-decoder approach is that the neural
network must compress all the necessary information of a source sentence into a fixed-
length vector. This can make it challenging for the network to handle long sentences,
especially those longer than the sentences in the training corpus. To address this, attention-
based encoder-decoder models have been proposed for constructing encoder-decoder
models. Unlike the basic encoder-decoder model, which encodes an entire input sentence
into a single fixed-length vector, the attention-based encoder-decoder model encodes the
input sentence into a sequence of vectors and adaptively selects a subset of these vectors
while decoding the translation. This approach allows the neural translation model to avoid
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Figure 2.3.: Structure of basic Encoder-Decoder RNN

compressing all the information of a source sentence into a single fixed-length vector,
regardless of its length.[98, 10]
Both the encoder and decoder are implemented using Recurrent Neural Networks

(RNNs) or one of their more advanced variants, such as Long Short-Term Memory (LSTM)
networks or Gated Recurrent Units (GRUs). An end-to-end speech translation system
using an attention-based encoder-decoder was first proposed in [17]. In this system, both
the encoder and decoder utilize LSTM networks. The encoder is constructed as a multi-
layered bidirectional LSTM network, which processes the input sequence and produces a
sequence of outputs. The decoder state is initialized with the last state of the encoder, and
subsequent states are computed using LSTM units.

2.2.2. Attention Mechanism and Transformer-based Encoder-Decoder Model

In 2017, Vaswani et al.[151] introduced the Transformer, giving birth to transformer-based
encoder-decoder models. Analogous to RNN-based encoder-decoder models, transformer-
based encoder-decoder models consist of an encoder and a decoder, which are both stacks
of residual attention blocks. The key innovation of transformer-based encoder-decoder
models is that such residual attention blocks can process an input sequence X1:n of
variable length n without exhibiting a recurrent structure. Not relying on a recurrent
structure allows transformer-based encoder-decoders to be highly parallelizable, which
makes the model orders of magnitude more computationally efficient than RNN-based
encoder-decoder models on modern hardware.

The architecture of the transformer-based encoder-decoder model is shown in Figure 2.4
A closer look at the architecture shows that the transformer-based encoder is a stack of

residual encoder blocks. Each encoder block contains a bi-directional self-attention layer;
the bi-directional self-attention layer puts each input vector 𝑥 ′𝑗 into relation with all input
vectors 𝑥 ′𝑖 , ..., 𝑥

′
𝑛 and by doing so transforms the input vector to a more "refined" contextual

representation of itself, defined as 𝑥 ′′𝑗 . Thereby, the first encoder block transforms each
input vector of the input sequence 𝑋1:𝑛 from a context-independent vector representation
to a context-dependent vector representation 𝑥 ′𝑖:𝑛 , and the following encoder blocks further
refine this contextual representation until the last encoder block outputs the final contextual

8



2.2. Sequence-to-Sequence Learning

Encoder Block

𝑥! 𝑥"𝑥# 𝑥$ 𝑥% = 𝐸𝑂𝑆𝑥& 𝑦# 𝑦!𝑦' = 𝐵𝑂𝑆 𝑦& 𝑦$ = 𝐸𝑂𝑆𝑦"

LM 
Head

LM 
Head

LM 
Head

LM 
Head

LM 
Head

𝐼! 𝐼"𝐼# 𝐼$𝐼&

Encoder Block

Encoder Block

𝑥̅! 𝑥̅"𝑥̅# 𝑥̅$ 𝑥̅% = 𝐸𝑂𝑆𝑥̅&

Decoder Block

Decoder Block

Decoder Block

Figure 2.4.: Transformer-based Encoder-decoder

encoding 𝑥 ′′′𝑖:𝑛 . The bi-directional self-attention works as follows: Each input vector 𝑥 ′𝑖 of
an input sequence 𝑋 ′𝑖:𝑛 of an encoder block is projected to a key vector 𝑘𝑖 , value vector 𝑣𝑖
and query vector 𝑞𝑖 through three trainable weight matrics𝑊𝑞 ,𝑊𝑣 ,𝑊𝑘 :

𝑄𝑖 =𝑊𝑞𝑥
′
𝑖 (2.2)

𝑉𝑖 =𝑊𝑣𝑥
′
𝑖 (2.3)

𝐾𝑖 =𝑊𝑘𝑥
′
𝑖 (2.4)

After the projection, each query vector 𝑞 𝑗 is compared to all key vectors 𝑘1, ..., 𝑘𝑛 . The
more similar one of the key vectors 𝑘1, ..., 𝑘𝑛 is to query 𝑞 𝑗 , the more important is the
corresponding value vector 𝑣 𝑗 for the output vectors 𝑥

′′
𝑗 . More specifically, an output vector

𝑥
′′
𝑗 is defined as the weighted sum of all value vectors plus the input vector 𝑥 ′𝑗 . Thereby, the

weights, or the so-called attention score, are proportional to the cosine similarity between
𝑞 𝑗 and the respective key vectors 𝑘1, ..., 𝑘𝑛 , which is mathematically expressed by softmax
(𝐾𝑇1:𝑛𝑞 𝑗 ).

Instead of having a single set of queries, keys, and values(single-head attention), the
transformer enables the creation of multiple sets (multi-head attention), each projecting
the inputs into different representation spaces. By having different linear projections of the
inputs, the model learns a richer representation and achieves much stronger performance.
Importantly, owing to parallelization, the total computation cost of multi-headed attention
remains the same as that of single-head attention.
The decoder part looks similar to the encoder. The transformer-based decoder is a

stack of decoder blocks followed by a dense layer, the "LM head". The stack of decoder
blocks maps the contextualized encoding sequence X1:n and a target vector sequence
prepended by the BOS vector and cut to the last target vector, i.e., 𝑌0: 𝑗−1, in order to
predict the distribution 𝑃 (𝑦𝑖 |𝑌0:𝑖−1, 𝑋1:𝑛). In contrast to transformer-based encoders, in
transformer-based decoders, the encoded output vector 𝑦𝑖 should be a good representation
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of the next target vector 𝑦𝑖+1 and not of the input vector itself. To meet these requirements,
each decoder block contains a uni-directional self-attention layer, followed by a cross-
attention layer. The uni-directional self-attention layer puts each of its input vectors 𝑦′𝑗
only into relation with all previous input vectors 𝑦′𝑖 , with 𝑖 ≤ 𝑗 for all 𝑗 ∈ {1, . . . , 𝑛} to
model the probability distribution of the next target vectors. The cross-attention layer puts
each of its input vectors 𝑦′′𝑗 into relation with all contextualized encoding vectors 𝑥1:𝑛 to
condition the probability distribution of the next target vectors on the input of the encoder
as well. Each decoder block consists of a uni-directional self-attention layer, followed by
a cross-attention layer and two feed-forward layers. The uni-directional self-attention
layer puts each of its input vectors only in relation to all previous input vectors. This
helps model the probability of the next target vector. The cross-attention layer uses the
contextualized encoding vectors to condition the probability distribution of the next target
vector. So, the uni-directional self-attention layer is responsible for conditioning each
output vector on all previous decoder input vectors and the current input vector, and
the cross-attention layer is responsible for further conditioning each output vector on all
encoded input vectors. In summary, the Transformer-based encoder-decoder model excels
at its ability to parallel processing and manage long-range dependencies. However, it still
struggles with capturing local, fine-grained patterns and can become computationally
costly for long sequences due to the quadratic scaling of their self-attention mechanism,
as illustrated in Figure 2.5.

2.2.3. Conformer-based Encoder-Decoder Model

The Conformer(Convolution-augmented Transformer) model is proposed by Gulati et.
al.[55]. It was introduced to address specific limitations of the Transformer model, particu-
larly in handling the nuanced, local contexts of audio signals. Transformer models are
good at capturing content-based global interactions, while CNNs exploit local features
effectively. Conformer combines convolution neural networks and transformers to model
both local and global dependencies of an audio sequence in a parameter-efficient way. The
convolutional layers are integrated into a conformer to capture local dependencies and
fine-grained patterns in the data. This is particularly useful for speech recognition, where
such local patterns (e.g., phonetic nuances) are crucial. This combination of convolution
module and transformer allows the Conformer to process sequences with a level of detail
and context awareness.

2.2.4. Applications in Speech Translation

The transformer has been a successful strategy for getting state-of-the-art (SOTA) results
in many NLP tasks as well as in other areas[52]. Below, we provide the efforts made
to handle ST tasks using the attention mechanism and transformer within the Seq2Seq
framework. This subsection will delve into recent works and toolkits on the seq2seq
speech translation method.
The Transformer model, originally designed for text-based tasks, can face challenges

when directly applied to acoustic inputs, primarily due to the inherent differences between
language text and audio signals. Unlike text, where tokens (words or characters) are discrete
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Figure 2.5.: Attention Mechanism

and generally uniform, acoustic signals are continuous, have long-range dependencies,
and can vary greatly in length. Therefore, a lot of work has been done on the speech
transformer. The Deep Transformer Networks for End-to-End Speech Recognition are
proposed by [119]. The paper uses very deep Transformer networks (up to 48 layers)
with stochastic residual connections to improve generalizability and training efficiency
for ASR. Based on this, [118] combined the relative position encoding[35] with the Deep
Transformer[119] to better accommodate the variable distributions in speech data and
achieve improved results on the MuST-C[38] speech translation benchmark. Considering
the quadratic complexity of the Transformer’s self-attention mechanism when dealing
with long audio sequences, an adapted transformer for End-to-end Spoken Language
Translation is proposed in[37] and reducing the memory complexity by 1) down-sampling
of input with convolutional neural networks, 2) modeling of bidimensional nature of
spectrograms, and 3) a distance penalty in the attention mechanism to focus more on local
context. In [2], the weight of some attention is avoided for speech tasks, hence decreasing
the size of the attention matrix. The transformer encodes the speech features, thereby
introducing local self-attention with a suitable window size for each layer to reduce the
computational complexity.
The gap between speech and text modalities challenges the E2E speech-to-text trans-

lation. In contrast to the traditional cascade pipeline, the end-to-end model necessitates
a moderate amount of paired speech-to-text data, which is not easy to obtain. Different
methods of existing E2E models have been proposed to mitigate the lack of ST parallel
training data. Based on their training strategies, they can be classified into either 1)pre-
training automatic speech recognition (ASR) and machine translation (MT) components
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of the model, 2)employing multi-task learning frameworks that integrate various aspects
of speech and language processing, and 3) generating synthetic data [9, 141].

ASR and MT component pretraining Low-resource speech-to-text Translation proposed by
[11] explores methods for speech-to-text translation in scenarios where transcripts to train
a speech recognizer are not available for low-resource languages, and [16] also focused
on developing a method for translating spoken content in audiobooks directly without
intermediate text transcription in the source language. However, these two methods that
train directly without pretraining are limited in performance. Adapted from prior, [12]
the authors proposed to use an encoder that was pre-trained on high-resource automatic
speech recognition (ASR) data, which is robust in capturing linguistically meaningful
features across languages and thus significantly improved in the ST task. The adapter
tuning proposed by [83] explored using a pre-trained ASR model or an mBART pre-
trained model [95] as backbones to perform the multilingual ST task, demonstrating the
flexibility of adapters in leveraging different types of pre-trained systems. [158] presented
an innovative approach to improving speech-to-text translation (ST) performance using
a Curriculum pre-training method, Transcription Learning, including the first phase of
pre-training the model learns to transcribe the speech into text, and the second phase of
understanding the utterance (Frame-based Masked Language Model) and mapping words
between languages (Frame-based Bilingual Lexicon Translation).

Multi-Task Learning Tandem Connectionist Encoding Network (TCEN) proposed by [157]
combined a speech encoder and a text encoder in a tandem setup, followed by a target
text decoder. The architecture allows the model to separately handle acoustic feature
extraction (via the speech encoder) and linguistic feature extraction (via the text encoder).
The TCEN was trained using a multi-task learning approach that involves simultaneous
training on AST, MT, and ST tasks, which leverages the strengths of each individual task
to improve overall model performance. Unlike the TDEN focusing on consistency across
different training phases, [3] introduces a unique multitask learning approach where
task-specific decoders are directly informed by other tasks’ decoders, enhancing inter-
task relationships, where the decoder of the second task (translation) receives inputs not
only from the speech encoder but also from the decoder of the first task (transcription),
which allows the translation task to leverage higher-level representations produced by the
transcription task. The paper proposed by [32] integrated multitask learning involving
speech recognition and translation by leveraging word embeddings as an intermediate
semantic layer between the AST task and ST task, to enrich the semantic information
transmitted, arguing that maintaining semantic integrity is more crucial than textual
accuracy. The dual-decoder transformer [82] introduced a dual-decoder architecture
within a Transformer model to handle both ASR and ST tasks simultaneously, which
enhanced overall model flexibility and task interaction. To leverage text data for ST
tasks, the paper [149] proposed a multi-task learning framework that integrates auxiliary
tasks like MT and a denoising autoencoder alongside primary tasks of automatic speech
recognition ASR and speech translation ST, where phoneme representation of text is used
to align text data more closely with speech data, improving the efficacy of the multitask
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training. The ConST proposed by [172] used a cross-modal contrastive learning method
to bridge the representation gap between speech and text modalities by learning similar
representations for semantically similar speech and text. All these works contributed
to the field by leveraging multitask learning, enhancing semantic understanding, and
aligning different data modalities to improve overall speech translation performance.

Generating Synthetic Data The Leveraging Weakly Supervised Data method proposed by
[67] discusses an innovative method to enhance speech-to-text (ST) translation quality by
utilizing synthetic training data. This paper proposed two ways of synthetic training data:
1) Using Text-to-Speech (TTS) systems to generate synthetic speech from the text; and 2)
Employing Machine Translation (MT) models to generate synthetic translated text from
the transcribed outputs of ASR systems. In this way, the model can train on a broader
range of examples without the need for a corresponding increase in manually labeled ST
datasets.

2.2.5. Toolkits for Speech Translation

To support the development and training of speech translation (ST) models, several re-
searchers have introduced various toolkits. These ST toolkits provide a framework for
pre-processing datasets for ST tasks, as well as training, fine-tuning, and evaluating models.

The EspNet-ST toolkit[65], was created in response to the absence of a toolkit capable of
handling the sub-tasks of ST ahead of it. EspNet-ST includes functionalities for ASR, LM,
E2E-ST, Cascade-ST, MT, and text-to-speech (TTS), accompanied by practical examples.
Additionally, it offers pre-trained transformer-based models trained on various datasets
such as MuST-C[38], Libri-trans[74], Fisher[33] and CALL-HOME corpus[121].

FairSeq S2T[156] toolkit extends the original FairSeq framework by[112] to include all
features of EspNet-ST[65]. It provides the Non-Autoregressive MT, Online ST, and Speech
Pretraining. The toolkit also provides state-of-the-art ST models based on RNN, transform-
ers, and conformers. It also has an in-built data loader for MuST-C[38], Librispeech[114],
and CoVoST datasets[155].
NeurST[184] is a streamlined toolkit that does not depend on Kaldi[122]. It enhances

computational efficiency through the use of mixed precision and accelerated linear algebra.
SLT.KIT[176] provides models for ASR, MT, and ST. It includes unique features such

as CTC and attention-based ASR, ASR with punctuation recognition, and a neural MT
system.
In Table 2.1, we present the performance scores of various ST models or toolkits we

mentioned here.

2.3. Rare words Recognition and Translation

Rare word translation plays a crucial role in ST, significantly impacting the overall quality
and accuracy of the translation output. Our focus on rare word translation in ST involves
translating rare words directly from spoken language to text. This process goes beyond
merely detecting or recognizing rare words and also beyond translating rare words found
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Models/Toolkits Dataset Language Pair Speech(h) Metric(BLEU)

EspNet-ST[65] LibriTrans En-Fr 960 17.8
MuST-C En-De 271 25.05

FairSeq S2T[156] MuST-C En-Xx 452 23.39
Librispeech En-Fr 960 9.0
CoVoST-2 Xx-En 427 21.24

NeurST[184] Libri-trans En-Fr 960 18.7
MuST-C En-Xx 452 24.9

SLT.KIT[176] IWSLT En-De 80 14.08

Table 2.1.: Dataset statistics. Performance scores of the toolkits in the Seq2Seq framework
with the datasets, language pairs, duration of speech, and metric(BLEU).

in text transcripts in machine translation (MT) systems; it entails translating rare words
present in spoken utterances. However, we can still draw valuable insights from the
recognition of rare words in ASR systems and the translation of rare words that are
contained in text inputs in MT systems. This section will review previous research and
methodologies used for recognizing rare words in ASR systems, translating rare words
from text inputs in MT systems, and exploring the current research landscape of rare word
translation in ST systems.

2.3.1. Rare Words in ASR

Due to the difficulty of recognizing rare words solely through fine-tuning pre-trained
speech models, there are many recent works on the methods of improving rare word
recognition in ASR. Current approaches to tackle the problem mainly involve 1) Post
Processing with Language Model, for instance, user-dependent language models, LM rescoring;
2) Generating Synthetic Audio; 3) Context awareness and memory enhancement.

Post Processing with Language Model The second pass rescoring in ASR was proposed in
[111], which is to run the ASR decoding in two passes, where the second pass model is
used to improve the initial outputs from first-pass models by rescoring with a stronger
language model. This approach has been used in various ASR systems [80, 94]. In [170], the
second-pass model incorporates the multi-task language model trained not just to predict
the next word but also to predict intents and slots related to the words. While this kind of
method can improve performance on tasks it was directly trained on, it may reduce the
model’s flexibility to adapt to new, unseen tasks or domains without retraining of LM. The
work of [135] explores enhancing the second-pass component with the Listen, Attend, and
Spell (LAS) model proposed by [25], whose decoder serves similarly as an LM. Furthermore,
[129] also proposed to use the Neural language model (NLM) as a second pass component.
The work [134] employed a Hybrid Autoregressive Transducer (HAT) that combines LM
trained solely on text data with an ASR system for rare words and phrases recognition.
The work of [161] introduced a method of integrating language models more effectively
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during the training of E2E models with LM-aware Minimum Word Error Rate (MWER)
training. The approach uses language models to generate hypotheses and compute the
MWER loss. Another method proposed by [100] used a retrieval-augmented language
model (PersonaLM) to improve ASR personalization and enhance the recognition of rare
words and domain-specific terminology. During ASR decoding, the initial predictions made
by the acoustic model are rescored using the probabilities provided by PersonaLM. While
the retrieval augmented mechanism allows the system to adapt its predictions to other
domains without requiring retraining of the entire model, its effectiveness is contingent
upon the availability and quality of domain-specific n-gram frequencies in the external
database.

Finetuning with Generated Synthetic Audio The paper [56] incorporated synthetic audio
generated from text-to-speech systems(TTS) to create training examples that include Out-
Of-Vocabulary(OOV) words. This helps in fine-tuning the ASR model to better recognize
these words without the need for extensive real-world data that includes the OOV terms.
Another method proposed in [126] used TTS to generate synthetic audio of rare words
and employed techniques like L2 regularization and Elastic Weight Consolidation (EWC)
to prevent catastrophic forgetting. The effectiveness of the method relies heavily on the
quality and representativeness of the synthetic audio, which may not perfectly mimic
real-world speech variations and complexities.

Context Awareness And Memory Enhancement [23] proposes an approach named Phoebe,
which extends the contextualized Listen, Attend, and Spell (CLAS) model by injecting
pronunciations obtained by the grapheme-to-phoneme (G2P) model into the context
module via using bias phrases converted into fixed-length embeddings, which include both
textual and phonetic forms, enhancing the model’s ability to interpret rare and context-
specific words. The term "bias phrases" here refers to specific words or phrases, such as
named entities that are provided to the model to influence or "bias" its predictions. Besides
that, the two-step memory-enhanced model (2MEM) proposed in [64] proposed to enhance
the ASR system with a memory module in a combination of a memory-attention and
memory-entry-attention mechanism that allows for instant integration and recognition of
new words or phrases extracted from context without retraining the system. Further, the
context-aware Confidence Estimation Model [124] used a multi-head attention mechanism
to adjust the encoder features based on contextual clues from an external memory bank
(Neural Associative Memory) that contains relevant phrases or words, enhancing the
model’s ability to integrate contextual information for rare word recognition. Another
approach of Continuous Learning of New Words proposed in [63] used a combination
of factorization-based model adaptation and a memory-enhanced model to bias the ASR
system towards decoding new words learned from slide content in lecture talks, iteratively
improving word recall. This kind of method is limited by its dependency on the quality
and applicability of memory information, the complexity and computational demands are
also increased due to the integration of the memory module.
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2.3.2. Rare Words in MT

Neural Machine Translation (NMT) [30, 147, 151] has recently demonstrated impressive
advancements over Statistical Machine Translation (SMT)[167, 73]. However, NMT systems
continue to face significant challenges[75], in that addressing rare words is one of them.
Due to NMT, which has tended to bias high-frequency words, low-frequency words
have little chance of being considered in the inference process. To tackle this limitation,
previousworks have proposed various strategies for representing rare words to enhance the
translation of low-frequency words. Typically, [99] improved NMT systems by substituting
rare words with special symbols such as 𝑢𝑛𝑘1, 𝑢𝑛𝑘2, ..., 𝑢𝑛𝑘𝑖 in the sentence. They then
used an aligned dictionary to establish mappings between an 𝑢𝑛𝑘𝑖 in the source sentence
and an 𝑢𝑛𝑘 𝑗 in the target sentence. However, this method introduces potential ambiguities
in the sentence context, as observed by [138]. In addition, [139] suggests applying Byte
Pair Encoding (BPE) [47] to NMT systems, which effectively reduces vocabulary size
and enhances translation performance—a technique now commonly employed in most
translation systems. This approach allows a rare word to be divided into sub-words,
preserving the sentence context but potentially creating new rare sub-words. However,
this segmentation process may complicate the identification of original rare words from
their sub-words. The methods of machine translation of rare words can be classified into 3
categories: 1) Constrained decoding; 2) Copy mechanism; 3) Retrieval augmented generation.

Constrained Decoding To address the challenges of translating terminology, a variety
of terminology constraints (TC) approaches have been developed. TC approach requires
the model to translate the following pre-provided terminology pairs, and they have been
broadly implemented in commercial translation systems [180]. There are primarily two TC
methods: PlaceHolder (PH) and Code-Switch (CS). The PH method substitutes terminology
terms in both the source and target texts with sequential labels (e.g., “𝑇1”, “𝑇2”), and during
inference, the model predicts these labels instead of the actual terms [34, 101]. However, a
significant limitation of PH is that these labels strip away the original semantic content,
leading to translations that lack coherence. Unlike PH methods, CS methods follow the
standardmodel and generate term translations word byword by injecting target constraints
directly into the source sequence [144]. However, the source constraints’ semantics are still
constrained due to the direct replacement of target constraints. In [39], a variant approach
that retains the source constraints but uses a tag to distinguish them from the replacement
marks was proposed. [1] further improved performance by masking the source constraints.
[18] used target lemma to make the model learn morphology knowledge. [58] utilized
finite-state machines (FSMs) and multi-stack decoding strategy for structured enforcement
of terminology constraints while translating. [93] proposed to extract a bilingual dictionary
in a non-supervised manner from the parallel corpora provided for training, which helped
to ensure the translation model is well-acquainted with the rare and technical terms it
needs to handle. A soft constraint method was proposed in [110], which inserted target
terms in the source sentences during training. [116] presented two Transformer-based
encoder-decoder models for improving the translation consistency of terminologies: 1)
Terminology Self-selection Neural Machine Translation (TSSNMT) which incorporated
the gating mechanism to dynamically determine the relevance of source sentence and the
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terminology during the translation process; 2) ForceGen Transformer (ForceGen-T) which
incorporated a force decoding mechanism along with a copy mechanism ensuring the
generation of pre-defined terminology.

Copy Mechanism The pointer networks [153, 137] automatically copy rare words from
the source sentence into the target sentence by integrating a copy probability to the output
distribution with a copy coefficient learned during the training process. The pointer
network provided an effective way for implementing the TC approach [144] and other
variants of rare word translation in MT. For example, [117] proposed to improve rare word
translation by integrating an external expert model to annotate source sentences with
possible translations for rare word translations. The model learns to focus on and poten-
tially copy annotated inputs using a pointer network and reinforcement learning during
training. In inference, similar annotations guide the translation of new source sentences
to replicate training success with rare words. The paper by [54] explored the approach
to handle rare words, which extends the basic Pointer-Generator model by integrating
bilingual lexicons with the neural translation model, which allows the model to directly
incorporate translations from the dictionary into the MT process, which is particularly
useful for translating rare words that may not be adequately represented in the training
data. The paper [181] proposed incorporating bilingual dictionaries effectively using a
model composed of Pointer, Disambiguator, and Copier modules (PDC model), enhancing
the translation of rare and OOV words. Instead of a direct decision between copying from
the input and generating from a vocabulary based on contextual probabilities in basic
pointer networks, PDC used the pointer for identifying source words for which dictionary
translations are applicable, disambiguator for Choosing the correct translation among
potentially multiple dictionary entries based on the context, the copier for integrating the
selected translation into the target text output.

Retrieval Augmented Generation Besides, the kNN-MT approach proposed in [71] aug-
mented MT model with a k-nearest-neighbor (kNN) classifier that retrieves k candidate
target tokens from a separate datastore at inference time. By switching out the datastore
or modifying its contents, kNN-MT can adapt to different domains without retraining.
Although the work by [92] showed that kNN-MT can effectively help rare word translation
performance, kNN-MT hasn’t been used in E2E ST.

2.3.3. Rare Words in ST

In the field of speech translation (ST), the translation of rare words poses a critical challenge.
This challenge is particularly intensified in ST, as it inherently compounds the complexities
associated with rare word processing observed in both automatic speech recognition (ASR)
and machine translation (MT) systems. Existing strategies for rare word recognition in
ASR, such as language model (LM) rescoring, fine-tuning with synthetic audio data, and
context enhancement, primarily aim to improve the fluency of rare word transcription.
However, these approaches are limited by their lack of direct mapping from audio to
translation. Additionally, methods employed in MT for addressing rare word translation,
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including constrained decoding and copy mechanisms, focus on enhancing translation
adequacy and quality semantically. Nonetheless, these techniques are restricted by their
modality, functioning only with text inputs.
Speech translation, which merges the capabilities of both ASR and MT, necessitates a

tradeoff between the fluency targeted by ASR techniques and the adequacy addressed by
MT strategies. This integration adds complexity to the translation of rare words in speech
translation, rendering the direct application of existing previous rare word processing
methods for ASR or MT unsuitable.

As regards previous works on rare word processing in ST, there are only limited research
works. A benchmark NEuRoparl-ST was created by [49], tailored for evaluating ST sys-
tems, particularly their performance in translating named entities (NEs) and terminology.
The author of [50] proposed a method to detect NEs from the audio using a specialized
detection module that compares the encoded representations of utterances with those
of NEs from a contextual dictionary of NEs known to likely appear in given contexts.
However, this work only focuses on detecting rare words rather than directly teaching the
model how to translate them. The authors of [48] found that the nationality of the person
being referred to is a critical factor leading to inaccuracies in person name translation.
They then proposed to implement multilingual models to enhance the system’s ability to
handle diverse pronunciations effectively. Nevertheless, this work focused on the model’s
capability to recognize and adapt to pronunciation diversity, not directly on rare word
translation. [42] used KNN to construct a datastore from the in-domain text translation
corpus. This datastore is used during inference to perform a similarity search. The final
translation probability is an interpolation between the E2E-ST model’s prediction and the
kNN retrieved neighbors. This method leverages in-domain text translation data to adapt
E2E-ST models to new domains without needing in-domain speech translation data.
In light of the above strategies, beyond merely enhancing detection capabilities or

adapting to linguistic variations to indirectly improve translation outcomes, there is a
significant demand for direct speech translation models that are excellent at translating
rare words and are capable of adapting to new, unseen domains.

2.4. In-Context Learning

For enabling speech translation models to adapt to new, unseen words or rare words
where contextual information is sparse, In-Context Learning (ICL) is a particularly effec-
tive method. In-context learning, which involves directing the model’s predictions by
presenting relevant examples as a demonstration context during the inference phase [40].

In this chapter, we will provide a detailed introduction to in-context learning and review
related works about their role in enhancing machine translation (MT), automatic speech
recognition (ASR), and speech translation (ST) systems. Moreover, we will investigate how
these approaches can be applied to develop direct speech translation systems that excel
in handling translations of rare words. Then, we will discuss the potentiality of applying
in-context learning to build direct speech translation systems that are excellent in rare
word translation.
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In-context learning is a method where LLMs make predictions based solely on provided
contexts that include a few examples, without the need for explicit retraining or parameter
updates[40, 22]. ICL works in the following way: Firstly, A small set of examples relevant
to the task is selected, and these examples are formulated in a consistent format and serve
as a demonstration context. Secondly, the demonstration context is concatenated with
a new query to form a complete prompt. This prompt is designed to guide the model
in understanding the task it needs to perform based on the examples provided. Unlike
traditional machine learning, which adjusts model parameters through training, ICL makes
predictions based solely on the context provided, without additional training or updating
of model parameters. This process allows LLMs to adapt quickly to new tasks with minimal
data in a computationally efficient way.
The performance of ICL relies on two stages: (1) the warmup training stage that culti-

vates the ICL ability of LLMs, and (2) the inference stage where LLMs predict according to
task-specific demonstrations.

The training stage is to train the LLMs before ICL inference. The key idea is to bridge the
gap between pretraining and downstream ICL formats by introducing objectives close to
in-context learning. Since LLMs have shown promising ICL capability[22], existing works
taking well-trained LLMs as back-bones exhibit ICL ability, even if not specifically trained.
However, many studies also show that the ICL capability can be further improved through
a continual training stage between pretraining and ICL inference, which we call model
warmup for short. Previous training approaches can be classified into two categories: 1)
Supervised In-context Training, where LLM is continually trained on a broad range of
tasks with demonstration examples, which boosts its few-shot abilities[103, 150, 163, 164];
and 2) Self-supervised In-context Training, which leverages raw corpora for training[28,
53]. As for the inference stage, many studies have highlighted that the effectiveness of ICL
is heavily influenced by the demonstration surface [40, 104], including the format and the
order of demonstration examples, and so on. Given the critical role that demonstrations
play in ICL, this section will delve deeper into exploring demonstration design strategies
that are specifically tailored for demonstration strategies for 1)ASR, 2)MT, and 3)ST tasks.

ASR task The SALM model by[29] proposed a keyword boosting demonstration ap-
proach by providing a list of keywords to the model in the format of optional text con-
text as a prompt in the inference stage, for example, ‘Following word may occur in
audio:[‘𝑥 ’,’𝑦’,’𝑧’,. . . ]’, 𝑥 ,𝑦,𝑧 are keywords. The keywords list was built by selecting words
and phrases with high occurrences in the test set and low recognition accuracy. The
keyword boosting aims to bias the model to recognize particular words of interest without
any backpropagation. The demonstration design in [61] utilized in both the training and
inference phases includes speech utterances paired with their corresponding labels. A
special separation token (‘⟨𝑠⟩’) is incorporated to segment various components of the
input sequence, aiding the model in distinguishing between utterances and labels. This
arrangement of input data ensures that the model comprehends and processes the demon-
strations correctly, facilitating the model’s ability to predict the label of a target utterance
based on the provided examples. [89] proposed to integrate LLM into the ASR system as
second-pass rescoring by demonstrating domain-specific prompts that encapsulate the
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key elements or topics of the speech in the inference stage, enhancing its ability to adapt
to the domain-specific vocabulary and style.

MT task There are many works working on using Large Language Models (LLMs) for
machine translation [59, 68, 169, 188]. For example, [105] explored improving Machine
Translation (MT) accuracy and adherence to domain-specific terminology by leveraging
the in-context learning capabilities of LLMs. Their method involves feeding LLMs with
prompts containing previously approved translation pairs or predefined terms at inference
time. LLMs were also used to generate synthetic bilingual data that includes rare or
domain-specific terms in [106] for finetuning the model to learn and predict rare terms
more effectively during translation tasks. The terminology-aware translation approach was
proposed in [19], which used LLM to refine translations by providing it with terminology
constraints through curated prompts.
When selecting relevant examples to include in a prompt, the connection between

the examples and the input sentences plays a crucial role in influencing the quality of
translation. Various methods have been used to determine this relevance, including (a)
n-gram word overlap between input sentences and examples(Agrawal et al., 2022). (b)
embedding similarity[177, 59, 152] using LaBSE or RoBERTa[96]. Moreover, the quality of
the examples is also an important factor. To ensure quality, examples are either selected
from a known high-quality pool[152] or based on Language-agnostic BERT Sentence
Embedding (LaBSE)[46] or COMET-QE scores[132] between the pairs[59, 89]. The work
of [142] shows that the coherency of prompt examples with respect to the test sentence is
an important factor for translation performance.
[79] introduced CTQ scorer, which is a method of regression-based scoring function

designed to select in-context examples based on multiple features, such as similarity
metrics, translation quality metrics, and other lexical or syntactic features and so on,
to enhance the quality of translation. The typical way of demonstration examples was
formatted as “[source] sentence: [𝑋1]; [target] sentence: [𝑌1]” [𝑋1] and [𝑌1] represent the
source and target sentences from the selected in-context examples [79, 89, 152].

ST task Given the translation capabilities of Large Language Models (LLMs)[59, 68, 169,
188], and the speech recognition proficiency of Speech Foundation Models (SFMs)[13,
123, 127], there were many researches working on accomplishing ST tasks by integrating
these technologies[29, 31, 45, 179]. LST, a large multimodal model designed for E2E-ST
proposed in [179], consists of a speech frontend, an adapter, and an LLM backend. Through
two-stage training for modality adjustment and downstream task fine-tuning, respectively,
the LST achieves state-of-the-art BLEU scores on the MuST-C benchmark. [31] proposed a
multi-task training framework Qwen-Audio to handle various audio types and over 30
tasks, including ST. The AudioChatLlama proposed by [45] extends the instruction-tuned
Llama-2 model to handle E2E speech processing while maintaining the LLM capabilities by
integrating Llama model with a small conformer audio encoder followed by a projection
layer to match Llama-2-chat dimensions. Speech-Augmented Language Model(SALM)
proposed in [29] integrates a frozen text LLM with a fast conformer speech model using
modality adapter modules and Low-Rank Adaptation (LoRA) layers(Hu et al., 2021) to
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handle speech inputs for tasks like ASR and AST. SALM utilizes keyword boosting and
supervised in-context training to enhance speech-to-text tasks. This architecture for
ST, in general combining SFM and LLM, has been formalized in research by [51]. This
architecture consists of five components: SFM, Length Adapter (LA), Modality Adapter
(MA), LLM, and Prompt-Speech Mixer (PSMix). The SFM is responsible for deriving
semantic representations from the audio using a transformer or conformer encoder. The
LA helps compress the timeline of audio embeddings, while the MA, a relatively smaller
trained network, transforms these embeddings to be compatible with the LLM to bridge
the gap between the speech input modality and text modality. The PSMix integrates these
speech representations with textual prompts, which are then processed by the LLM to
produce the final textual translation.
As for concatenating speech representation with textual embedding, there are mainly

three concatenation solutions: 1)prepending the speech representation to the prompt
embeddings[29, 31, 62, 113, 148]; 2)appending it to the prompt embeddings [160, 166];
3) interleaving the speech representation with a prompt prefix and suffix [45]. Only one
work [179] completely omits the prompt and directly feeds the LLM with the speech
representations.

2.5. Retrieval

As we explore demonstrating examples to the ST model to facilitate its adaptation to open
domains, the ability to retrieve relevant examples from other databases and the quality
of these examples is critical to this task[79]. In this scenario, the retrieval system plays a
crucial role in identifying and retrieving relevant examples from external corpus. In this
section, we begin by discussing prior research on text retrieval approaches. Given our
focus on spoken language, we will then delve into the most recent studies concerning
the retrieval of spoken queries, and further, we will introduce recent works on retrieval-
augmented speech/language models.

2.5.1. Text Retriever

The Retriever is usually regarded as an information retrieval system aiming to retrieve
specific passages or text documents based on certain criteria from a larger corpus. It is
especially important in open-domain text Question Answering(QA) systems where the
system must find and extract information that probably contains correct answers from a
vast, unstructured dataset to answer questions accurately[125], which reduces the search
space for answer extraction and identifies the support context for users to verify the
answer. It is also used in tasks such as summarization[173], where relevant sections of
text are identified for further processing, and in machine translation, where context from
similar texts can aid translation accuracy[71]. Broadly, current approaches to Retriever
can be classified into three categories[187], i.e., 1)Sparse Retriever, 2)Dense Retriever, and
3)Iterative Retriever, which will be detailed in the following.
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Sparse Retriever refers to the systems that search for the relevant documents by adopting
classical IR methods such as TF-IDF[27, 76, 77, 85] and BM25[162, 171]. TF-IDF (Term
Frequency-Inverse Document Frequency) is a numerical statistic that reflects how fre-
quently a term occurs in a document. BM25[133] is an evolution of the TF-IDF concept,
and it provides a ranking to estimate the relevance of documents to search queries based on
the probabilistic model that is sensitive to term frequency and document length. Retrieval
methods based on TF-IDF and BM25 use sparse representations to measure term matches.
However, the effectiveness of the retriever may be impacted by the fact that the same term
can have different semantic meanings, and different terms can share the same semantic
meaning in both the questions and the documents [187].

Dense Retrievers are the systems that encode questions and documents into dense latent
vector space where text semantics beyond termmatch can bemeasured. Comparedwith the
limited ability to understand synonyms or semantically similar phrases of Sparse Retrieval,
Dense Retrieval models show better performance in understanding and matching queries
and documents based on their meaning rather than just exact word matches[187]. Along
with the success of deep learning that offers remarkable semantic representation, various
deep retrieval models have been developed in the past few years, greatly enhancing retrieval
effectiveness. According to the different ways of encoding the question and document as
well as of scoring their similarity, dense retrievers in existing OpenQA systems can be
roughly divided into three types: (1)Representation-based Retriever, (2)Interaction-based
Retriever and (3)Representation-interaction Retriever.

• The Representation-based Retriever, also called Dual-encoder or Two-tower retriever,
employs two independent encoders like BERT [36] to encode the question and
the document respectively, and estimates their relevance by computing a single
similarity score between two representations[86, 70, 57, 140]. For example, ORQA
[86] adopts two independent BERT-based encoders to encode a question and a
document, respectively, and the relevance score between them is computed by the
inner product of their vectors. In order to obtain a sufficiently powerful retriever,
they pretrain the retriever using an Inverse Cloze Task (ICT), i.e., to predict its
context given a sentence. The DPR[70] employs two independent BERT encoders
like ORQA but avoids the necessity of the expensive pre-training stage. Instead, it
focuses on training a strong retriever using pairwise questions and answers sorely.
DPR strategically selects negative samples for a question, which include random
documents from the corpus, the top documents identified by BM25 that lack the
correct answer, and in-batch negatives, which are the correct documents associated
with other questions within the same batch. Additionally, DPR demonstrates that the
inner product function is optimal for calculating similarity scores in a dual-encoder
retriever. However,[72, 97] pointed out that dual encoders have a limitation where
the final relevance score between a query and a document is calculated through
a straightforward dot-product of their embeddings. This simplicity can restrict
their effectiveness, particularly in their ability to generalize across diverse domains.
[107] challenged the notion and proposed to scale up the model capacity of the dual
encoder using the T5 architecture [128] while keeping the bottleneck layer fixed to a
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single dot-product operation and keeping the fundamental architecture unchanged.
This study found that by scaling up the model size, dual encoders can overcome their
inherent limitations and lead to significant improvements in the generalizability and
data efficiency of the retrieval model.

• The Interaction-based Retriever takes a question together with a document at the
same time as an input and is powerful by usually modeling the token-level inter-
actions between them, such as a transformer-based encoder. For example, [108]
They developed both a paragraph-level and a sentence-level dense Retriever, each
based on BERT [36]. They view dense retrieval as a binary classification issue, where
each question and document pair is input, and the embedding of the [CLS] token
is used to determine their relevance. Interaction-based method is powerful as it
allows for very rich interactions between question and document; however, it is
computationally expensive.

• Representation-interaction Retriever: In order to achieve both high accuracy and
efficiency, some recent systems [72, 183, 185] combine representation-based and
interaction-based methods. For example, SPARTA [185] develops a neural ranker
to calculate the token-level matching score using dot-product between a non-
contextualized encoded (e.g., BERT word embedding) question and a contextualized
encoded (e.g., BERT encoder) document. Concretely, given the representations of
the question and document, the matching score between the question and pas-
sage is computed via dot product, max-pooling, ReLU, and log sequentially. The
representation-interaction method is a promising approach to dense retrieval due to
its good trade-off between effectiveness and accuracy.

Iterative Retriever aims to search for the relevant documents from a large collection in
multiple steps given a question, which is also called Multi-step Retriever. It was explored
especially when answering complex questions like those requiring multi-hop reason-
ing [6, 102, 182, 168].In order to obtain a sufficient amount of relevant documents, the
search queries need to vary for different steps and be reformulated based on the context
information in the previous step[165].

2.5.2. Speech Retriever

With our focus on end-to-end speech translation, we will explore retrieval systems that
operate with spoken queries. We define a Spoken Query Retriever as a system capable of
retrieving both spoken and textual content from extensive datasets based on queries in
spoken form. This requires modifying traditional retrieval systems to comprehend and
process queries delivered in spoken language.
The concept of Spoken Query Retrieval aligns closely with Spoken Content Retrieval.

The latter specifically involves indexing and retrieving spoken content from large col-
lections of spoken audio data, where queries may be submitted in either text or spoken
formats [66]. Given the scarcity of research focused exclusively on spoken query retrieval,
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we will primarily concentrate on spoken content retrieval to gain insights that may apply
to both domains.
Considering the achievements and effectiveness of text-based retrieval systems as

we discussed in the last section, a spoken query retrieval system could intuitively be
implemented by integrating an Automatic Speech Recognition (ASR) module ahead of
a text-based retriever[87]. This setup converts spoken queries into text, which is then
processed by text retrieval methods. The cascade approach of retrieving passages from
spoken archives has been extensively investigated and reported by [87, 81, 26, 143].
However, simply cascading ASR module ahead of text retriever will cause several

challenges[174]: First, transforming speech signals into ASR transcriptions is inevitably
associated with ASR errors; Secondly, previous work [84] shows that directly feeding the
ASR output as the input for the following down-stream modules usually cause significant
performance loss, for example, modules for speech translation; Moreover, additional
information, such as audio recordings, contains potentially valuable information in spoken
form. Last but not least, the rare words, such as terminologies, named entities, or out-of-
vocabulary (OOV) words that we emphasize can also be hard to be recognized by ASR.
Therefore, implementing spoken content retrieval in an end-to-end approach directly
rather than over ASR transcriptions is highly desired. The end-to-end spoken content
retrieval approaches have mainly two directions:

Query-by-example spoken-term detection [130, 4]: The Retrieval from query to the pas-
sage, where the query typically consists of a spoken short phrase and the gold passages
must contain this phrase. The proposed end-to-end Query-by-Example Spoken Term
Detection system by [130] consists of three interconnected modules: feature extraction,
similarity matrix computation, and CNN-based matching. Initially, features are extracted
from both the query and the test utterances. Subsequently, these features are used to com-
pute a frame-level similarity matrix, which quantifies the similarity between the query and
the passage over time. This matrix is then treated as an image and fed into a convolutional
neural network (CNN). The CNN is tasked with classifying whether the test utterance
contains the query, effectively determining the presence of the query within the test based
on the patterns observed in the similarity matrix.

Semantic Search The Retrieval from query to passage, where the query is a spoken
sentence that may not necessarily share overlapping content with the gold passage. The
SpeechDPR (Speech Dense Passage Retriever) by [90] is proposed to tackle the challenge
of untranscribed spoken passage semantic retrieval. SpeechDPR adopts the bi-encoder
retriever framework and learns a sentence-level semantic representation space by distilling
knowledge from the cascading model of unsupervised ASR (UASR)[7, 91] and text dense
retriever (TDR). SpeechDPR assesses the similarity between the question and each passage
in the spoken archive by calculating the inner product of their sentence representations
and thus can find the most semantically relevant passage. However, Speech DPR is limited
to cross-modality retrieval.
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2.5.3. Retrieval-Augmented Recognition and Translation

Given the retrieval techniques discussed above, in this section, we will dive into previous
works in retrieval augmented 1)ASR; 2)MT ; and 3)ST.

Retrieval augmented ASR Persona LM proposed by [100] used a retrieval-augmented
language model to improve ASR personalization. It constructs n-gram frequency matrices
for retrieval and a Span Aggregated Group-Contrastive Neural (SCAN) retriever to rank
external domains/users based on semantic similarity. The retrieved n-gram probabilities are
used to augment the ASR’s predictions with personalized context. In Retrieval Augmented
SLM (ReSLM) by [159], a dual-encoder architecture where one encoder processes audio
inputs to retrieve relevant text entities was used. Retrieved entities are prepended to the
inputs of the language model, providing additional context for better recognizing rare
entities in speech dialogs. The retriever uses one encoder to encode the query (audio of
the user’s utterance), and the other encodes the candidate (text of entity names) to two
fixed-length embeddings. An average pooling was then applied on the encoder output
(generally varied length) to map it to the fixed length embedding. The relevance of
an audio/entity pair is scored by the cosine distance. [14] introduced k-PAT (k-nearest
neighbors based Phone Augmented Transformer) for ASR slot error correction. [186]
introduces a method called kNN-CTC that enhances CTC-based ASR systems using k-
nearest neighbors (kNN) retrieval. Themodel is trained to produce Connectionist Temporal
Classification (CTC) pseudo labels, which are used to create frame-level audio-text key-
value pairs. During decoding, the intermediate representations of the input are used as
queries to retrieve the k-nearest neighbors from the database. A probability distribution is
computed over these neighbors, which is then interpolated with the original CTC output
to improve recognition accuracy. [24] proposes a method to adapt ASR models using
external text-to-speech (TTS) generated key-value stores. An external knowledge store is
created by mapping TTS-generated audio representations to semantic text embeddings.
The ASR model incorporates a k-nearest neighbors (kNN) based attentive fusion step
during fine-tuning or training. This mechanism biases the ASR model using the retrieved
key-value pairs from the external knowledge store, improving the model’s adaptability
to new domains. The approach is designed to handle large catalogs of specialized words
or phrases, enabling efficient domain adaptation and reducing the need for extensive
fine-tuning. The method demonstrates improved performance in ASR tasks, particularly
in zero and few-shot scenarios, by leveraging external text data catalogs for contextual
biasing.

Retrieval Augmented MT kNN-MT approach proposed in [71] augmented MT model
with a k-nearest-neighbor (kNN) classifier that retrieves k candidate target tokens from a
separate datastore at inference time. The kNN distribution is computed by aggregating
the distances of the retrieved neighbors, which is then interpolated with the base model’s
output distribution to generate the final translation. Although the work by[92] (D. Liu et
al., 2023) showed that kNN-MT can effectively help rare word translation performance,
kNN-MT hasn’t been used in E2E ST.
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Retrieval Augmented ST Decoupled Non-Parametric Knowledge Distillation for End-to-
End Speech Translation (DNKD) proposed in [178] utilizes retrieval to augment speech
translation through knowledge distillation. A datastore containing key-value pairs, with
key as high-dimensional representations of the translation context and value as corre-
sponding ground truth tokens, is first constructed. During training, for a given translation
context, k-nearest neighbors are retrieved from the datastore. The retrieved neighbors
extend the training data by providing multiple target tokens for each context. The teacher
distribution is constructed from retrieved examples to provide soft targets that guide the
model toward better translation performance. [42] used KNN to construct a datastore
from the in-domain text translation corpus. This datastore is used during inference to
perform a similarity search. The final translation probability is an interpolation between
the E2E-ST model’s prediction and the kNN retrieved neighbors. This method leverages
in-domain text translation data to adapt E2E-ST models to new domains without needing
in-domain speech translation data
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Figure 3.1.: Proposed retrieval-and-demonstration framework: At the ST model training
stage (§3.1), example-prepended training data is used to instill in-context
learning abilities in the S2Tmodel. At the retriever training stage (§3.2), SONAR
encoders are fine-tuned within the DPR architecture for our rare word task.
At the inference stage (§3.3), retrieved examples are used as demonstrations to
facilitate the translation of rare words.

Our retrieval-and-demonstration framework is illustrated in Figure 3.1. First at the
left side of Figure 3.1, a trained direct ST model is finetuned to ingest examples (§3.1),
which serve as demonstrations of correctly translating the rare words in question. Next, as
shown at the upper right of Figure 3.1, we trained a multi-modal retriever (§3.2) to retrieve
relevant examples for demonstration. During inference, as shown at the lower right of
Figure 3.1, given an utterance containing rare words, we retrieve a relevant utterance and
its translation with our trained retriever and demonstrate them to our finetuned ST model
to guide its inference (§3.3).
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3.1. Adapting ST Models to Ingest Example

3.1.1. Motivation

The example translation, which is known as translation memory [20], is widely leveraged
by human translators for domain-specific translations with terminologies [21]. Similarly,
we aim to apply it to direct ST models to enhance its rare word translation ability. The
underlying idea mirrors that of in-context learning (ICL) [22], where providing models
with task-specific examples during inference improves the quality of the generated output.

While ICL has been primarily observed on text-based LLMs [22, 104, 152], we here
first explored whether small- or medium-sized encoder-decoder-based speech translation
models can also be instilled to exhibit this capability.

3.1.2. Training

The task of adapting standard STmodels to ingest examples can be defined as follows: Given
𝑢 the utterance to translation, let 𝑦 be the target translation and 𝑦 of predicted translation.
Let (𝑢𝑒, 𝑦𝑒) be an example utterance-translation pair retrieved from the retriever model. We
finetune the STmodel so that the model maximizes the probability of generating the correct
translation 𝑦, given input utterance 𝑢 and example (𝑢𝑒, 𝑦𝑒), as shown in Equation 3.1:

𝑦 = argmax
𝑦

𝑃 (𝑦 |𝑢𝑒, 𝑦𝑒, 𝑢) (3.1)

The difference to the standard training is that the example (𝑢𝑒, 𝑦𝑒) is included as context
when generating the target translation. For the training data, for the 𝑖-th training utterance
𝑢𝑖 , an example utterance 𝑢𝑒𝑖 is prepended to it, forming a concatenated input 𝑢𝑒𝑖 + 𝑢𝑖 .1 The
targets are also concatenated as 𝑦𝑒𝑖 + <SEP> + 𝑦𝑖 , where <SEP> is a special token indicating
the separator between sentences.

During the training process, the loss is only calculated on 𝑦𝑖 to prioritize the translation
of the utterance after the example. Including the loss of the prefix leads the finetuning step
to end prematurely in preliminary experiments. Therefore, the translation of the example
sentence is used as a prefix and masked during loss calculation. The cross-entropy loss
function we use for training can be expressed as Equation 3.2:

L = −
𝑇∑︁
𝑡=1

𝑀𝑡𝑙𝑜𝑔𝑃 (𝑦𝑡 |𝑦<𝑡 , 𝑢𝑒, 𝑦𝑒, 𝑢) (3.2)

With𝑀𝑡 as a mask function Equation 3.3:

𝑀𝑡 =

{
0 if position 𝑡 is part of 𝑦𝑒

1 if position 𝑡 is part of 𝑦
(3.3)

In doing so, we encourage the model to predict its outputs based on the context provided
by the demonstration example.
1Details on constructing the dataset is in §4.1.
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3.2. Example Retrieval

3.2. Example Retrieval

3.2.1. Formalization and Challenge

Given a query utterance 𝑢 containing a rare word 𝑤 : 𝑢 = (𝑤1,𝑤2, . . . ,𝑤𝑛) and 𝑤 ∈
{𝑤1,𝑤2, . . . ,𝑤𝑛}. We aim to retrieve a relevant example (𝑢𝑒, 𝑦𝑒) from an example pool
D = {(𝑢1, 𝑦1), . . . , (𝑢𝑚, 𝑦𝑚)} with a retrieval model 𝑅, such that the rare word𝑤 is spoken
in utterance 𝑢𝑒 . Here 𝑢𝑖 indicates the 𝑖-th utterance and 𝑦𝑖 its translation, as shown in
Equation 3.4.

(𝑢𝑒𝑖 , 𝑦𝑒𝑖 ) = 𝑅(𝑢𝑖, 𝐷), 𝑤ℎ𝑒𝑟𝑒 𝑅(𝑢𝑖, 𝐷) = {(𝑢𝑒𝑖 , 𝑦𝑒𝑖 ) ∈ 𝐷 |𝑤 ∈ 𝑢𝑖𝑎𝑛𝑑𝑤 ∈ 𝑢𝑒𝑖 } (3.4)

Note that here, we only have utterances to translate as queries. Therefore, speech-based
retrieval is a must. Compared with text-based retrieval, we face additional complexities in
speech-based retrieval as the query 𝑢 is only in speech.

• First, speech is versatile. Unlike text, which often has a standard writing system, the
speaking condition for the same content varies in every recording, which requires a
robust retriever that accounts for pronunciation variations.

• Second, speech sequences are magnitudes longer than text. As we have to find the
sentence with the same keywords as the sentence we are querying, the retriever
must be able to find fine-grained local features corresponding to the keywords in
long sequences.

• Third, we cannot implement the retrieval by directly cascading the ASR with a
text-based retriever. Transcribing the query utterance first and then using text-based
retrieval is suboptimal due to ASR errors, especially on rare words.

3.2.2. Architecture

To build the retriever, we take inspiration from the Dense Passage Retriever (DPR) archi-
tecture [70]. DPR is a prominent architecture in text-to-text-based information retrieval
(IR) approaches.

We adopted the DPR architecture for our retrieval as the nature of our example retrieval
task resembles IR, where relevant answers are retrieved given a question.
The DPR has a dual-encoder architecture, where one encoder encodes the questions,

and the other encodes the passages potentially containing answers to the questions. The
retrieval model is trained with a contrastive objective, mapping question-passage (positive)
pairs closer to each other in the latent space while pushing irrelevant (negative) pairs
further apart. During inference, passages closer to the encoded question by the dot-product
similarity are returned as answers.

In our case, the questions are the utterances containing rare words to translate, and the
passages are the example sentences we are searching for as our demonstration.

Therefore, the candidate passages containing the same rarewords as the query utterances
are considered positive pairs, while those not sharing the same rare words are negative
pairs. The architecture of our retriever is shown in Figure 3.1.
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3. Method

3.2.3. Speech-to-Speech/Text Retrieval

As we have utterances 𝑢 as queries and we could retrieve both speech and text, we propose
to extend the DPR model to support querying speech/text from speech. We consider the
following retrieval modalities:
• Speech→speech retrieval: we retrieve 𝑢𝑒 in speech using audio query 𝑢.
• Speech→text retrieval: as the example utterance-translation pair (𝑢𝑒, 𝑦𝑒) to be retrieved
often also have text transcripts 𝑠𝑒 available, we also consider retrieving 𝑦𝑒 directly
using audio query 𝑢, with 𝑠𝑒 as candidates. This requires the retriever to support both
modalities (text and speech).

• Naïve text→text retrieval: first transcribing the query utterance 𝑢 and then text-to-text
retrieval for 𝑦𝑒 . As discussed before, the risk of ASR errors, especially in rare words,
renders this approach suboptimal. The additional inference time for running ASR makes
it further unpractical.
However, here we are supposing we have oracle text transcript of both querying utter-
ances and candidate utterances and do the retrieval with their transcripts.
Given these requirements, instead of initializing the dual encoders with pre-trained

BERT [36] as in DPR [70], we leverage recent speech-text joint representation models
including SONAR [44] and SpeechT5 [5], more details will be introduces in subsection 4.2.2.
Note that our ST model and the retriever are two separate models, and we don’t back-
propagate the gradient of ST to the retriever.

3.3. Integrating Examples into ST Model

3.3.1. Inference with Retrieved Examples

As shown in Figure 3.1, during inference, the model is provided with a test input 𝑢 and
a retrieved example (𝑢𝑒, 𝑦𝑒). The example is prepended to test input in the same way
as in training. The example input-output pairs are integrated by forced decoding. After
the separator token (<SEP>), the model starts to autoregressively generate the output
translation, conditioned additionally by the example utterance and translations. The
translation of the example 𝑦𝑒 is taken as a prefix in the same way as in training.

3.3.2. Practical Considerations

An advantage of our framework is its modularity. The separation of the ST and retrieval
modules enables straightforward upgrades to newer models in either component. This
also means either our ST models or our retriever can be substituted by other modules to
fulfill various needs.

Moreover, the retrieval module can be implemented using highly optimized toolkits like
FAISS [69], which ensures efficient retrieval without compromising inference speed.
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4.1. Dataset Construction

Split # utt. Avg. utt. duration (s) Avg. #tokens # unique rare words

train (original) 250942 6.5 27.1 9512
tst-COMMON 2580 5.8 25.3 157

rare-word pool 9821 9.7 43.1 8679
dev-rare-word 6932 9.9 42.8 6244
tst-rare-word 2500 9.9 43.1 2358
train-reduced 231689 6.2 25.8 3164

Table 4.1.: Dataset statistics. We split the original training set into the example pool with
rare words (rare-word pool), dev/test sets for rare words (dev/tst-rare-word),
and a reduced training set (train-reduced). The example pool simulates existing
resources for querying.

we use the English-to-German subset of the MuST-C dataset [38] for training and
evaluation, where the task is to translate from English-public speaking audio to German
text. Instead of directly utilizing the MuST-C data, we reorganize its original training set
into rare-word pool, dev-rare-word, tst-rare-word, and train-reduced, in order to create
a targeted data condition for rare words. This is implemented by extracting sentences
containing rare words from the original training set to create train-reduced and other
dedicated sets. The statistics of the original dataset and the newly created splits are in
Table 4.1. The rare-word sets have higher average token counts due to 1) longer utterance
duration and 2) the rare words being segmented into finer-grained subwords. Note that
we only re-split the training set, leaving the official validation and test sets (tst-COMMON)
unmodified. Below, we describe the dataset construction process in detail.

Rare Word Sets Our data partition step is inspired by [109], which re-splits parallel data
based on word frequencies. Specifically, from the English transcript, we find rare words
by their corpus-level frequency, choosing those whose lemma appears two or three times
in the original training set. For rare words occurring twice, we move their corresponding
utterances to the rare-word pool and the joint dev/tst set, respectively, which creates a
zero-shot condition where the rare word is never seen in training. For rare words occurring
thrice, We followed the same strategy for two occurrences. The remaining third occurrence
is retained in the reduced training set to create a one-shot learning scenario, where the rare
word is seen once in the training set. We are first moving the rare word to the rare-word
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4. Experimental Setup

Algorithm 1: Algorithm for Dataset Construction
Input: TrainSet={𝑢1, 𝑢2, ...}, RareWordList={𝑤1,𝑤2,...}
Output: TrainReduced, DevRareWord, TstRareWord, RareWordPool
//Initialization

𝑇𝑟𝑎𝑖𝑛𝑅𝑒𝑑𝑢𝑐𝑒𝑑 ← 𝑇𝑟𝑎𝑖𝑛𝑆𝑒𝑡

𝐷𝑒𝑣𝑅𝑎𝑟𝑒𝑊𝑜𝑟𝑑 ← []
𝑇𝑠𝑡𝑅𝑎𝑟𝑒𝑊𝑜𝑟𝑑 ← []
𝑅𝑎𝑟𝑒𝑊𝑜𝑟𝑑𝑃𝑜𝑜𝑙 ← []
𝐸𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑒𝑑𝑅𝑎𝑟𝑒𝑊𝑜𝑟𝑑 ← {}

for each, 𝑢 ∈ TrainSet do
//Each Utterance 𝑢 in TrainSet

if 𝑢 contains word𝑤 ∈RareWordList then
if 𝑤 not in EncounteredRareWord.keys() then

//Word 𝑤 appears for the first time

EncounteredRareWord[𝑤].append(𝑢)
TrainReduced.remove(𝑢)
RareWordPool.append(𝑢)

end
else if EncounteredRareWord[𝑤].size is 1 then

//Word 𝑤 appears for the second time

EncounteredRareWord[𝑤].append(𝑢)
TrainReduced.remove(𝑢)
TstRareWord.append(𝑢)

end
else if EncounteredRareWord[𝑤].size is 2 then

//Word 𝑤 appears for the third time

EncounteredRareWord[𝑤].append(𝑢)
end
else

Continue
end

end
end
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4.1. Dataset Construction

pool and then to the tst-rare-word (as shown in algorithm 1) to ensure that for each word
in the tst-rare-word, there’s a sentence that contains the same rare word in the rare-word
pool. Moreover, we are making sure that one sentence only appears once among the
train-reduced, tst-rare word, dev-rare word, and rare word pool. Finally, the aggregated
dev/tst set is split into individual development and test sets for standard evaluation. The
number of unique rare words in Table 4.1 represents those whose lemma only appears
two/three times in the original training set, and each lemma is counted only once. The
detailed algorithm is shown in algorithm 1.
We then analyze the rare word types in tst-rare-word by a named entity recognition

(NER) model1 with results in Table 4.2. More detailed categorization of words are shown
in section A.1.

tst-rare-word Person Location Tech Food Company

2358 130 72 29 27 25

Table 4.2.: NER results on rare words in tst-rare-word with the number of unique words
in each category.

Training Data with Prepended Examples To adapt the ST model and to train the retriever,
we need training data with prepended examples. As most utterances lack rare words
by the previously used corpus-level frequency (3164 rare words in 231k utterances in
Table 4.1), we propose to use sentence-level rare words to choose the prepended examples.
Specifically, for each piece of the training data (𝑢𝑖, 𝑠𝑖, 𝑦𝑖), we identify the word𝑤𝑠 in 𝑠𝑖 that
has the least corpus-level frequency among all words in its transcript. We then sample
another training instance (𝑢 𝑗 , 𝑠 𝑗 , 𝑦 𝑗 ) from the training data, where 𝑠 𝑗 contains the same
sentence-level rare word𝑤𝑠 as example. Note that𝑤𝑠 is not an actual rare word,𝑤𝑠 is just
a word that appears less frequently than other words in the same sentence, which is what
means the sentence-level rare word.

Test Set with Gold Examples We also construct a variant of tst-rare-word set with gold
examples, where the rare word in the test utterance is always present in the example.
This is finished by doing the word analysis on the transcript of sentences in both that
test split and the rare-word pool. The test set with gold examples serves as an oracle
condition for evaluating the ST model’s ability to learn from perfect demonstrations. As
our data splitting procedure ensures that the rare words also occur in the example pool,
we select sentences from the rare-word pool containing the same rare words as those
in the tst-rare-word set to serve as example sentences. The example sentences are then
prepended to test sentences in a way identical to that in the training set with prepended
examples.

1Huggingface model by [175]
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4.2. Model Configuration

4.2.1. ST Model

We use the Transformer architecture s2t_transformer_s in FairSeq S2T [156] for all
our ST models. To prevent the tokenizer from seeing the rare words during its training,
which will cause an unfair test condition, we train the SentencePiece [78] tokenizer on the
reduced train set after the utterances containing rare words are moved to dedicated splits
(Table 4.1). Based on this vocabulary, we train the base model on the train-reduced set,
closely following the hyperparameters from [156]. We then adapt the base model to ingest
examples as described in §3.1 using the reduced training set with prepended examples
(§4.1). As the prefix tokens do not contribute to the overall loss (Figure 3.1), we double the
effective batch size to keep the loss scale comparable to before.

Training Details We use the Transformer architecture s2t_transformer_s in FairSeq
S2T [156] For all our STmodels, the encoder-decoder architecture consists of 12 transformer
encoder blocks and 6 transformer decoder blocks, with a model dimension of 256 and an
inner dimension (FFN) of 2,048.

We initialized the ST model from a pre-trained ASR model2. Subsequently, we fine-tuned
the pre-trained model for the ST task with hyperparameters following [156], specifically,
we set dropout rate 0.1 and label smoothing 0.1. The ST training used a tokenizer with
a vocabulary size of 8,000. To prevent the tokenizer from seeing the rare words during
its training, which will cause an unfair test condition, we train the SentencePiece [78]
tokenizer on the reduced train set after the utterances containing rare words are moved to
other splits as discussed in §4.1.
During the training of the adapted ST model with examples, we doubled the effective

batch size to maintain a comparable loss scale since the prefix tokens do not contribute
to the overall loss. Additionally, we set dropout rate to 0.2 after doing a search in {0.1,
0.2, 0.3} based on the dev loss during the training of the adapted ST model. The training
was stopped after the validation performance did not improve for 30 consecutive epochs
(patience 30). The detailed Hyper Parameters are listed in Table 4.4. For evaluation, we
averaged the last 10 checkpoints.

Inference Details The inference uses a beam size of 5. Since the rare-word-tst dataset
includes example-prepended sentences, the sentences are longer than typical translation
sentences. To keep all utterances in the rare-word-tst set, we set a large allowed source
size with –max-source-positions 30000. This ensures that even the longest utterances are
not excluded from the rare-word-tst set.

4.2.2. Retriever

We use the DPR [70] architecture for the retriever. The encoders are initialized with either
SONAR [44] or SpeechT5 [5]. For both models, we use the encoder only and discard
2https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_de_asr_transformer_s.pt
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4.2. Model Configuration

Hyper Parameters

Optimizer Adam
Adam Eps 1e-8
Adam Betas (0.9, 0.999)
Learning Rate Scheduler Inverse Sqrt
Learning Rate 0.001
Dropout 0.2
Attention Dropout 0.2
Beam Size 5
Max Tokens 80,000
Clip Norm 10
Patience 30
Warmup Updates 10000

Table 4.3.: Adapted ST Model Training Hyperparameters.

the decoder. DPR requires fixed-size embeddings from its encoders. For SpeechT5, we
mean-pool over the sequence length. For SONAR, we use the built-in attention-pooling
for the speech encoder and mean-pooling for the text encoder. The dual encoders in
DPR are trained on the reduced training set with prepended examples. Each sentence’s
example serves as a positive example, while examples from other sentences in the batch
are in-batch negatives. Only the top layer of the encoders is trained, as the lower layers
of the encoders are likely responsible for extracting low-level acoustic features. These
features are considered less relevant for our retrieval task, which focuses on word-level
information. Another reason is memory efficiency in training.

Training Details Our retriever is based on the DPR [70] architecture, where a dense
passage encoder 𝐸𝑃 and a question encoder 𝐸𝑄 is constructed to map candidate input 𝑐
and query input 𝑞 to latent representation vectors respectively. The similarity between
the candidate representation and the query representation is defined as the dot-product of
their vectors as shown in Equation 4.1:

𝑠𝑖𝑚(𝑞, 𝑐) = 𝐸𝑄 (𝑞)𝑇𝐸𝑃 (𝑐) (4.1)

The encoders 𝐸𝑃 and 𝐸𝑄 of DPR are initialized with SpeechT5 encoder[5] or SONAR
encoder [44].
Speech T5 The SpeechT5 speech/text encoder transforms speech or text input into

a 768-dimensional embedding vector. It comprises 12 Transformer encoder blocks, each
with a model dimension of 768 and an inner feed-forward network (FFN) dimension of
3,072. Before the encoder, a speech/text-encoder pre-net preprocesses the input. The
speech-encoder pre-net includes the convolutional feature extractor of wav2vec [8] for
waveform downsampling. The text-encoder pre-net applies positional encoding to convert
character-level tokenized indices into embedding vectors.

SONAR The SONAR speech/text encoder encodes speech/text input to an embedding
vector of 1,024. The encoder consists of 24 transformer encoder blocks with a model
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dimension of 1,024 and an inner dimension (FFN) of 8,192. The speech encoder-frontend
applies the wav2vec feature extractor [8], while the text encoder-frontend uses a position
encoder.

Training The dual encoders in DPR are trained on a reduced training set with prepended
examples. Each sentence’s example works as a positive example, while examples from
other sentences in the batch serve as in-batch negatives. We set a batch size of 4 and a
learning rate of 2e-5 for training (Detailed in Table 4.4). Given the large size of the SONAR

Hyper Parameters

Optimizer Adam
Adam Eps 1e-8
Adam Betas (0.9, 0.999)
Learning Rate 2e-5
Dropout 0.1
Weight Decay 0.01
Batch Size 4
Warmup Updates 1,234

Table 4.4.: SONAR-based Retriever Training Hyperparameters.

encoder, for memory efficiency, only the top layer of the SONAR encoder is trained. This
approach is not only for memory efficiency but also because the lower layers likely extract
low-level acoustic features, which are less relevant for our retrieval task focused on word-
level information. We further investigate the retrieval accuracy under different numbers
of trainable parameters. As shown in Figure 5.1. We use the settings with the best retrieval
accuracy for our ST task. which are:

• For the speech-to-speech retriever, the top 2 layers of both speech encoders are
trained, resulting in 205 million trainable parameters.

• For the speech-to-text retriever, the top 8 layers of both the text and speech encoders
are trained, with 422 million trainable parameters.

• For the text-to-text retriever, the top 8 layers of both text encoders are trainable,
totaling 335 million trainable parameters.

Inference Details During inference time, we apply the passage encoder 𝐸𝑃 to all the
candidates in the rare-word pool. Given a question 𝑞, we can derive its embedding
𝑣𝑞 = 𝐸𝑄 (𝑞) and then retrieve the top-1 candidate whose embedding is the closest to 𝑣𝑞
from the rare-word pool.
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4.3. Evaluation

We evaluate speech translation quality with sacreBLEU [115]3 and COMET [131]4. For the
accuracy of rare word translation, we evaluate how many unique lemmatized rare words
in the test set are translated. We use the spaCy toolkit [60] for word lemmatization and
used AWESoME Aligner [41] for en-de word-level alignment. For rare word accuracy, we
further distinguish between rare words appearing once or never appear in the training set
(§4.1)(train-reduced set), which corresponds to the one-shot and zero-shot accuracy. For
the retriever, we use top-1 retrieval accuracy to evaluate the retriever’s performance. Only
the top retrieved examples are used as demonstrations in the ST model.

4.3.1. SacreBLEU Score

The SacreBLEU score[120] is a metric for evaluating the quality of machine-translated
text compared to a reference translation. SacreBLEU aims to provide a standardized
and replicable BLEU score calculation. It eliminates the variations that can arise from
different tokenization and preprocessing steps by using a fixed, consistent approach.
SacreBLEU evaluates the overlap of n-grams (sequences of n words) between the candidate
translation and one or more reference translations. It uses a fixed, consistent tokenization
and preprocessing pipeline to ensure replicable results.

4.3.2. COMET Score

COMET (Crosslingual Optimized Metric for Evaluation of Translation)[131] is a modern
metric designed to evaluate the quality of machine translation outputs. Unlike traditional
metrics such as BLEU, which rely on n-gram overlap between the machine translation
output and reference translations, COMET employs neural networks and large multilingual
pre-trained models to assess translation quality.
COMET is trained using human judgment scores from various machine translation

evaluation campaigns. This aligns the metric closely with human perceptions of translation
quality. The neural network architecture enables COMET to consider the context of the
entire sentence or document, rather than just isolated segments. This helps in better
evaluating translations that require understanding of broader context. Compared with
BLEU score, COMET is more closely aligned with human judgment, providing more
reliable assessments of translation quality from a human perspective.

3sacreBLEU [120] signature:
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.4.2

4with Unbabel/wmt22-comet-da; ×100 for readability. The COMET models take text transcripts as source.
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5. Results and Analysis

Before presenting the results of our proposed framework, We confirm that our baseline
model performs on par with those reported in the literature1 with the results in Table 5.1.
Below, we will introduce our experiment results and their analysis.

BLEU

Fairseq S2T [156] 22.7
Our baseline model 23.6

Table 5.1.: The performance of our baseline model on the tst-COMMON split of MuST-C
is comparable to existing baselines. Both models have the identical architecture
using s2t_transformer_s.

5.1. Impact of Demonstration

5.1.1. Direct ST models can effectively learn from demonstration at inference
time.

In this section, we will discuss the ST model’s performance in ingest demonstrated ex-
amples. To independently analyze the ST model’s ability to learn from the prepended
examples, we first assume an oracle retrieval model by using gold examples, which always
contain the rare words in question. The results of adapted model on gold examples are
in row (2) of Table 5.2. Compared to the baseline in row (1), this model achieves substan-
tially higher overall rare word translation accuracy (+17.6% abs.), with a larger gain in
zero-shot (+18.8%) than one-shot accuracy (+15.3%). Nonetheless, this gain comes at the
cost of overall translation quality (−0.2 BLEU, −2.3 COMET). A potential reason is that the
prepended example sentences make the input sequences much longer and, therefore, create
more difficulty for learning. Nonetheless, since rare words are often important named
entities or terminologies, capturing them correctly is as crucial if not more than the overall
translation quality scores. Overall, the results suggest that task-specific demonstrations
provided at inference time can effectively enhance the rare word translation accuracy of
direct ST models. Our results on the tst-COMMON set (shown in Table 5.3) also show the
same trend. However, due to the small number of rare words in the tst-COMMON set (116
out of 2580 utterances), there’s a relatively small discrepancy between the results on the
tst-COMMON split and the tst-rare-word split.
1ST performance of Fairseq S2T[156] toolkit
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As a reference, we also implement our approach on the MT model, by using our reduced-
train set with gold examples. Our MT model is trained fully identical according to the
FAIRSEQ MT tooklit2. The results of the baseline model and adapted model on gold
examples are in Table 5.4 and Table 5.5. The rare word accuracy in MT is, in general,
higher than that in ST. Moreover, compared to the baseline, our adapted model has a
higher overall translation accuracy(+13.1% abs.) on the tst-rare-word set.

5.1.2. Quality of the given demonstration matters.

However, in reality, demonstrations do not always contain the rare words to translate.
How would the demonstration quality influence the translation? In contrast to the gold
examples before, we now use random selected examples that do not contain rare words
relevant to the sentence to be translated. The results are in row (3) of Table 5.2. This led to
a decline in translation quality (−1.3 BLEU, −2.4 COMET) and rare word accuracy. These
results indicate that irrelevant demonstrations are harmful.

ST Model BLEU COMET
Overall
acc (%)

0-shot
acc (%)

1-shot
acc (%)

(1) baseline model (on train-reduced) 17.2 57.9 11.8 11.0 13.3
(2) adapted + gold example 17.0 55.6 29.4 29.8 28.6
(3) adapted + random example 15.7 53.2 8.8 8.4 9.7
(4) train on {train-reduced + rare-word pool} (more data) 17.9 59.0 15.5 14.7 17.2

Using retrieved examples
(5) adapted + text (gold transcript)→text 15.2 54.4 20.1 19.6 21.2
(6) adapted + speech→text 15.3 54.0 18.8 18.2 20.2
(7) adapted + speech→speech 16.2 55.3 20.3 20.3 20.2

Table 5.2.: Speech Translation quality (BLEU↑, COMET↑) and rare word accuracy↑ (overall,
0- and 1-shot) of different models on the tst-rare-word split. The lower section
uses retrieved examples from the retriever (§5.3).

5.1.3. Seeing rare words only in training does not sufficiently improve their
translation accuracy.

Instead of retrieving data from the rare-word pool as demonstration, a simple alternative
is to add these data in training. Here, we add the rare-word pool into the training set and
train an identical model to the baseline. The results on the tst-rare-word split are in row (4)
of Table 5.2. Overall, the rare word accuracy only sees a slight increase compared to row (1),
with an absolute accuracy improvement of 3.7%, which is far less than using gold example
sentences (+17.6% overall). The results on the tst-COMMON set(Table 5.3) also show the
same trend, where simply adding rare word to the training can only increase the rare word
translation slightly(+0.8%) compared to the translation with gold examples(+6%). This
2https://github.com/facebookresearch/fairseq/tree/main/examples/translation
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5.2. Retrieval Performance

ST Model BLEU COMET
Overall
acc (%)

0-shot
acc (%)

1-shot
acc (%)

(1) baseline model (on train-reduced) 23.6 70.5 14.7 13.6 15.8
(2) adapted + gold example 21.8 64.5 20.7 22.0 19.3
(3) adapted + random example 20.8 61.9 12.9 11.9 14.0
(4) train on {train-reduced + rare-word pool} (more data) 23.9 70.9 15.5 8.5 22.8

Using retrieved examples
(5) adapted + text (gold transcript)→text 21.6 64 19.0 22.0 15.8
(6) adapted + speech→text 21.4 64.1 14.7 13.6 15.8
(7) adapted + speech→speech 21.8 64.9 19.0 20.3 17.5

Table 5.3.: Speech Translation quality (BLEU↑, COMET↑) and rare word accuracy↑ (overall,
0- and 1-shot) of different models on the tst-COMMON split. The lower section
uses retrieved examples from the retriever (§5.3).

MTModel tst-rare-word

BLEU
Overall
acc (%)

Overall
acc (%)

Overall
acc (%)

(1) baseline model (on train-reduced) 17.8 46.4 50.9 36.6
(2) adapted + gold example 17.0 59.5 63.6 50.7

Table 5.4.: Machine Translation quality (BLEU↑, COMET↑) and rare word accuracy↑
(overall, 0- and 1-shot) of different models on the tst-rare-word split.

indicates that training with rare words alone is insufficient for improving their translation
accuracy. This is likely because of the limited training signal for rare words, as each appears
only once or twice. Note that the translation quality scores under this data condition also
improved, which is likely a result of the additional training data.

5.2. Retrieval Performance

Before integrating retrieved examples into the ST model, we analyze the retrieval per-
formance alone with results in Table 5.6. To establish the upper bounds of retrieval
performance, we first use the original DPR model for text-to-text retrieval with gold
transcripts of the query utterances and examples. As shown in row (1) of Table 5.6, directly
using the pretrained DPR for QA is not sufficient for our task of rare word retrieval,
as we are retrieving based on keyword matching, not traditionally semantic matching.
Therefore, we fine-tuned the pretrained model for our task by using reduced train-set
and their corresponding examples as positive example.The results in row(2) of Table 5.6
shows that fine-tuning DPR’s encoders on our task enables effective rare word retrieval in
a text-to-text setting (55.8%).
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5. Results and Analysis

MTModel tst-COMMON

BLEU
Overall
acc (%)

Overall
acc (%)

Overall
acc (%)

(1) baseline model (on train-reduced) 23.8 31.9 37.3 26.3
(2) adapted + gold example 21.1 42.2 49.2 35.1

Table 5.5.: Machine Translation quality (BLEU↑, COMET↑) and rare word accuracy↑
(overall, 0- and 1-shot) of different models on the tst-COMMON split.

Retrieval Model T→T S→T S→S

(1) Orig. DPR w/ BERT (pretrained) 2.0 − −
(2) Orig. DPR w/ BERT (finetuned) 55.8 − −
(3) DPR w/ SpeechT5 (finetuned) 0.1 0.0 0.0
(4) DPR w/ SONAR (pretrained) 28.7 22.3 20.6
(5) DPR w/ SONAR (finetuned) 46.6 33.3 41.3

Table 5.6.: Top-1 retrieval accuracy (%) of different retrievers on 3 modalities of text-to-text
(T→T), speech-to-text (S→T), and speech-to-speech (S→S) on the tst-rare-
word split. T→T retrieval uses gold transcripts as query.

5.2.1. Encoder choice is crucial for successful retrieval.

We proceed by adapting the original DPR to retrieval from speech. Overall, we notice
that the choice of the encoder heavily impacts the retrieval performance. With SONAR,
using the pretrained encoders already achieves partial success in fulfilling the task, with
28.7% retrieved on text-to-text, 22.3% on speech-to-text, and 20.6 % on speech-to-speech,
as shown in (row (4) in Table 5.6). With finetuning further improving the results (row
(5)), which reaches 46.6% on text-to-text retrieval, 33.3% on speech-to-text retrieval and
41.3% on speech-to-speech retrieval. However, finetuning SpeechT5 proves insufficient for
learning the task (row (3)).
We believe that the discrepancy primarily arises from the models’ ability to aggregate

information over the sentence length: SONAR is explicitly trained to aggregate it into
fixed-size embeddings, while SpeechT5 lacks such a mechanism. Naïve mean-pooling over
sequence length fails to create meaningful embeddings over long sequences like speech,
as well as character-level text representations used in SpeechT5.

5.2.2. Speech→speech outperforms speech→text retrieval.

While we initially expected speech-to-speech retrieval to be more challenging than speech-
to-text retrieval due to the high variability of speech, the finetuned retriever in (5) of
Table 5.6 shows stronger performance on speech→speech retrieval than speech→text
(41.3% vs. 33.3%). We suppose that the reason is the modality gap between text and speech,
which makes it more challenging to bridge the two different types of data.
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5.3. ST Performance with Retrieved Examples

Retrieval Model T→T S→T S→S

(1) Orig. DPR w/ BERT (pretrained) 2.0 − −
(2) Orig. DPR w/ BERT (finetuned) 55.8 − −
(3) DPR w/ SpeechT5 (finetuned) 0.1 0.0 0.0
(4) DPR w/ SONAR (pretrained) 28.7 22.3 20.6
(5) DPR w/ SONAR (finetuned) 46.6 33.3 41.3

Table 5.7.: Top-1 retrieval accuracy (%) of different retrievers on 3 modalities of text-to-
text (T→T), speech-to-text (S→T), and speech-to-speech (S→S) on the tst-
COMMON split. T→T retrieval uses gold transcripts as query.

5.3. ST Performance with Retrieved Examples

5.3.1. Correlation between retrieval accuracy and translation quality:

As the retriever based on finetuned SONAR showed the most promising retrieval results
(Table 5.6), We use the examples retrieved from this model to guide the ST. The results are
in rows (5), (6), and (7) of Table 5.2. When comparing the performance of the three retrieval
modalities, retrieval accuracy does not always translate to improved overall translation
quality or rare word accuracy. Although text-to-text retrieval using gold transcripts had
the highest retrieval accuracy (Table 5.6), its integration into the ST model resulted in
lower translation quality compared to speech-to-speech retrieval. Moreover, in practice,
we still need an ASR model to derive the transcripts that likely contain errors, especially
on rare words. This introduces additional limitations to the text-to-text retrieval approach.
Overall, these results show that speech-speech retrieval is more effective than the other
modalities in improving rare word translation accuracy. Despite the improvement in rare
word translation accuracy, we also note the drop in translation quality compared to the
baseline (row (7) vs. (1); −1.0 BLEU and −2.6 COMET). The results on the tst-COMMON
set(Table 5.3) also show the same trend. We expect that increasing the robustness of the
ST model to examples containing incorrect rare words, for instance by including such
examples in training, could mitigate this negative impact.

5.3.2. Does speech→speech retrieval help by implicit speaker adaptation?

Speech-to-speech retrieval could be particularly effective in finding same-speaker utter-
ances due to the access to acoustic information. This raises the hypothesis that if the
prepended example originates from the same speaker as the utterance to be translated,
translation quality could be improved by implicit speaker adaptation [136], where the
model benefits from adapting to the specific speaker’s voice characteristics. To test this,
we analyze the proportion of retrieved sentences from the same speaker across different
retrieval modalities. The results in Table 5.8 show similar percentages for all three scenar-
ios on the tst-rare-word split, indicating that the gains by speech-to-speech retrieval do
not stem from speaker adaptation.
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5. Results and Analysis

DRP + SONAR finetuned T→T S→T S→S

Examples from same speaker (%) 50.3 53.4 50.2

Table 5.8.: Proportion of retrieved examples from the same speaker as the utterance to be
translated for the three retrieval modalities on tst-rare-word split.

5.4. Effects on Unseen Speakers

Now we push the approach further under the challenging scenario of unseen speakers, i.e.,
the example pool does not contain any utterance from the speaker of the test utterance.
Specifically, during retrieval, we ignore utterances from the same speaker as the query
utterance. As shown in Table 5.9, this harms retrieval accuracy substantially, losing 14.9%
to 23.4% compared to Table 5.6 for the three modalities. This is mainly due to the limited
coverage of the rare-word pool, which contains only one sentence for most rare words.
Excluding the speaker also excludes the rare word. However, the BLEU scores and overall
rare word translation accuracy change only slightly compared to Table 5.2: T→T (−0.6
BLEU, −1.5%), S→T (−0.3 BLEU, −3.2%), S→S (+0.2 BLEU, −1.0%). This demonstrates
that our approach, especially when using speech→speech retrieval, is relatively robust to
unseen speakers.

Retrieval
modality

Retrieval
acc (%) BLEU

Overall
acc (%)

0-shot
acc (%)

1-shot
acc (%)

(5) T→T 23.2 14.6 18.6 18.5 18.7
(6) S→T 18.4 15.0 15.6 15.6 15.7
(7) S→S 23.5 16.4 19.3 18.8 20.2

Table 5.9.: Retrieval and ST performance on unseen speakers. Compared to Table 5.2,
S→S retrieval has the least decrease in translation quality and rare word accu-
racy.

5.5. Analyses of Retrieval Performance

In our main experiments, we partially finetuned the DPR encoders. We now investigate
the impact of different numbers of trainable parameters in the retriever. As shown in
Figure 5.1, the retrieval performance of the SONAR-based retriever is stable across 100 to
500M trainable parameters out of a total of over 1.3B parameters. This indicates that the
retriever can maintain nearly consistent performance despite changes in model capacity.
In Table 5.11, we also show the top-5 retrieval performance on the tst-rare-word set under
different numbers of trainable parameters. We are using a model with the highest retrieval
accuracy of each scenario to do the retrieval during ST inference, that is, text-to-text(335M),
speech-to-text (422M), and speech-to-speech(205M).
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5.6. Potential of Using More Examples
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Figure 5.1.: Retrieval performance of the SONAR-based retriever for different numbers of
trainable parameters.

5.6. Potential of Using More Examples

DPR + SONAR ft. T→T S→T S→S

Top 1 46.6 33.3 41.3
Top 3 56.1 43.3 52.8
Top 5 60.4 48.0 56.2

Table 5.10.: Top-5 retrieval performance (%) of the SONAR-based retriever on the tst-rare-
word set.

Few-shot learning is more often performant than one-shot learning because it provides
the model with a broader context and more varied examples. However, as shown in
Table 5.10, the increase in retrieval accuracy with top-5 examples is still not substantial
compared to the top-1 result. Including multiple examples also makes input sequences
significantly longer, especially as audio inputs are factors longer than text. This not only
poses a challenge for the model but would also significantly slow down the inference
speed, which we aim to avoid. For these reasons, we do not further explore the potential
of using more examples.
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5. Results and Analysis

DPR + SONAR ft. Text→Text Speech→Text Speech→Speech

# Trainable Params (Millions) 84 209 335 119 216 422 104 155 205

Top 1 33.0 43.9 46.6 28.9 29.9 33.3 38.0 40.4 41.3
Top 3 38.1 52.0 56.1 38.1 39.8 43.3 47.6 51.3 52.8
Top 5 40.8 55.3 60.4 42.1 43.9 48.0 51.4 54.8 56.2

Table 5.11.: Top-5 retrieval performance (%) of the SONAR-based text-to-text, speech-to-
text, and speech-to-speech retriever on the tst-rare-word set under various
number of trainable parameters.

5.7. Qualitative Example

Table 5.12 shows examples of our retrieval-and-demonstration approach on the transla-
tion of rare words. It includes examples of partially correct(top one of Table 5.12), fully
correct(middle one of Table 5.12), and false translations(bottom one of Table 5.12) across
different methods. For each source sentence, translations produced by different approaches
are shown: the baseline model, the model trained with a rare-word pool, the speech-to-
speech retriever retrieved example, and the adapted model with the retrieved example.
The target translation is also provided for reference.

In the first example, the source sentence contains the rare words "Patrice and Patee."
The baseline model fails to translate these names accurately, resulting in a false translation.
Adding a rare-word pool improves the translation slightly, but errors remain. The adapted
model with speech-to-speech retrieved example is much better but delivers a partially
correct translation by capturing the name but adding a small part of unnecessary context
"tee".

The second example involves the rare word "Murali Krishna." Here, the baseline model
and the model adding the rare-word pool fail to produce accurate translations. Our adapted
ST model achieves a fully correct translation, accurately reflecting the source sentence.
In the third example, the rare word "McLaren" is used. The baseline model and the

rare-word pool model generate incorrect translations, misinterpreting the term. The
speech-to-speech retriever retrieved an irrelevant example that doesn’t contain the rare
word to translate. Because of this, our adapted STmodel fails to provide a correct translation
of the rare word.
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5.7. Qualitative Example

Source (transcript): Patrice and Patee set out most days to go out hunting in the forest
around their homes.

Baseline (Table 5.2 row (1)): Die Bäume und Petes (Trees and Petes) setzten die meisten Tage
hinaus, um in den Wäldern um ihre Häuser zu pumpen.

Adding rare-word pool to
training (Table 5.2 row (4)):

Patrizinpathie (Patrizinpathie) setzte sich in den meisten Tagen
um die Jagd in den Wäldern um ihre Häuser.

Speech→speech example (Ta-
ble 5.6 row (5)): Sie heißen Patrice und Patee (Their names are Patrice and Patee.).

Adapted ST + speech→speech
(Table 5.2 row (7)):

Patrice und Pateetee setzten die meisten Tage, um in denWäldern
um ihre Häuser herum jagen zu können.

Target: Patrice und Patee (Patrice and Patee) gehen fast jeden Tag jagen
in dem Wald rundum ihr Heim.

Source (transcript): Murali Krishna (Murali Krishna) comes from one of those villages.

Baseline (Table 5.2 row (1)): Moralische Christen (Moral Christians) sind aus einem dieser
Dörfer.

Adding rare-word pool to
training (Table 5.2 row (4)):

Das Marate Krishna (Marate Krishna) kommt aus einem dieser
Dörfer.

Speech→speech example (Ta-
ble 5.6 row (5)):

Sie arbeitet mit Leuten wie Murali Krishna. (She works with
people like Murali Krishna.).

Adapted ST + speech→speech
(Table 5.2 row (7)): Murali Krishna (Murali Krishna) kommt aus einem dieser Dörfer.

Target: Murali Krishna (Murali Krishna) kommt aus einer dieser Dörfer.

Source (transcript): The McLaren (McLaren) just popped off and scratched the side
panel.

Baseline (Table 5.2 row (1)): Und der Klient (client) stoppte ab und kratzte die Seite des Paddels.
Adding rare-word pool to
training (Table 5.2 row (4)):

Und der Spieler (player) stürzte einfach ab und kratzte auf den
Bürgersteig.

Speech→speech example (Ta-
ble 5.6 row (5)):

Aber als Nebeneffekt sammelt er Kornette. (But as a sideline, he
happens to collect cornets.)

Adapted ST + speech→speech
(Table 5.2 row (7)):

Als der Klairner (Klairner) gerade ankam, stopfte er ein Neben-
pandel.

Target: Der McLaren (McLaren) bekam eine Beule und einen Kratzer an
der Seitenkarosserie.

Table 5.12.: Examples of our retrieval-and-demonstration approach on the translation of
rare words.
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6. Conclusion

This thesis introduced a retrieval-and-demonstration approach to improve rare word
translation accuracy in direct ST. For real-world applications, e.g., translating scientific
talks, we recommend adding utterances from the same topic to the example pool and
using speech-to-speech retrieval to identify examples. When feasible, one should consider
incorporating an additional verification step to ensure the relevance of the retrieved
sentences, by human-in-the-loop or automated techniques.

6.1. Answers to Research Questions

Based on the proposed approaches and experiment results, we address the research ques-
tions formulated in section 6.1 as follow.
Research Question 1: In what ways can the demonstration of sentences containing

specific rare words from an external dataset improve the accuracy of rare word translation?
To address this, we adapted the ST model with prepended training data to instill its

in-context learning ability, allowing it to ingest rare word information from the prepended
examples. During the training of the ST model, each training utterance 𝑢 was prepended
with an example sentence 𝑢𝑒 containing the same rare word as the demonstration. The
example’s target 𝑦𝑒 is also prepended with predicted translation 𝑦 as a prefix. No loss
was computed for the prefix during fine-tuning to avoid the premature of the fine-tuning
process. Our experiment on inferencing with gold examples(examples that always contain
the rare words in question) prepended tst-rare-word split shows that the standard direct ST
models can be easily adapted to benefit from prepended examples for rare word translation,
in a way similar to in-context learning (§5.1). This improves rare word translation accuracy
over the baseline by 17.6% with gold examples and 8.5% with retrieved examples.

Research Question 2: What methodologies can be developed to systematically extract
sentences from an external dataset that share rare words with the sentence targeted for
translation, thereby serving as a demonstrative example?
We developed a retriever inspired by the Dense Passage Retriever (DPR) [70] archi-

tecture. Instead of the BERT-based encoder used in DPR for text-to-text retrieval, we
employ speech-text joint representation encoders such as SONAR[44] and SpeechT5[5]
to facilitate not only text-to-text retrieval but also speech-to-speech and speech-to-text
retrieval. We then fine-tuned our retriever for our example sentence retrieval task. Our
experiments showed that the SONAR-based DPR encoder could effectively perform text-
to-text,speech-to-speech, and speech-to-text retrieval, yielding 46.6%, 41.3%, and 33.3%
top-1 retrieval accuracy, respectively.

49



6. Conclusion

ResearchQuestion 3: What criteria should be used to evaluate both the overall translation
performance and the accuracy of rare words? Furthermore, how can we assess the impact
of the retrieval and demonstration of example sentences on these two criteria?

We evaluate translation quality using BLEU and COMET scores and assess translation
accuracy by the percentage of correctly translated rare words. We conducted experiments
in various settings: translation with text-to-text retrieved examples, speech-to-text re-
trieved examples, and speech-to-speech retrieved examples. After comparing translation
performance and accuracy in various experiment settings, we found that, compared to
other modalities, speech-to-speech retrieval leads to higher overall translation quality and
rare word translation accuracy (§5.3), as well as more robustness to unseen speakers (§5.4).

6.2. Future work

Language Coverage in Experiments Experiments in this thesis were limited to the English-
to-German language pair due to resource constraints. Experiments on additional language
pairs, especially distant ones, would further substantiate the findings.

Robustness to Irrelevant Examples The approach proposed in this thesis effectively im-
proves the accuracy of rare word translation. However, as elaborated in the result dis-
cussions, we also observed that incorrectly retrieved examples tend to harm translation
quality. As a next step, we hope to increase the robustness of the ST models to irrelevant
examples. This could for instance be achieved by incorporating incorrect rare words
during training to enhance the model’s resilience to such errors.
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A. Appendix

A.1. Details of Rare Word Types

The detailed rare word analysis results for Table 4.2 are in Table A.1.

65



A. Appendix

Rare Word Type Frequency

Person 130
Location 72
Technology 29
Food 27
Company 25
Biology 23
Organization 18
Health 18
Culture 14
Transport 14
Religion 14
Fashion 13
Medicine 12
Science 12
Geography 11
Chemics 11
Language 11
History 10
Politics 9
Architecture 9
Military 9
Environment 8
Education 7
Sport 7
Law 6
Society 4
Data 4
Book 4
Physics 4
Game 3
Economy 3
Literature 2
Art 2
Music 1
Entertainment 1
Award 1

Table A.1.: Detailed NER results on rare words in tst-rare-word with the number of unique
words in each category.
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