
Automated Generation
of Fluent Lecture Recordings

Bachelor’s Thesis of

Thomas Kiefer

At the KIT Department of Informatics

Institute for Anthropomatics and Robotics (IAR)

Artificial Intelligence for Language Technologies (AI4LT)

First examiner: Prof. Dr. Jan Niehues

Second examiner: Prof. Dr. Alexander Waibel

Advisor: M.Sc. Zhaolin Li

13. May 2023 – 13. September 2023

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself. I

have not used any other than the aids that I have mentioned. I have marked all parts of the

thesis that I have included from referenced literature, either in their original wording or

paraphrasing their contents. I have followed the by-laws to implement scientific integrity

at KIT.

Karlsruhe, 13. September 2023

. .

(Thomas Kiefer)

Abstract

In the rapidly evolving educational landscape, this thesis addresses the pressing need for

the generation of high-quality digital educational resources with reduced manual interven-

tion. The research explores the capabilities of Large Language Models (LLMs) in enhancing

the fluency and sentence structure of academic lecture recordings. It revolves around two

central research questions: understanding the influence of different prompting techniques

on LLMs in enhancing lecture recordings, and devising a method to train a style classifier

that prioritizes style over content in feature extraction for dense embeddings. Leveraging

models such as Vicuna and LLaMA 2, the research investigates the optimal conditions

for each model, highlighting the necessity for tailored approaches in leveraging different

LLMs. A detailed analysis revealed that while LLaMA 2 excelled in style transfer strength,

Vicuna demonstrated superior performance in content preservation. The few-shot method,

which utilized handcrafted rephrased sentences as examples, emerged as the most effective

strategy for content preservation. The thesis not only offers a deep understanding of the

current technologies but also presents a structured approach to the generation system. By

bridging the existing gap in the integration of advancements in Natural Language Process-

ing (NLP) into a fluent lecture generation system, this research marks a significant step

towards the realization of automated systems capable of transforming lecture recordings

to a level that is comparable with seasoned public speakers.

i

Zusammenfassung

In der sich rasch wandelnden Bildungslandschaft adressiert diese Thesis die dringen-

de Notwendigkeit, hochwertige digitale Bildungsressourcen mit minimalem manuellen

Aufwand zu erstellen. Die Arbeit erkundet die Potenziale von “Large Language Models

(LLMs)” zur Verbesserung des flüssigen Sprechens und der Satzstruktur in akademischen

Vorlesungsaufzeichnungen. Im Zentrum stehen zwei wesentliche Forschungsfragen: die

Untersuchung des Einflusses verschiedener “Prompting”-Techniken auf LLMs zur Verbes-

serung der Vorlesungsaufzeichnungen und die Entwicklung einer Methode zum Trainieren

eines Stilklassifikators, der Stil über Inhalt in der Feature-Extraktion für dichte “Embed-

dings” priorisiert. Mithilfe von Modellen wie Vicuna und LLaMA 2 werden die optimalen

Bedingungen für jedes Modell erörtert, wobei die Notwendigkeit individuell angepass-

ter Ansätze bei der Nutzung verschiedener LLMs betont wird. Eine gründliche Analyse

zeigte, dass LLaMA 2 in Bezug auf die Stiltransferstärke herausragte, während Vicuna

in der Bewahrung des Inhalts überlegen war. Die Few-Shot-Methode, die handgefertigte

umformulierte Sätze als Beispiele verwendete, stellte sich als die effektivste Strategie zur

Bewahrung des Inhalts heraus. Die Thesis bietet nicht nur einen tiefen Einblick in die

aktuellen Technologien, sondern präsentiert auch einen strukturierten Ansatz für das

Generierungssystem. Durch die Schließung der bestehenden Lücke in der Integration der

Fortschritte im Bereich des natürlichen Sprachverarbeitung in ein Generierungssystem

für sprachgewandte Vorlesungsaufzeichnungen, leistet diese Arbeit einen bedeutenden

Beitrag zur Realisierung automatisierter Systeme, die in der Lage sind, Vorlesungsaufzeich-

nungen auf ein Niveau zu transformieren, das mit erfahrenen Rednern vergleichbar ist.

iii

Contents

Abstract i

Zusammenfassung iii

List of Abbreviations xi

1. Introduction 1
1.1. Motivation . 1

1.2. Problem Statement . 2

1.3. Research Questions . 2

1.4. Thesis Outline . 3

2. Background & Related Work 5
2.1. Fundamentals . 5

2.1.1. Artificial Neural Networks . 5

2.1.2. Training . 7

2.1.3. Encoder-Decoder Architecture 8

2.1.4. Attention Mechanism . 9

2.1.5. Transformer Architecture . 11

2.1.6. Generative Models . 13

2.1.7. Tokenization . 14

2.1.8. Large Language Models . 15

2.2. Automatic Speech Recognition . 16

2.3. Text Style Transfer . 17

2.4. Text-to-speech . 18

3. Approach 21
3.1. Structure of the Generation System . 21

3.2. Models . 22

3.2.1. SHAS . 23

3.2.2. Whisper . 24

3.2.3. Vicuna . 25

3.2.4. Llama 2 . 26

3.2.5. Bark . 27

3.3. Datasets . 28

3.4. Evaluation Metrics . 29

3.4.1. Style Classification with DeBERTa 29

v

Contents

3.4.2. BLEURT . 30

3.4.3. COMET . 31

3.4.4. SentenceTransformers . 31

4. Results 33
4.1. Style Classification . 33

4.2. Style Transfer Strength of Transformations 34

4.3. Content Preservation of Transformations 36

5. Conclusion 39
5.1. Answers to Research Questions . 39

5.2. Future Work . 40

Bibliography 43

A. Appendix 49
A.1. Adversarial Training Code . 49

A.2. KL Divergence Training Code . 55

A.3. Prompting Techniques . 61

vi

List of Figures

2.1. Original transformer architecture in paper by Vaswani et al. (2017) with

multi-head attention and scaled dot-product attention. 12

3.1. Whisper architecture as in Radford et al., 2023. 24

vii

List of Tables

4.1. Style Classification Accuracy across two Samples each from different Lec-

ture Categories . 34

4.2. Metrics of Style Classifiers on Target Style Dataset 34

4.3. Metrics of Style Classifiers on Original Lecture Style Dataset 35

4.4. Mean Probabilities for "Style 1" of Transformations on Original Lecture

Style Dataset (large language model Meta AI (LLaMA) 2) 35

4.5. Percentage of Samples with "Style 1" Probability ≥ 0.5 of Transformations

on Original Lecture Style Dataset (LLaMA 2) 36

4.6. Mean Probabilities for "Style 1" of Transformations on Original Lecture

Style Dataset (Vicuna) . 36

4.7. Percentage of Samples with "Style 1" Probability ≥ 0.5 of Transformations

on Original Lecture Style Dataset (Vicuna) 36

4.8. Content Preservation Scores of Original Lecture Style Dataset (using

Orginal Sentence as both prediction and reference) 37

4.9. Content Preservation Scores of Transformations on Original Lecture Style

Dataset (LLaMA 2) . 38

4.10. Content Preservation Scores of Transformations on Original Lecture Style

Dataset (Vicuna) . 38

ix

List of Abbreviations

AI Artificial Intelligence

ANN Artificial Neural Network

ASR Automatic Speech Recognition

BERT Bidirectional Encoder Representations From Transformers

CNN Convolutional Neural Network

DeBERTa Decoding-enhanced BERT with Disentangled Attention

GPT Generative Pre-trained Transformer

GRU Gated Recurrent Unit

KL Kullback-Leibler

LLaMA Large Language Model Meta AI

LLM Large Language Model

LSTM Long Short-term Memory

ML Machine Learning

MLP Multi-layer Perceptron

NLP Natural Language Processing

RLHF Reinforcement Learning From Human Feedback

RNN Recurrent Neural Network

SFT Supervised Fine-tuning

SGD Stochastic Gradient Descent

SHAS Supervised Hybrid Audio Segmentation

T5 Text-to-text Transfer Transformer

TST Text Style Transfer

TTS Text-to-speech

WER Word Error Rate

xi

1. Introduction

Over the last two decades, the educational landscape has undergone substantial transfor-

mation. Online learning platforms, once only viewed as a supplemental resource, now

play a greater role in ensuring flexibility and accessibility in education. This digital transi-

tion, in part driven by technological advances, has lead to the introduction of innovative

pedagogical concepts, most notably the hybrid approach in higher education.

In the hybrid model, both traditional classroom instruction and digital tools are integrated,

offering a rich and adaptive learning environment. Despite the obvious advantages of

additional online resources, educators may find it challenging to maintain a high standard

of linguistic fluency and style consistently. Natural interruptions, while often overlooked

in live sessions, might become obtrusive in recorded formats. This situation therefore high-

lights the crucial role of advanced automated tools in refining recordings of lectures, and in

doing so ensuring a smooth and effective learning experience, especially in unprecedented

situations such as global pandemics.

Consequently, the task at hand, that will be pursued in this thesis, is to analyze a potential

implementation of automated systems for enhancing the quality of lecture recordings,

thereby helping to augment the learning resources with reduced manual intervention.

1.1. Motivation

The pressing demand for high-quality digital educational resources has never been more

pronounced than in the recent times, triggered by the rapid digitalization of learning envi-

ronments. Lecture recordings stand as a pivotal component in this spectrum, necessitating

clarity and coherence to cater to a diverse student populace, including those who are

non-native speakers of the instructional language.

Understanding the significance of this venture, it becomes imperative to explore avenues

where automation can be a game-changer, reducing the weight on the educators while

ensuring an optimal delivery of content. This research arises from the need to foster an

educational ecosystem that is efficient, inclusive, and resilient to disruptions.

With advancements in computational linguistics opening up promising pathways, includ-

ing improved automatic speech recognition (ASR) and increasingly natural text-to-speech

(TTS) technologies, there lies a significant opportunity to enhance the quality of lecture

recordings, reaching the proficiency of seasoned public speakers.

1

1. Introduction

1.2. Problem Statement

In the realm of digital education, lecture recordings are rapidly becoming indispensable.

However, ensuring that these digital mediums are articulate, understandable, and devoid

of disfluencies can be an overwhelming task for educators.

This thesis ventures into this territory, aiming to harness the advanced breakthroughs

in natural language processing (NLP). While we cannot dispute the power of current

technologies, such as state-of-the-art ASR systems including OpenAI’s Whisper (Radford

et al., 2023), and the evolving capabilities of TTS systems in regard to generating natural

sounding speech, a distinct void remains in combining these advances into an end-to-end

system for fluent lecture generation.

The void also pertains to the elimination of disfluencies and the application of text style

transfer, specifically for spoken content derived from an ASR system. Although the current

text style transfer (TST) research landscape is vast, it largely focuses on clear-cut styles like

formality or toxicity. Such emphasis does not cater to the specialized needs of improving

lecture recordings. Consequently, another exploration of this thesis will be centered on

devising comprehensive metrics to evaluate the effectiveness of style transfer.

1.3. Research Questions

In light of the complexities involved in automatically enhancing lecture recordings, this

study narrows down its focus to address two critical research questions:

Research Question 1: How can different prompting techniques influence the effectiveness
of large language models (LLMs) in enhancing the fluency and sentence structure of academic
lecture recordings, with regards to style transfer strength and content preservation?

In the subsequent sections, we delve deeper into how LLMs can be used to maintain the

essence of the original content while improving linguistic expression, thereby facilitating

a richer educational experience.

Research Question 2: How can a style classifier be trained to prioritize style over content
in extracting features for dense embeddings, especially in the presence of skewed content
distribution in the training data?

Further, we explore strategies to steer the focus of classification layers towards style, rather

than content, in the face of imbalances in training data, fostering a classifier sensitive to

stylistic nuances over mere content representation.

2

1.4. Thesis Outline

1.4. Thesis Outline

This thesis unveils its narrative in a systematic manner. Commencing with chapter 1, it

acquaints readers with the important role of digital learning tools and their inherent chal-

lenges. Successively, chapter 2 provides an overview of the vast expanse of foundational

concepts, offering an exhaustive review of modern research. This spans areas like ASR,

TTS, and TST, setting the stage against which this investigation unfolds.

Progressing further, chapter 3 illuminates the heart of the research. It delineates the

experimental framework, discussing everything from data set selection to the technical

configurations and assessment metrics. This section provides an in-depth explanation of

the strategies devised to address the research questions.

The subsequent chapter 4 then examines the experimental outcomes, presenting a com-

prehensive analysis that reveals valuable insights and evaluates the proposed methods.

Culminating the thesis, chapter 5 offers a reflective conclusion, encapsulating key discov-

eries, recognizing potential research constraints, and speculating on future avenues of

exploration. This last chapter ensures that readers depart with an encompassing under-

standing of the research’s purpose, methodologies, and wider ramifications.

3

2. Background & Related Work

In this chapter, we contextualize the research by exploring the underlying concepts and

significant contributions to the field. Our exploration begins with the core principles that

have shaped contemporary models in a range of current disciplines, detailed in section 2.1.

Afterwards, this chapter introduces the three main disciplines of NLP that are involved in

our approach on generation of fluent lecture recordings.

2.1. Fundamentals

Here we outline the elementary framework of neural networks and deep learning ar-

chitectures, establishing a ground knowledge that will facilitate a deeper understanding

of the advanced topics to follow. Then, we cover concepts that have led to significant

advancements in the field, such as attention mechanisms, the transformer architecture,

the concept of LLMs and also techniques that are necessary for almost all tasks involving

NLP, such as tokenization.

2.1.1. Artificial Neural Networks

Artificial neural networks (ANNs) are a category of machine learning (ML) models that

draw inspiration from the biological neural networks found in animal brains. The first,

relatively simple, neuron model aimed at imitating real neural structures was introduced

80 years ago, the so-called McCulloch-Pitts neuron (McCulloch and Pitts, 1943). Since then,

much research has gone into further developing and refining those early approaches, and

in many disciplines today, ANNs are the foundation of many, if not most, state-of-the-art

models.

In today’s form, ANNs can be considered universal function approximators. According to

one of the universal approximation theorems, they “are capable of approximating any Borel

measurable function from one finite dimensional space to another to any desired degree

of accuracy, provided sufficiently many hidden units are available” (Hornik et al., 1989).

The concrete mathematical function that the ANN ultimately represents is determined by

a set of learnable parameters within the model.

The functionality of ANNs can best be elaborated on by looking at the smallest build-

ing block of any network, the perceptron. A perceptron takes an input vector x =

(𝑥1, 𝑥2, ..., 𝑥𝑛) ∈ R𝑛 of values and transforms it into a single value y ∈ R. It does

5

2. Background & Related Work

this by first calculating the weighted sum of the input values, using a weight vector

w = (𝑤1,𝑤2, ...,𝑤𝑛) ∈ R𝑛 and additionally adding a bias 𝑏 ∈ R. The result of this is then
put into an activation function 𝜎 to obtain y.

y = 𝜎 (w · x + 𝑏) = 𝜎 (
𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏)

The activation function is usually some nonlinear function that ensures y ∈ (−1, 1),
y ∈ (0, 1) or y ∈ [0, inf), depending on the specific activation function being chosen. By

using the Heaviside step function 𝐻 with

𝐻 (𝑥) :=
{
1, 𝑥 ≥ 0

0, 𝑥 < 0

as the activation function, the perceptron can also be seen as a binary linear classifier,

which describes a (𝑛 − 1)-dimensional hyperplane that separates the input space into two

classes. A single perceptron is not powerful enough to learn most functions though, which

can easily be seen by observing that it is impossible for a perceptron to learn the simple

XOR function. To overcome this, ANNs combine these building blocks into multi-layer

perceptrons (MLPs).

MLPs build upon the foundation laid by the single-layer perceptron by stacking several

layers of neurons (or nodes) to form a deep network. This architecture consists of an input

layer, one or more hidden layers, and an output layer. Each layer consists of multiple

nodes that are fully connected to the nodes in the adjacent layers, facilitating complex

function approximations.

To further expand on the computation process, a MLP with one hidden layer will be con-

sidered in the following. The output of the neurons in the hidden layer can be represented

as a vector h where each entry ℎ𝑖 is computed as:

ℎ𝑖 = 𝜎

(
𝑏
(1)
𝑖

+
𝑛∑︁
𝑗=1

𝑤
(1)
𝑖 𝑗
𝑥 𝑗

)

Here, 𝑏
(1)
𝑖

and𝑤
(1)
𝑖 𝑗

are the bias and weight associated with the 𝑖-th neuron in the hidden

layer, respectively. The superscript (1) denotes the layer number.

To leverage matrix operations for efficient computation, we can rewrite the above equation

in matrix form:

h = 𝜎 (W(1)x + b(1))

where:

• W(1)
is the weight matrix of the first hidden layer with dimensions (𝑚 × 𝑛), where

𝑚 is the number of neurons in the hidden layer and 𝑛 is the number of input values.

• x is the input vector with dimensions (𝑛 × 1).

6

2.1. Fundamentals

• b(1) is the bias vector of the first hidden layer with dimensions (𝑚 × 1).

• 𝜎 is applied element-wise to the resulting vector.

Following this, the output of the network can be computed as:

y = 𝜎 (W(2)h + b(2))

where:

• W(2)
is the weight matrix of the output layer with dimensions (𝑝 ×𝑚), where 𝑝 is

the number of neurons in the output layer.

• h is the output vector from the hidden layer with dimensions (𝑚 × 1).

• b(2) is the bias vector of the output layer with dimensions (𝑝 × 1).

Through the stacking of multiple layers and the nonlinear transformations induced by

the activation functions at each layer, MLPs can learn to approximate complex, nonlinear

functions to a high degree of accuracy.

2.1.2. Training

Training neural networks likeMLPs involves iteratively tuning theweights and biases of the

network to minimize a loss function that measures the discrepancy between the predictions

made by the network and the actual target values in the dataset. This section will illuminate

two pivotal concepts in the training process: gradient descent and backpropagation.

Backpropagation is a technique to efficiently compute the gradient of the loss function

with respect to each weight and bias in the network, utilizing the chain rule of calculus.

Starting from the output layer and moving backward through each layer, it computes the

gradient step-by-step, which will be utilized in the gradient descent algorithm to update

the weights and biases.

Gradient descent is an optimization algorithm that iteratively updates the weights and

biases of the network to find the minimum of the loss function. This is achieved by moving

in the direction of the steepest descent, i.e., the negative of the gradient. The rules for

updates are as follows:

𝑤
(𝑙)
𝑖 𝑗

:= 𝑤
(𝑙)
𝑖 𝑗

− 𝜂 · 𝜕𝐿

𝜕𝑤
(𝑙)
𝑖 𝑗

𝑏
(𝑙)
𝑖

:= 𝑏
(𝑙)
𝑖

− 𝜂 · 𝜕𝐿

𝜕𝑏
(𝑙)
𝑖

where:

7

2. Background & Related Work

• 𝜂 is the learning rate, a hyperparameter that influences the step size during the

optimization process.

• 𝑤
(𝑙)
𝑖 𝑗

and 𝑏
(𝑙)
𝑖

are the weight and bias for the connection from the 𝑗-th neuron in layer

𝑙 − 1 to the 𝑖-th neuron in layer 𝑙 .

The learning rate 𝜂 must be chosen judiciously to ensure convergence towards the min-

imum without oscillations or divergence. Furthermore, several variants of the gradient

descent, such as stochastic gradient descent (SGD) (Kiefer and Wolfowitz, 1952) and

mini-batch gradient descent, have been developed to enhance convergence speed and

stability.

Through gradient descent, aided by backpropagation for efficient gradient computation,

ANNs can learn to accurately approximate complex functions, evolving from a network

with random initial parameters to a potent tool in various machine learning applications.

2.1.3. Encoder-Decoder Architecture

A cornerstone in modern deep learning architectures, especially in the context of sequence-

to-sequence prediction tasks, is the encoder-decoder framework (Cho et al., 2014). This

paradigm essentially divides the model into two distinct yet cooperative segments: the

encoder and the decoder.

The encoder takes the input data and transforms it into a higher-level representation,

generally a dense latent space that encapsulates the critical attributes and patterns in the

data, thereby forming an “understanding” or “abstraction” of the input. This representation

is often denoted as the context vector, which serves as the bridge conveying the essential

information from the encoder to the decoder. This part of the network learns to discern

and condense the underlying structures and crucial components from the inputs, serving

as a knowledgeable interpreter of the given data. A mathematical representation of the

encoder can be given as:

c = 𝑓 (x;𝜃enc)

where:

• c is the context vector created by the encoder.

• 𝑓 is the function represented by the encoder network.

• x is the input data.

• 𝜃enc are the parameters of the encoder.

8

2.1. Fundamentals

Following this, the decoder receives the context vector and works to reconstruct or trans-

late the original input data into the desired output, leveraging the high-level representation

garnered from the encoder. The decoder effectively learns to build a mapping from the

abstract representation to actual outputs that align with the target domain’s structure and

intricacies. It can be mathematically represented as:

y = 𝑔(c;𝜃dec)

where:

• y is the output data.

• 𝑔 is the function represented by the decoder network.

• c is the context vector received from the encoder.

• 𝜃dec are the parameters of the decoder.

The cooperative operation of the encoder and decoder through this architectural principle

facilitates a more profound understanding and handling of complex data structures, a

trait especially vital in handling tasks such as machine translation, image captioning, and

various NLP undertakings.

Moreover, this conceptual framework lays a solid ground for introducing transformer

architectures, which further extends and sophisticates the encoder-decoder principle by

introducing mechanisms such as attention, which allows the network to focus on different

parts of the input for different tasks, paving the way for highly flexible and potent models

in the deep learning landscape.

2.1.4. Attention Mechanism

The attention mechanism, a cornerstone in the field of deep learning, has notably ex-

panded the capabilities of numerous neural network architectures including the long

short-term memory (LSTM) and the gated recurrent unit (GRU). Initially designed to

augment sequence-to-sequence models in machine translation systems (Bahdanau et al.,

2014), it has become a core component in a plethora of state-of-the-art models, enhancing

performance in tasks ranging from natural language processing to computer vision.

The fundamental concept behind the attention mechanism is the dynamic weighting of the

importance of different parts of the input when computing the output, effectively allowing

the network to “attend” to different parts of the input for various tasks. This selective

focus facilitates a more nuanced understanding and representation of input data.

In its initial incarnations, attention was applied in sequence-to-sequence models, assisting

the decoder in focusing on different segments of the input sequence when generating each

word in the output sequence, a process that emulates dynamic alignment of inputs and

outputs during training. However, the true potential of attention mechanisms was fully

9

2. Background & Related Work

realized with the introduction of self-attention (Cheng et al., 2016), where relationships

between different parts of the input are leveraged to compute the representation at each

position in the input sequence.

A widely adopted formulation of attention, especially in transformer models (Vaswani

et al., 2017), which we delve into in the following section, is defined as:

a𝑡 = softmax

(
QK⊤
√
𝑑𝑘

)
V

where:

• Q, K, and V are the query, key, and value matrices, derived from the input.

• 𝑑𝑘 is the dimensionality of the queries and keys.

• The softmax function ensures the weights are normalized.

Here, the dot product between the query and key vectors is divided by the square root of

the dimension of those vectors in order to ensure that high dimensionality of the vectors

does not lead to exploding or vanishing gradients in training, which can be caused by

disproportionately large dot product results.

In the next step, the context vectors are derived as a weighted sum of the value vectors,

guided by the attention scores computed from the query and key vectors:

c𝑡 =
𝑇∑︁
𝑖=1

𝑎𝑡𝑖v𝑖

where:

• c𝑡 is the context vector at time 𝑡 .

• 𝑇 is the length of the input sequence.

• 𝑎𝑡𝑖 represents the attention weight for the 𝑖-th input at time 𝑡 .

• v𝑖 is the value vector corresponding to the 𝑖-th input.

The self-attention mechanism forms the backbone of the transformer architecture, fa-

cilitating the parallelization of computation and thus enabling the processing of longer

sequences compared to older architectures based on recurrent or convolutional layers. It

fundamentally shifted the approach towards sequence modeling, paving the way for more

intelligent and adaptable neural network architectures.

10

2.1. Fundamentals

2.1.5. Transformer Architecture

In recent years, the transformer architecture has emerged as a dominating approach in

the field of deep learning, particularly within natural language processing tasks (Vaswani

et al., 2017). The architecture, fundamentally rooted in the encoder-decoder framework,

augments this structure with self-attention mechanisms, which enables the model to weigh

the influence of each word (or sub-word) in a sequence when predicting an output.

One of the central advantages of transformers over previous sequence-to-sequence models,

such as plain recurrent neural networks (RNNs) or LSTMs, is their ability to handle long-

range dependencies in a sequence more effectively. The self-attention mechanism allows

each word in the input sequence to focus on every other word, thereby capturing intricate

patterns and relationships that might be missed by models that process sequences step-by-

step. Furthermore, transformers facilitate parallel computation across sequence positions,

which significantly speeds up training compared to plain RNNs and LSTMs, which require

sequential computation. This increased efficiency in training not only speeds up the

learning process but also allows for the construction of deeper models, capable of learning

more complex patterns and hierarchical representations. This attribute, coupled with

the elimination of the necessity to learn sequential transition dynamics, often results in

transformers outperforming other architectures in a wide array of NLP tasks.

Architecture Overview

The original transformer consists of an encoder and a decoder, each comprising multiple

identical layers stacked atop one another, thereby facilitating deep representation learning.

The fundamental unit of both the encoder and decoder is the self-attention mechanism,

supplemented with feedforward neural networks. A detailed depiction of the architecture

is presented in Figure 2.1.

The encoder is composed of a stack of 𝑁 identical layers. Each layer contains two

sub-layers: a multi-head self-attention mechanism and a position-wise fully connected

feed-forward neural network. A residual connection surrounds each of the two sub-layers,

followed by layer normalization. Thus, the output of each sub-layer is LayerNorm(𝑥 +
SubLayer(𝑥)), where SubLayer(x) is the function implemented by the sub-layer itself. The

encoder accepts a sequence of token embeddings combined with positional encodings as

its input.

The decoder also comprises 𝑁 identical layers, but includes an additional sub-layer

that performs multi-head attention over the encoder’s output. This sub-layer is inserted

between the self-attention layer and the feedforward neural network. Similar to the

encoder, each sub-layer in the decoder is followed by a residual connection and layer

normalization.

Multi-Head Attention

Central to the transformer is the multi-head attention mechanism, which allows the

model to focus on different parts of the input for different representational subspaces.

This mechanism employs several independent self-attention layers (the "heads") running

11

2. Background & Related Work

Figure 2.1.: Original transformer architecture in paper by Vaswani et al. (2017) with multi-

head attention and scaled dot-product attention.

in parallel, each working on different projections of the input. Formally, the multi-head

attention can be defined as:

MultiHead(𝑄,𝐾,𝑉) = Concat(head1, . . . , headℎ)𝑊 𝑂

where each head𝑖 is computed as:

head𝑖 = Attention(𝑄𝑊 𝑄

𝑖
, 𝐾𝑊 𝐾

𝑖 ,𝑉𝑊
𝑉
𝑖)

Here,𝑊
𝑄

𝑖
,𝑊 𝐾

𝑖 ,𝑊 𝑉
𝑖
, and𝑊 𝑂

are learnable parameter matrices, and the Attention function

is as defined in the initial description of the self-attention mechanism.

Positional Encoding

Since the transformer does not inherently understand the order of tokens in a sequence,

positional encodings are added to the embeddings of the tokens to grant the model

positional information. These encodings are designed to be added to the embeddings,

thereby facilitating the learning of the positional relationships between tokens. The

positional encodings can be defined using various functions; a popular choice, as defined

in the original transformer paper, uses sine and cosine functions of different frequencies:

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin

(
𝑝𝑜𝑠

10000
2𝑖/𝑑model

)
𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos

(
𝑝𝑜𝑠

10000
2𝑖/𝑑model

)

12

2.1. Fundamentals

where 𝑝𝑜𝑠 represents the position of the token in the sequence, 𝑖 refers to the dimension

index, and 𝑑model is the dimensionality of the model.

Feedforward Neural Networks

Each layer of the transformer contains a feedforward neural network that operates

independently on each position. Comprising two linear transformations with a ReLU

activation function in the middle, it can be mathematically represented as:

FFN(𝑥) = max(0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2

where𝑊1,𝑊2, 𝑏1, and 𝑏2 are learnable parameters, and 𝑥 is the input to the feedforward

neural network.

Applications and Extensions

Since its inception, the transformer architecture has been foundational to several break-

throughs in natural language processing. Models such as bidirectional encoder representa-

tions from transformers (BERT) (Devlin et al., 2019), the generative pre-trained transformer

(GPT) (Radford et al., 2018), and the text-to-text transfer transformer (T5) (Raffel et al., 2020)

have set new performance benchmarks in numerous NLP tasks. Moreover, transformers

have been adapted and extended to various other domains, including image and video

processing, demonstrating its versatile applicability and profound impact on the field of

deep learning.

2.1.6. Generative Models

Generative models have received an increasing amount of attention in recent years and

there have been several breakthroughs in the field, especially in NLP with the rise of

LLMs and in computer vision with the introduction of diffusion models (Ho et al., 2020).

This category of models generally focuses on generating new data points that are similar

to other instances in a given dataset. They achieve this, as most ANNs do, by trying to

understand the underlying patterns and distributions that the data is built on.

Contrary to purely discriminative models, which aim at learning the conditional probabil-

ity distribution 𝑃 (𝑋 |𝑌) of the data 𝑋 and the labels 𝑌 in order to determine the boundaries

between different classes in the data, generative models try to learn the joint distribution

𝑃 (𝑋,𝑌), or 𝑃 (𝑋), if no labels are available. This then allows for a broader variety of applica-
tions made possible by generative models, such as generating new data points by sampling

from the distribution 𝑃 (𝑋 |𝑌) for disciplines like data augmentation, super-resolution and

synthetic data generation. Additionally, it is important to note that generative models are

always able to be used for discriminative tasks as well, simply by computing 𝑃 (𝑌 |𝑋) using
Bayes’ theorem.

Considering the preceding subsection 2.1.5, it is vital to discuss the role of the transformer

architecture in catapulting the capabilities of generative models, especially in NLP, to

13

2. Background & Related Work

unprecedented heights. One of the key concepts is the encoder-decoder paradigm men-

tioned in subsection 2.1.3. In encoder-decoder transformers, the encoder part processes the

input to form a contextualized representation in the form of a dense vector. The decoder

then uses this representation to autoregressively generate the output. The autoregressive

generation strategy makes sure that it is conditioned on the previous outputs at each step,

therefore providing outputs with coherent and logical sequences, which is particularly

essential for natural language generation. This is why encoder-decoder transformers

have been widely used in current neural machine translation systems and outperformed

previous methods based on recurrent neural networks (Lakew et al., 2018). Here, by

using the dense representations of the source language input tokens (see section 2.1.7 for

explanation of the concept of tokenization) from the encoder, the decoder autoregressively

generates the translation in the target language.

Another approach to autoregressive data generation are decoder-only transformers. These

models implement a slightly different approach, since they are utilizing a powerful decoder

to generate the output step by step, while taking into account all the previous outputs

in the sequence. The most relevant examples for this strategy in recent times have been

the GPT models, where enormous potential has been shown in being able to generate

human-like text based on the preceding context.

2.1.7. Tokenization

In the context of NLP, tokenization is a fundamental step that involves breaking down

a large paragraph into sentences or words, essentially into smaller pieces referred to as

tokens (Jurafsky and Martin, 2023). In the context of ANNs, these tokens are essential for

enabling them to understand the semantics of text. Depeding on the needed granularity

of the task, tokenization can be performed at different levels, such as word, sub-word, or

even character level. In the succeeding paragraphs, the essence and different approaches

to tokenization will be discussed extensively.

Tokenization is essential as it directly affects the quality of the representation that can be

learned from the text. Precise tokenization mechanisms help in preserving the semantics,

which is crucial for a structured and insightful analysis of the text. Additionally, it can

assist in removing irrelevant words or characters from the text, such as spaces in the case

of word-based tokenization, helping with more efficient data processing.

Historically, a range of techniques has been developed for tokenization, broadly categorized

into the following:

• Word-based Tokenization: In this approach, the text is broken down into individual
words. This is generally the most straightforward type of tokenization and is usually

achieved using simple delimiters such as spaces or punctuation marks.

• Sub-word Tokenization: Recognizing that words can often contain meaningful sub-

components, this approach further breaks downwords into smaller units. Techniques

such as Byte-Pair Encoding (BPE) (Sennrich et al., 2016), Unigram Language Model

14

2.1. Fundamentals

(Kudo, 2018), and SentencePiece (Kudo and Richardson, 2018) are popular in this

category. Sub-word tokenization is particularly useful as it helps with handling rare

and out-of-vocabulary words, which might pose a problem for simple word-based

tokenization.

• Character-based Tokenization: This strategy involves breaking down text into

individual characters. While it might help in learning very fine-grained patterns, it

usually results in much longer sequences, which in turn increases the computational

requirements.

In the context of transformer models, tokenization plays a pivotal role, as it directly

influences the effectiveness of the self-attention mechanism, which, as outlined in the

preceding sections, leverages token-level representations to understand the semantic

relationships between different parts of the text. It is therefore imperative to choose

a tokenization strategy that aligns with the complexity and the nuances of the task at

hand.

As referenced in the previous subsection 2.1.6, tokenization forms the basis of understand-

ing how encoder and decoder mechanisms perceive and generate textual data. Choosing

a particular tokenization strategy can notably influence the performance of transformer

models in various NLP tasks, which further highlights its critical role in the development

of advanced NLP systems.

2.1.8. Large Language Models

In recent years, the field of NLP has witnessed substantial advancements owing to the

development of LLMs, a category of deep learningmodels characterized by their substantial

parameter scale and ability to generate highly coherent and contextually relevant text

based on expansive training on diverse textual corpora (Brown et al., 2020). The pre-

eminent approach to training these models embodies a two-step procedure comprising

pre-training and fine-tuning phases.

During the pre-training phase, these models are exposed to enormous amounts of text data,

enabling them to learn linguistic patterns, grammatical rules, and even acquire substantial

factual knowledge through self-supervised learning methodologies. The fine-tuning phase

follows, wherein supervised fine-tuning (SFT) aids in the specialization of the models for a

variety of specific tasks by leveraging a narrower dataset which is task-specific, facilitating

refined performance on particular tasks, an approach grounded in supervised learning

paradigms (Howard and Ruder, 2018).

Recent advancements have seen the scaling up of LLMs to unprecedented levels, with

models such as GPT-3 boasting as many as 175 billion parameters, a tenfold increase

compared to its predecessors. This scaling has been pivotal in enhancing the task-agnostic,

few-shot performance of these models, sometimes even rivaling the performance of fine-

tuned approaches (Brown et al., 2020). Remarkably, GPT-3 achieves this performance

without any gradient updates or fine-tuning, relying solely on text interactions for task and

15

2. Background & Related Work

few-shot demonstrations. However, it is pertinent to note that while zero-shot performance

improves with model size, few-shot performance escalates more rapidly, indicating a higher

proficiency in in-context learning with larger models. This phenomenon suggests that

LLMs can be perceived as meta-learners, integrating slow outer-loop gradient descent

learning with rapid in-context learning facilitated through the model’s context activations,

a promising avenue for achieving state-of-the-art performance in various NLP tasks (Brown

et al., 2020).

An emergent challenge in the utilization of LLMs is the necessity for mechanisms to prevent

the generation of inappropriate or biased content. The evolving strategy to address this

issue involves reinforcement learning from human feedback (RLHF), a technique through

which the models are iteratively fine-tuned based on evaluative feedback from human

reviewers, engendering a more controlled and ethically aligned output (Bai et al., 2022).

As we stand at the beginning of an era dominated by LLM-enabled applications ranging

from drafting articles to facilitating sophisticated dialogue systems, it is essential for the

research community to pay special attention to accompanying societal challenges and

issues. It necessitates a rigorous inspection of the ethical dimensions surrounding the

deployment of LLMs, safeguarding against misuse while simultaneously cultivating an

environment of responsible artificial intelligence (AI) complying with human values and

norms.

2.2. Automatic Speech Recognition

ASR, fundamentally, is the technology that converts spoken language into written text.

This field has been central in facilitating human-computer interaction, thereby finding

applications in a myriad of domains, especially on mobile devices, including transcription

services, voice assistants, and many others (Yu and Deng, 2014).

ASR is grounded in deep learning and NLP, leveraging complex approaches to understand

and transcribe spoken language. The process generally involves several stages including

feature extraction, acoustic modeling, and language modeling, each contributing to the

accurate transcription of speech into text.

The beginning of ASR can be traced back to the 1950s at Bell Labs, with IBM’s Shoe-

box (1961) being one of the first machines capable of recognizing spoken digits. Over

the decades, the field has evolved exponentially, with notable milestones including the

introduction of Hidden Markov Models in the 1980s, and the advent of deep learning

approaches in recent years, which have significantly enhanced the accuracy and efficiency

of ASR systems (Juang and Rabiner, 2005).

Recent developments in the field have been characterized by the integration of transformer

architectures, as discussed in subsection 2.1.5, which have enabled the learning of more

complex patterns and relationships in spoken language. Moreover, end-to-end ASR systems

16

2.3. Text Style Transfer

have emerged as a dominant approach, simplifying the traditional ASR pipeline and offering

improvements in both accuracy and efficiency (Chan et al., 2016).

Evaluating ASR systems traditionally involves the use of word error rate (WER), a metric

that quantifies the number of substitutions, deletions, and insertions needed to match

the transcribed text with the reference text (Klakow and Peters, 2002). More recently,

researchers have been exploring metrics that go beyond syntactic accuracy to consider

semantic correctness, evaluating the preservation of meaning and intent in the transcribed

text. This is in line with the broader trends in NLP, emphasizing understanding and

generation of language that is not just technically correct but also contextually and

semantically aligned with human communication norms (Rugayan et al., 2022; Roux et al.,

2022).

2.3. Text Style Transfer

TST, a sub-discipline within NLP, aims to alter the stylistic properties of a text while

preserving its core content and semantic essence (Jin et al., 2022). This task is often

formulated as a sequence-to-sequence learning problem where models are trained to map

input sentences to output sentences that convey the same content but with altered stylistic

attributes.

Historically, the text style transfer can trace its roots to the early works in machine

translation and paraphrase generation. The early approaches often relied on rule-based

systems and manually crafted features. However, with the rising popularity of deep

learning and particularly the transformer architectures, the field has witnessed a paradigm

shift, moving towards data-driven approaches that leverage the potential of large annotated

corpora to learn the nuanced mappings between different styles automatically (Li et al.,

2018; Fu et al., 2018).

The emergence and rise of LLMs, as presented in subsection 2.1.8, have further pushed the

boundaries in the text style transfer domain. Recent works have extensively leveraged pre-

trained LLMs for style transfer tasks, fine-tuning them on specific style transfer datasets

to achieve state-of-the-art performance (Krishna et al., 2020). The sheer scale and learning

capabilities of these models facilitate a deep understanding of linguistic nuances, enabling

more fluent and natural style transfer outputs.

In this context, most efforts in the discipline have been centered around attributes such

as sentiment, formality, and toxicity. However, the current literature has not extensively

explored the framing of disfluency removal and sentence structure improvement as a style

transfer task, which this thesis intends to do.

Evaluating the performance of text style transfer models presents a multifaceted challenge.

Recent evaluation metrics include learned evaluation metrics like BLEURT (Sellam et al.,

2020) for fluency and content preservation, and style-specific metrics to assess the degree

of style transfer. Moreover, manual evaluations involving human annotators are often

17

2. Background & Related Work

conducted to judge the quality of the generated texts from various aspects including

grammaticality, preservation of meaning, and the effectiveness of style transfer (Mir et al.,

2019).

TST stands as a vibrant and dynamically evolving field, holding the promise of enhancing

various applications including highly customizable content generation, data augmentation,

and the personalization of conversational agents, among others.

2.4. Text-to-speech

The field of TTS is essential to the development and enhancement of human-computer

interaction, focusing on the conversion of written text into spoken language. This multidis-

ciplinary field navigates through linguistics, computer science, and acoustic engineering

to develop systems capable of generating natural and coherent speech, facilitating a more

accessible and interactive technological landscape.

Looking back, the evolution of TTS can be traced back to the early 1960s with the devel-

opment of systems that could synthesize speech from text using rudimentary rule-based

approaches. Progress in the field was steady, with significant milestones such as the

introduction of formant synthesis, followed by the upcoming of concatenative synthesis,

which leveraged recorded speech samples to generate speech signals, thus allowing for a

more natural speech output.

Recent advancements in TTS have been characterized by the rise of deep learning method-

ologies, which facilitated the transition from concatenative synthesis to parametric syn-

thesis approaches such as statistical parametric speech synthesis (Zen et al., 2009). This

evolution reached the current state of the art with the development of end-to-end neural

network approaches, such as WaveNet (Oord et al., 2016) as one of the first ones, which

drastically enhanced the quality of synthesized speech, moving closer to a truly human-like

speech synthesis.

A significant breakthrough in recent years is the introduction of unsupervised learning of

audio representations, a methodology that leverages large amounts of unlabeled audio

data to learn rich audio representations that can be utilized in various downstream tasks.

Examples of this approach include the development of models such as AudioLM (Borsos

et al., 2023) and Bark, which have opened new avenues in the audio processing field,

enhancing the capabilities of TTS systems and offering potential improvements in voice

synthesis and other related applications.

Evaluation of TTS systems historically relied on objective metrics such as Mel Cepstral

Distortion. However, with the intricate nuances involved in human speech, the impor-

tance of subjective evaluations has risen, wherein human listeners rate the naturalness,

intelligibility, and overall quality of the synthesized speech, providing a more holistic

assessment of the system’s capabilities (Hinterleitner, 2017). Later on, metrics such as

MOS (Mean Opinion Score) have been adopted, offering a standardized evaluation strategy

18

2.4. Text-to-speech

that incorporates both objective and subjective measures (Viswanathan and Viswanathan,

2005).

In line with the current trajectory, the field of TTS is at the forefront of many exciting pos-

sibilities, with ongoing research focused on perfecting the nuances of synthesized speech

to be indistinguishable from human speech, further exploring the realms of emotional and

expressive speech synthesis, and continuously striving for a more inclusive and accessible

digital ecosystem.

19

3. Approach

The following chapter will give light to the approach that the following parts of this

thesis will revolve around. First, it introduces our suggested structure for an automated

generation system for fluent lecture recordings. After that, the models that are part of the

system are briefly presented and explained in more detail. Furthermore, it presents the

data being used for our approach and how we train classifiers with them for evaluating

the style transfer strength. Finally, the employed evaluation metrics for the TST task will

be presented.

3.1. Structure of the Generation System

The generation system envisioned in this research is a tripartite structure, designed care-

fully to bring about fluency and coherence in lecture recordings. This section outlines

each component and expands on the rationale behind the choices made in system configu-

ration.

Transcription

The initial phase in the generation system is anchored by a high-caliber ASR system, which

transcribes the audio input from the original lecture recordings meticulously. Our choice

for this role is OpenAI’s Whisper, revered for its state-of-the-art transcription quality,

complemented by its adeptness in bypassing minor disfluencies inherently present in

verbal communications.

To further enhance the transcription accuracy, we employ supervised hybrid audio seg-

mentation (SHAS) to dissect the original audio file into manageable segments. These

fragments are then individually transcribed using Whisper, and subsequently combined to

constitute a comprehensive transcript. Although OpenAI’s implementation of Whisper

is already capable of handling elongated sequences, there still are some problems with

directly using it without prior segmentation, which will later be discussed in subsection

3.2.2.

We consciously abstain from an in-depth evaluation of this segment in our thesis, con-

sidering the rarely matched precision of Whisper and the absence of a golden standard

transcription for the specific lecture recordings at our disposal.

Rephrasing

21

3. Approach

Progressing to the second tier of our system, we delve into the realm of TST, utilizing

LLMs to enhance the textual output derived from the ASR system. The objective here is

to refine the sentence structure while concurrently eliminating disfluencies. At the same

time, the rephrased sentence should still be semantically equivalent to the original.

This venture entails the deployment of different prompting techniques with LLMs to

rephrase each sentence sequentially, striving for linguistic elegance and fluency. An

illustrative list of varied prompting methods and prompts are listed for reference in the

appendix A.3.

Our research undertakes a comparative analysis of two formidable LLMs — Vicuna, a

fine-tuned iteration of the original LLaMA model, and its successor, LLaMA 2, which has

been optimized for chat applications leveraging RLHF. These models are orchestrated

to achieve the overarching goal of linguistic refinement with an emphasis on content

preservation.

Speech Generation

Concluding the structure is the TTS system, the final yet crucial stage that breathes life

into the refined transcripts, transforming them into fluent lecture recordings. We have

zeroed in on the Bark model developed by Suno AI for this important role, primarily for

its additional proficiency in voice cloning, thereby enabling the generation of recordings

congruent with the original lecturer’s voice timbre.

This endeavor mandates prior authorization to ethically align with voice cloning guidelines,

ensuring a moral adherence to personal privacy. Similar to the ASR system, this component

will remain exempt from further evaluations, directing the focal point of the research

towards the effectiveness of the style transformation.

Video Generation

In order to truly be able to generate a fluent version of an existing lecture recording, one

would further need to detect slide transitions in the recorded slides and then match the

newly generated sentences to the slide that they were originally communicated at. An ML

approach for detecting these lecture slide transitions would be the SliTraNet model, as

described by Sindel et al. (2022). Just like before, this thesis will not further attend to this

particular part of the system in later chapters and it is only mentioned here for reasons of

completeness.

3.2. Models

The next subsections will cover all the models being used in the generation system. They

will highlight each of their structures, give a general overview on how they work, how

they were trained and discuss their usage in the overarching system.

22

3.2. Models

3.2.1. SHAS

The SHAS model stands as a essential component in the automated generation system,

primarily focusing on the optimal segmentation of long audio recordings, a task that has

primarily been addressed for achieving high-quality speech translation, but can also be

very useful for our speech transcription task. The arisen necessity to combine the SHAS

segmenter with the Whisper ASR model will be addressed in subsection 3.2.2.

This subsection primarily outlines the architecture and functioning of the SHAS model, in

general pronouncing its role in enhancing the efficiency and accuracy of speech translation

systems.

The architecture of SHAS is grounded on the utilization of a pre-trained wav2vec 2.0 model

(Baevski et al., 2020) to derive speech representations, which are then employed to train

a classifier. This classifier is tasked with identifying the optimal frames for segmenting

the audio. The segmentation process is guided by a probabilistic Divide-and-Conquer

algorithm that iteratively splits the audio at the frame with the lowest probability, ensuring

that all segments remain below a predetermined length (Tsiamas et al., 2022).

Training the classifier involves leveraging manually segmented speech corpora to learn the

optimal segmentation points. The wav2vec 2.0 model plays a crucial role here, providing

the necessary speech representations that facilitate the training process. The classifier is

trained to recognize the frames that should be included in a segment, thereby learning to

mimic the manual segmentation process effectively.

Empirical evaluations have demonstrated the efficacy of the SHAS model, showcasing

its ability to retain 95-98% of the BLEU score achieved through manual segmentation.

Furthermore, it exhibited high zero-shot performance on unseen languages, indicating its

robustness and adaptability to different linguistic contexts without necessitating training

on them. This aspect of SHAS stands as a testament to its generalizability and its potential

to be a versatile tool in speech translation systems (Tsiamas et al., 2022).

In the context of the automated generation system proposed in this thesis, the SHAS model

serves as an important element in processing long audio recordings. By ensuring optimal

segmentation, it substantially supports the subsequent stage of speech recognition. Its

integration promises a system that is not only efficient but also maintains a high standard

of transcription quality, bringing us a step closer to the goal of transforming lecture

recordings.

In conclusion, the SHAS model emerges as a sophisticated tool originally from the land-

scape of speech translation, offering a solution to the longstanding issue of audio segmen-

tation. Its architecture, grounded on the wav2vec 2.0 model, and its proven performance

in empirical evaluations, position it as a promising component in the development of

advanced NLP systems.

23

3. Approach

Figure 3.1.: Whisper architecture as in Radford et al., 2023.

3.2.2. Whisper

The Whisper ASR system is an essential element in the automated generation system,

working in tandem with the SHAS model to facilitate the transcription of segmented

audio recordings. This subsection delves into the architecture and functionalities of the

Whisper model, highlighting its role in enhancing the quality and effectiveness of speech

transcription.

Whisper is an ASR system developed by OpenAI. It is trained on 680,000 hours of multilin-

gual and multitask supervised data collected from the web. The architecture of Whisper is

built upon a deep learning framework, utilizing convolutional neural networks (CNNs) to

process audio signals and transcribe them into text. The detailed architecture is illustrated

in figure 3.1, as referenced in Radford et al., 2023.

The integration of Whisper into the automated generation system is envisioned to stream-

line the transcription process, offering high precision in converting audio recordings into

textual data. Its collaboration with the SHAS model ensures that the segmented audio is

transcribed optimally, better preserving the nuances and intricacies of the original speech

than with using whisper alone. Not only that, it also prevents Whisper from getting stuck

in a sort of "no-punctuation mode", where the model, due to its autoregressive nature,

only transcribes the words being spoken in lowercase letters, but does not add any punc-

tuation at all. The latter has been experienced multiple times during early experiments,

especially when transcribing recordings with unclear sentence structure, rendering part

of the generated transcription unparsable. Consequentially, this further signifies the need

24

3.2. Models

for combining the Whisper model with a segmenter in order to gain accurate, parsable

transcriptions for later steps.

Empirical evaluations of the Whisper model have underscored its robust performance in

speech recognition tasks. Its training on a vast corpus of multilingual data equips it with

the ability to handle a wide array of linguistic contexts, thereby promising versatility and

adaptability in its operations.

In the broader perspective of this thesis, the Whisper model stands as a cornerstone in the

realization of fluent lecture recordings. It promises to enhance the accuracy and fluency

of transcriptions, thereby facilitating a smoother transition to subsequent processes such

as style transfer. Its role is thus central to achieving the overarching goal of this thesis,

which is to develop an automated system capable of generating fluent lecture recordings

with high fidelity to the original content.

In conclusion, the Whisper ASR system emerges as a powerful tool in the automated

generation system, bringing to the table its advanced architecture and proven efficacy in

speech recognition tasks. Its integration promises to elevate the quality of transcriptions,

paving the way for fluent and coherent lecture recordings that retain the essence of the

original speech (Radford et al., 2023).

3.2.3. Vicuna

The Vicunamodel, specifically the Vicuna-13B variant, is an open-source chatbot developed

by the Vicuna team, and it represents a significant stride in the chatbot landscape. It was

fine-tuned using the LLaMA base model on a dataset comprising around 70,000 user-shared

conversations harvested from ShareGPT.com. This fine-tuning has endowed Vicuna with

the ability to generate more detailed and well-structured responses compared to other

models such as Alpaca and even matches the quality of responses generated by ChatGPT

in certain aspects (Chiang et al., 2023).

The Vicuna-13B leverages an enhanced dataset and a scalable infrastructure, which is

a testament to the rapid advancements in LLMs. The training involved fine-tuning a

LLaMA base model with the conversations collected, and enhancing training scripts

initially provided by the Alpaca project to better handle multi-turn conversations and

long sequences. The training utilized PyTorch FSDP on 8 A100 GPUs, completing in a

single day. Noteworthy is the increase of the maximum context length to 2048, facilitated

through memory optimizations such as gradient checkpointing and flash attention, which

significantly increased the GPU memory requirements. The training also saw a substantial

cost reduction, achieved through the use of SkyPilot managed spot instances, bringing

down the cost to around $300 for the 13B model.

Preliminary evaluations, albeit non-scientific and requiring further rigorous analysis,

indicate that Vicuna-13B achieves over 90% of the quality exhibited by OpenAI’s ChatGPT

and Google Bard, outperforming other models like LLaMA and Stanford Alpaca in over

90% of the cases. The evaluations utilized GPT-4 as a judge, leveraging its ability to produce

25

3. Approach

consistent ranks and detailed assessments of chatbot responses. This innovative evaluation

framework, still in its nascent stage, presents a promising avenue for automated chatbot

assessment, albeit with the acknowledgment that it is not yet a rigorous approach and

requires further research to develop a comprehensive, standardized system (Chiang et al.,

2023).

In the context of the automated generation system explored in this thesis, the Vicuna

model is one of the two LLMs to be compared in performance for the task of rephrasing

the potentially disfluent transcription aquired by Whisper and SHAS sentence by sentence,

with the goal of getting a more fluent version. Its ability to produce detailed and well-

structured responses holds promise in enhancing the quality of the generated content.

The open-source nature of Vicuna, coupled with its promising performance, positions it

as a interesting model to evaluate in the system, with potential towards helping to achieve

the overarching goal of this thesis.

3.2.4. Llama 2

The LLaMA 2 model emerges as a potent and safe dialogue model that is optimized for

dialogue applications, outperforming other models in terms of safety and helpfulness.

Developed as an open-source initiative, it promotes collaboration and transparency, em-

phasizing a balanced approach to safety and helpfulness during the fine-tuning of models

(Touvron et al., 2023).

The architecture of LLaMA 2 leverages pre-normalization in the transformer framework,

introducing the Swigloo activation function and enhancing the context length. It explores

various dimensions such as different context pre-training, depth of attention mechanisms,

and the impact of feed-forward neural networks dimension on its performance. The

training regimen suggests the potential of utilizing a cosine learning rate schedule to

overcome limitations encountered during the training phase.

A notable feature of Llama 2 is the introduction of “ghost attention”, a technique that

synthetically integrates the system prompt at every level of the conversation, ensuring

the initial instructions are consistently regarded. This, coupled with the use of concise

instructions, aids in minimizing the token usage while maintaining focus on the prompt

throughout the dialogue.

Despite its robustness in academic benchmarks, it exhibits a lower performance in solving

math word problems compared to its counterpart, GPT-4. The fine-tuning process of the

LLaMA model for chat applications involves a series of sophisticated techniques including

alignment strategies, reward modeling, and a focus on data quality, emphasizing the

efficacy of a smaller, clean dataset for SFT.

The LLaMA 2 model underscores a critical trade-off between safety and helpfulness,

advocating for individual autonomy in determining the balance, as opposed to corporate

dictation. It fosters a responsible approach to potentially hazardous information, rejecting

26

3.2. Models

requests for instructions on handling explosives, thereby indicating a responsible approach

to information dissemination (Touvron et al., 2023).

In the broader context of this thesis, the LLaMA 2 model stands as a promising alternative

to Vicuna in the automated generation system. The concrete model that will be used in

the following for rephrasing is the “Llama-2-13b-chat-hf” version of the released models.

Its open-source nature and emphasis on transparency make it a promising candidate for

further exploration and integration into the system, aligning with the overarching goal of

this thesis.

3.2.5. Bark

The Bark model, developed by Suno AI and available in the repository suno-ai/bark,

represents a significant advancement in the field of TTS technologies. Unlike the other

models like SpeechT5 (Ao et al., 2022), Bark has the capability to directly generate raw

speech waveforms, thereby obviating the need for a separate vocoder during the inference

stage. This is achieved through the innovative use of Encodec, a tool that functions both

as a codec and a compression utility (Huggingface, 2023).

At its core, Bark is composed of four primary models that work in harmony to facilitate

the generation of speech from text:

• BarkSemanticModel (Text Model): A causal auto-regressive transformer model

that processes tokenized text to predict semantic text tokens encapsulating the

essence of the input text.

• BarkCoarseModel (Coarse Acoustics Model): This model takes the output of

the BarkSemanticModel and predicts the initial two audio codebooks necessary for

Encodec.

• BarkFineModel (Fine Acoustics Model): A non-causal autoencoder transformer

that iteratively predicts the remaining codebooks based on the cumulative embed-

dings of the preceding codebooks.

• EncodecModel: Utilizes all the predicted codebook channels to decode the output

audio array.

Each of these models can support conditional speaker embeddings, allowing the generated

sound to be conditioned according to specific predefined voices.

Encodec stands central to Bark’s efficiency, enabling the compression of audio into a

lightweight format to diminish memory usage, and subsequently facilitating its decom-

pression to retrieve the original audio. This process leverages eight codebooks, each

comprising integer vectors that represent or embed the audio in integer form. Each suc-

cessive codebook enhances the quality of audio reconstruction derived from the preceding

ones. These codebooks can be learned efficiently by transformer models, a task Bark is

specifically designed to accomplish.

27

https://github.com/suno-ai/bark

3. Approach

Bark is highly versatile, capable of generating speech conditioned by a library of speaker

embeddings accessible via its processor. It supports multilingual speech generation, includ-

ing languages such as French and Chinese, without the necessity to specify the language

explicitly. Moreover, Bark can produce non-verbal communications such as laughter,

sighing, and crying, by incorporating corresponding cues in the input text. Remarkably, it

can even generate music by enclosing words within musical notes (Huggingface, 2023).

Furthermore, Bark facilitates batch processing, allowing multiple text entries to be pro-

cessed simultaneously, albeit at the cost of increased computational demand. This feature

can potentially expedite the overall generation process on certain hardware configurations,

such as GPUs.

In conclusion, the Bark model appears as a highly controllable and versatile tool in the

TTS landscape, promising to improve speech generation with its innovative architecture

and functionalities. Its role in the broader perspective of this thesis could be central to

achieving high-fidelity and efficient speech generation, aligning perfectly with our goal.

3.3. Datasets

The datasets curated for this thesis play a great role in training and evaluating the auto-

mated generation system. These datasets are split into two categories: one representing

the usual lecture style characterized by disfluencies and suboptimal sentence structures,

and the other representing the target style which is characterized by well-articulated,

fluent speech typically found in well-prepared TED talks.

Original Lecture Style Dataset

The dataset representing the original lecture style has been meticulously handcrafted,

leveraging a rich array of resources to encompass a diverse set of linguistic patterns and

styles. Primarily, the dataset incorporates lectures from the “Lecture Translator at KIT”,

predominantly featuring recordings from the advanced AI lecture series, along with select

recordings of lectures from different departments other than computer science, contained

in the “KITOpen Catalogue”. This unfortunately leads to a substantial overrepresentation

of computer science discourse in the dataset, due to the limited open availability of lecture

recordings at KIT, which is why this will need to be addressed in the training of the style

classifier later on.

Furthermore, the dataset is enriched with presentations from the “ISCA SIGSLT Seminars”,

a series that brings forth research presentations and discussions in the field of computer

science, often characterized by disfluencies and a considerable presence of non-native

speakers, thereby adding a layer of complexity and diversity to the dataset.

Target Style Dataset

The target style dataset, on the other hand, aims to represent a more refined and fluent

style of speech, akin to the one observed in well-prepared TED talks. To this end, the

28

3.4. Evaluation Metrics

MuST-C dataset has been employed, a resource that stands as a benchmark in the realm of

multilingual speech translation corpora.

The MuST-C dataset, as detailed in a paper by Di Gangi et al. (2019), is a robust corpus that

facilitates multilingual speech translation tasks. It encompasses a rich collection of TED

talks, offering high-quality transcriptions aligned with their translations across multiple

languages. The dataset is characterized by well-structured sentences, a coherent narrative

style, and a minimal presence of disfluencies, making it an ideal representation of the

target style for this thesis.

The utilization of the MuST-C dataset promises to lead the style classifier of the automated

generation system to recognize sentences that are not only fluent but also resonate with

the eloquence and structured narrative style that is synonymous with TED talks.

Conclusion

In conclusion, the curated datasets stand as a backbone in the development and fine-tuning

of the style classifier for evaluating the automated generation system explored in this thesis.

The selection and curation process ensures a diverse dataset, facilitating a comprehensive

training regimen for the models involved. Due to limited availability of lecture recordings

from different departments at KIT, the distribution of topics in the lecture style dataset is

skewed towards computer science content, which will be later be addressed. Additionally,

the MuST-C dataset is trimmed by a considerable amount to ensure an approximate 50:50

split with the entire dataset containing 40645 sentences.

3.4. Evaluation Metrics

In the next few subsections, several metrics being used to evaluate the sentence transfor-

mation in this research will be introduced and the way they function will be explained.

3.4.1. Style Classification with DeBERTa

In the process of style classification, we leverage the capabilities of decoding-enhanced

BERT with disentangled attention (DeBERTa) v3, a state-of-the-art feature extractor

renowned for its performance in numerous natural language understanding tasks. The

architecture of DeBERTa v3, as detailed by He et al. (2023), operates based on a deep

learning framework that enhances the understanding of the inter-relationships between

different words in a sentence, thereby enabling a more nuanced analysis of textual data.

Initially, we train a baseline variant of DeBERTa by jointly training it with a linear classifi-

cation layer. However, this approach primarily capitalizes on the content skewness of the

data for classification, rather than focusing on the style, a limitation that becomes evident

in the result section 4.1.

29

3. Approach

To address this, we adopt two strategies aimed at training the style classifier and DeBERTa

as a feature extractor, such that the features derived are more aligned with style rather than

content. This involves the incorporation of a content classification layer that identifies

the recording source of a sentence in the dataset based on the features from DeBERTa.

This layer undergoes training alternately with the style classification layer and DeBERTa

combined, introducing an additional loss term to the style loss to encourage the reduction

of performance of the content classification layer through DeBERTa layer adjustments.

In the first approach, we employ an adversarial loss coupled with a gradient reversal layer

(Ganin et al., 2016). This strategy directs the training to reduce the emphasis DeBERTa

places on features beneficial for content classification, thereby fostering a more style-

centric focus. The concrete approach draws inspiration from the one described in the

appendix of a paper by Liu and Niehues (2022).

The second strategy involves the addition of Kullback-Leibler (KL) Divergence between

the content classifier distribution and a uniform distribution across all classes. The KL

Divergence, a measure of how one probability distribution diverges from a second, expected

probability distribution, aids in promoting the same objective as the first approach, steering

the focus towards style over content.

Through these refined approaches, we aspire to develop a style classifier that is not only

adept at distinguishing styles but also mitigates the influence of content skewness, paving

the way for a more balanced and effective style classification system.

3.4.2. BLEURT

In the realm of text generation, the evaluation of generated content is an important aspect.

The BLEURT metric, which stands for “BERT Language Understanding for Evaluating

with Reinforced Tuning”, emerges as a robust tool in this context, offering a learned metric

that leverages the power of BERT to model human judgments on text generation tasks

(Sellam et al., 2020).

Developed by Google Research, BLEURT aims to overcome the limitations of existing met-

rics such as BLEU and ROUGE, which often do not correlate well with human judgments.

The metric is designed to be both expressive, utilizing available ratings data for training,

and robust to distribution drifts, ensuring effective extrapolation in diverse scenarios.

A distinctive feature of BLEURT is its pre-training scheme, which leverages large volumes

of synthetic data created through various techniques including mask-filling with BERT,

backtranslation, and random word dropping. This pre-training encompasses several tasks

that capture a wide array of lexical and semantic differences, utilizing signals such as

BLEU, ROUGE, BERTscore, backtranslation likelihood, and entailment signals, among

others. This approach aids in the generalization of BLEURT, enabling it to offer state-of-

the-art results on recent WMT Metrics shared tasks and the WebNLG competition dataset,

especially when the training data is scarce and out-of-distribution (Sellam et al., 2020).

30

3.4. Evaluation Metrics

The BLEURT metric has demonstrated remarkable performance and robustness across

different tasks and datasets, showcasing its potential as a valuable tool in the field of natural

language generation. In the broader perspective of this thesis, incorporating BLEURT in

the evaluation metrics could offer a nuanced understanding of the quality of generated

content, aiding in the evaluation of the models involved to achieve the desired level of

fluency and content preservation in the lecture recordings.

3.4.3. COMET

The COMET framework, initially developed for reference-based MT evaluation, played a

central role in the joint contribution of Instituto Superior Técnico (IST) and Unbabel to

the WMT 2022 Quality Estimation (QE) shared task (Rei et al., 2022).

This collaboration led to the creation of COMETKIWI, a system that integrates the strengths

of COMET and OPENKIWI, the latter being known for its proficiency in word and sentence-

level QE (Kepler et al., 2019). The system was designed to be adept in multilingual

generalization, capable of handling unseen languages through few-shot training, and

showcased a remarkable performance in the WMT 2022 QE shared task, notably achieving

a 0.572 Spearman correlation in sentence-level Direct Assessments (DAs) (Zerva et al.,

2022).

A significant innovation introduced was a new interpretability method that combines

attention and gradient information, further refined through a head-level scalar mix module,

enhancing the system’s ability to delineate the relevance of attention heads effectively.

In the context of this thesis, the reference-free variant of the COMET metric could be a

pivotal tool in evaluating the quality of generated content, aligning well with the research’s

primary objective of enhancing the fluency and content preservation in automated lecture

recordings.

3.4.4. SentenceTransformers

SentenceTransformers is a Python framework developed to facilitate the training and

utilization of sentence, paragraph, and image embeddings that are compatible with BERT-

based models (Reimers and Gurevych, 2019). The framework is designed to work efficiently

with large texts, offering a significant speed-up compared to the traditional BERT models

when it comes to embedding sentences.

A notable feature of SentenceTransformers is its support for various training approaches,

including supervised, unsupervised, and multi-task learning. This flexibility allows re-

searchers and practitioners to tailor the training process to suit specific requirements,

thereby optimizing the performance of the embedding models for different tasks.

In the context of this research, SentenceTransformers can be employed to generate em-

beddings for the sentences in the lecture recordings. These embeddings can then be

31

3. Approach

used to analyze the semantic similarity between sentences, facilitating a more nuanced

understanding of the content and aiding in the evaluation of the quality of the generated

content.

By leveraging the capabilities of SentenceTransformers, it is possible to develop more

sophisticated evaluation metrics that can effectively gauge the content preservation in

automated lecture recordings. The framework offers a robust toolset for working with

sentence embeddings, providing a foundation for exploring innovative approaches to

evaluating natural language generation tasks (Reimers and Gurevych, 2019).

In summary, SentenceTransformers stands as a significant tool in the evaluation metrics

section, offering a pathway to develop metrics that are both robust and finely tuned to the

specific requirements of the research. Its integration into the evaluation process promises

to enhance the accuracy and reliability of the assessments, contributing to the achievement

of the research objectives. The concrete model that was chosen for the experiments is

the “all-mpnet-base-v2” due to it having the highest performance and as a similarity

measurement, cosine-similarity was used.

32

4. Results

In this chapter, we delve into the analysis of the results derived from the experiments

laid out in the preceding chapter. The results are provide insights into understanding

the effectiveness of the various approaches and methodologies employed in this research.

They offer a lens through which we can scrutinize the performance of different techniques

in enhancing the fluency and structure of academic lecture recordings.

Throughout the discussion of the results, we will frequently refer to two distinct styles:

"style 0" and "style 1". To provide a clear understanding, it is of great importance to

define these terms at the outset. When we refer to "style 0", we are pointing to the

original, potentially disfluent, "lecture style". This style embodies the raw, unaltered

transcripts derived from academic lectures, retaining the original nuances, including

possible disfluencies. On the other hand, "style 1" denotes the target "TED Talk style". This

style is characterized by a more polished, fluent, and structured manner of presentation,

akin to the speeches delivered in TED Talks. The transformation from "style 0" to "style 1"

is at the heart of our research, aiming to elevate the quality of lecture transcripts to a level

that mirrors the eloquence and fluency found in TED Talks.

As we navigate through the results, we will analyze the performance metrics of different

style classifications and transformation techniques, shedding light on their efficacy in

achieving the desired style transfer while preserving the core content. The insights

garnered from this analysis will be instrumental in answering the research questions

posited in the introductory chapter, thereby fulfilling the central objective of this thesis.

4.1. Style Classification

In this section, we focus on the training of style-specific classifiers using adversarial train-

ing and KL divergence approaches. The training process, albeit fragile, has shown potential

when appropriate hyperparameters are carefully selected, as detailed in appendices A.1

and A.2.

A critical observation during the training was the DeBERTa model’s tendency to converge

to a state of "forgetfulness" of its pre-training when subjected to high learning rates or

excessive epochs. This resulted in a decline in the meaningfulness of the embedding

outputs, with the style classifier’s accuracy performance on the validation set approaching

0.5. Despite this, with proper fine-tuning, the DeBERTa model exhibited a heightened focus

on style features compared to the baseline, albeit without significant improvements across

33

4. Results

all content categories. This suggests a noticeable content component in the embeddings

that remains unaltered by the training approaches employed.

We further analyzed the style classification accuracy, focusing on various lecture categories

including Machine Learning (ML), Database Systems (DBS), Biology (Bio), and History

(Hist). The results, presented in Table 4.1, indicate an increase in accuracy for lectures

outside the computer science domain, aligning with the objectives of our training concepts.

However, it is essential to scrutinize the performance on the TED Talks target dataset

labeled with ground truth "style 1" to ensure the gains are not merely due to a higher

classification of sentences as "style 0".

Table 4.2 portrays the mean probabilities and accuracies derived from the target style

dataset. Despite a slight decline in performance, especially with the adversarial approach,

the data suggests a fulfillment of the training objective, with DeBERTa paying increased

attention to style.

However, the sentence-level approach of our classification presents a possible challenge,

since short sentences do might not portray any meaningful stylistic attributes, hinting at

the potential benefits of incorporating longer text sequences for improved classification.

Method ML DBS Bio Hist

Baseline 72.27% 77.10% 33.29% 11.50%

Adversarial 78.66% 79.59% 45.65% 20.86%

KL Div 75.00% 78.20% 34.97% 14.66%

Table 4.1.: Style Classification Accuracy across two Samples each from different Lecture

Categories

Method Baseline Adversarial KL Div

Mean Probability for "Style 1" 96.68% 89.23% 94.72%

Accuracy (Percentage of Samples

with "Style 1" Probability ≥ 0.5) 96.91% 91.09% 95.79%

Table 4.2.: Metrics of Style Classifiers on Target Style Dataset

4.2. Style Transfer Strength of Transformations

In this segment, we turn our attention to the evaluation of style strength performance,

utilizing the style classifiers trained in the previous section.

By applying softmax to the logits of style predictions, we derive probabilities for each style

class. This allows us to compare the mean probabilities between the original lecture dataset

34

4.2. Style Transfer Strength of Transformations

and each transformation across different models. Additionally, we quantify the strength

of the style transfer by examining the percentage of samples that would be classified as

having "style 1".

From the data presented, it becomes evident that the transformations are indeed effec-

tuating a style transfer. However, the strength of this transfer appears to be somewhat

subdued compared to initial expectations. This subdued performance could be attributed

to several factors: limitations in the classifier, constraints arising from sentence-level

operations, or the possibility that the style transfer capability was not as potent as initially

hypothesized.

A comparative analysis between the different methods reveals that the LLaMA 2 model

generally exhibits a more robust style transfer strength than Vicuna. Moreover, there are

discernible differences in the efficacy of prompting methods across models. LLaMA 2, for

instance, benefits considerably from the rephrased context, while Vicuna demonstrates

optimal style transfer strength on our trained classifiers with plain zero-shot prompting.

Tables 4.3, 4.4, 4.5, 4.6, and 4.7 provide a comprehensive view of the results, offering

insights into the performance metrics of different style classifications and transformation

techniques.

Method Baseline Adversarial KL Div

Mean Probability for "Style 1" 3.21% 8.24% 5.51%

Accuracy (Percentage of Samples

with "Style 1" Probability ≥ 0.5) 3.17% 6.20% 4.63%

Table 4.3.: Metrics of Style Classifiers on Original Lecture Style Dataset

Method

Classifier zero-shot

original

context

rephrased

context
few-shot

Baseline 14.29% 14.63% 15.81% 10.49%

Adversarial 19.63% 19.45% 20.34% 17.86%

KL Div 18.24% 18.19% 19.13% 15.26%

Table 4.4.: Mean Probabilities for "Style 1" of Transformations on Original Lecture Style

Dataset (LLaMA 2)

35

4. Results

Method

Classifier zero-shot

original

context

rephrased

context
few-shot

Baseline 14.06% 14.56% 15.77% 10.47%

Adversarial 17.31% 17.35% 18.11% 15.48%

KL Div 17.11% 17.25% 18.17% 14.30%

Table 4.5.: Percentage of Samples with "Style 1" Probability ≥ 0.5 of Transformations on

Original Lecture Style Dataset (LLaMA 2)

Method

Classifier zero-shot

original

context

rephrased

context
few-shot

Baseline 12.40% 12.34% 12.13% 9.76%

Adversarial 18.09% 17.34% 17.29% 16.63%

KL Div 16.30% 15.33% 15.49% 14.29%

Table 4.6.: Mean Probabilities for "Style 1" of Transformations on Original Lecture Style

Dataset (Vicuna)

Method

Classifier zero-shot

original

context

rephrased

context
few-shot

Baseline 12.31% 12.24% 12.00% 9.65%

Adversarial 15.90% 15.09% 14.98% 14.37%

KL Div 15.42% 14.51% 14.65% 13.38%

Table 4.7.: Percentage of Samples with "Style 1" Probability ≥ 0.5 of Transformations on

Original Lecture Style Dataset (Vicuna)

4.3. Content Preservation of Transformations

In the final section of this chapter, we focus on the essential aspect of content preservation

during the style transfer process. To gauge the efficacy of content preservation, we

employ three distinct methods, as explained in section 3.4. These methods generate scores

predominantly ranging between 0 and 1 (with possible exceptions of scores close to, but

36

4.3. Content Preservation of Transformations

outside of, the interval with BLEURT and COMET), where a score of 1 signifies optimal

performance, and a score of 0 indicates poor performance.

Initially, we examine the results obtained when the original sentences are used both as

predictions and references, aiming to observe a high mean score over the original lecture

dataset, since the content preservation score should be highest when using the same

sentence as the predictions. This approach reveals the inherent strengths and weaknesses

of different scoring metrics, with BLEURT and SentenceTransformer demonstrating high

scores, indicative of being a good content preservation metric for our means. In contrast,

the COMET model, optimized for quality estimation of machine translation systems,

exhibits a lower score, suggesting it may not be the ideal choice for our specific use

case. Interestingly, a brief investigation into the COMET scores revealed a considerable

variability when the same sentence was used for both prediction and reference. For

instance, the sentence "Hello, my name is Thomas." receives a score of 0.8625, while the

phrase "And he will also give part of the lecture." is assigned a substantially lower score of

0.3486.

As we delve deeper, the data unveils that content preservation is generally well-maintained

across all transformations. A notable observation is the slightly superior performance of

Vicuna over Llama 2 in safeguarding the content. When we turn our lens to the prompting

methods, it emerges that the few-shot method stands out in preserving content, a result of

utilizing handcrafted sample sentences that retain the original meaning while enhancing

sentence structure and fluency. Among the zero-shot methods, the absence of context

appears to foster the best preservation of meaning.

Tables 4.8, 4.9, and 4.10 encapsulate the detailed results, offering a granular view of the

performance of different methods in preserving content during the style transfer process.

Score

predictions

= references

BLEURT 0.9733

COMET 0.2843

SentenceTransformer 1.0

Table 4.8.: Content Preservation Scores of Original Lecture Style Dataset (using Orginal

Sentence as both prediction and reference)

37

4. Results

Method

Score zero-shot

original

context

rephrased

context
few-shot

BLEURT 0.7422 0.7190 0.7094 0.7693

COMET 0.3087 0.3090 0.3106 0.2928

SentenceTransformer 0.8199 0.7856 0.7728 0.8666

Table 4.9.: Content Preservation Scores of Transformations on Original Lecture Style

Dataset (LLaMA 2)

Method

Score zero-shot

original

context

rephrased

context
few-shot

BLEURT 0.7520 0.7360 0.7364 0.7729

COMET 0.3054 0.3052 0.3057 0.2934

SentenceTransformer 0.8372 0.8130 0.8133 0.8668

Table 4.10.: Content Preservation Scores of Transformations on Original Lecture Style

Dataset (Vicuna)

38

5. Conclusion

To conclude this research, this chapter will give concise answers to the research questions

posed in the introductory chapter 1. Furthermore, potential avenues for future research

are being pointed out.

5.1. Answers to Research Questions

Here, we revisit the research questions from section 1.3.

Research Question 1: How can different prompting techniques influence the effectiveness
of LLMs in enhancing the fluency and sentence structure of academic lecture recordings, with
regards to style transfer strength and content preservation?

The exploration undertaken in this research clearly affirms the potential of LLMs in

transforming sentences from potentially disfluent lecture recordings into more fluent and

structurally sound versions. Our analysis indicated a consistent increase in the mean

probability for the target style across all transformations, showcasing the efficacy of the

applied techniques in enhancing style transfer strength.

In a detailed examination of individual models, LLaMA 2 exhibited optimal performance

with zero-shot promptingwhen supplementedwith the context of three preceding rephrased

sentences. Conversely, Vicuna demonstrated superior results utilizing a zero-shot prompt

without context. This divergence in optimal conditions for each model underscores the

necessity for tailored approaches in leveraging different LLMs.

When evaluating content preservation, the few-shot method emerged as the most effective,

particularly when utilizing handcrafted rephrased sentences as examples in our experiment.

This strategy, which focused on minimal alterations to maintain the core content while

enhancing fluency and structure, proved to be highly effective.

Overall, while LLaMA 2 generally outperformed in terms of style transfer strength, Vicuna

maintained a higher average in content preservation, indicating a balanced proficiency in

both critical aspects of the transformation process.

Research Question 2: How can a style classifier be trained to prioritize style over content
in extracting features for dense embeddings, especially in the presence of skewed content
distribution in the training data?

39

5. Conclusion

The training of a style classifier to prioritize style over content presented a delicate

and intricate process, necessitating meticulous hyperparameter tuning. Our approach

leveraged adversarial training and KL divergence to foster a focus on style-centric features,

albeit with a recognition of the inherent fragility in the training process.

A critical observation was the propensity for the DeBERTa model to converge to a less

informative state with excessive training epochs or high learning rates, a state characterized

by a loss of pre-training insights and diminished embedding output significance. This

phenomenon manifested in a convergence of the style classifier’s accuracy performance

on the validation set towards a 0.5 benchmark, indicating a neutral performance.

Despite these challenges, with judicious training, the DeBERTa model exhibited a height-

ened focus on style features compared to the baseline, albeit with room for further opti-

mization to reduce the residual content component in the embeddings.

5.2. Future Work

While many introductory questions on how to realize a system that takes potentially

disfluent lecture recordings and generates a fluent version from that have been addressed

in this thesis, there is still a great potential for further exploring interesting research

directions.

To begin with, all the transformations of the transcribed lecture content have been per-

formed on the sentence level in this thesis. Although part of our experiments already

incorporated some context in the form of the preceding sentences, one possible avenue

to investigate would be to use longer sections of text, or potentially entire paragraphs in

one single transformation, allowing the LLM to have more possibilities for restructuring

the content for enhanced clarity and fluency. One issue that probably would need to be

addressed there is the need for generating longer token sequences than possible by default

with the models being used in this thesis with the Hugging Face Inference API, and also,

depending on the length of the text sections to be transformed, potential problems with

the context window that can be taken into account when generating the sequence.

Secondly, one could further investigate how to make the LLMs better follow the given

instructions. In our experiments, a lot of prompt engineering was necessary in order

for the LLMs to adhere to the instructions given in the prompt. For example, likely due

to being trained by RLHF to be a helpful assistant, the variant of LLaMA 2 we used

often gave an answer to questions that were part of the text to be transformed in the

generated text, instead of simply rephrasing them while preserving the meaning, as it was

instructed to do. One way this could be addressed is to use better performing models with a

higher parameter count, since they tend to also perform better with following instructions,

although this approach would require higher amounts of GPU memory. If such resources

are not available, another concept to explore is using classifier-free guidance for the text

generation in LLMs, a concept inspired by the technique of the same name in text-to-image

generation. This approach can successfully help in “increas[ing] the faithfulness and

40

5.2. Future Work

coherence of assistants” and “brings improvements equivalent to a model with twice the

parameter-count”, as shown by Sanchez et al. (2023).

At last, future work remains to be explored not only in improving the capabilities of the

LLMs to provide accurate and content-preserving style transfer, but also in evaluating this

transformations more precisely. A promising idea, although requiring greater amounts of

manual labour, would be to assess the transformed transcripts by taking human evalua-

tions into consideration, since despite the fact that automatic evaluation methods keep

improving, no metric can consistently come close to human judgement yet, especially

when it comes to reviewing the style of natural language. When having acquired data in

the form of human evaluation, one could also work on creating a new automatic evaluation

metric that has high correlation with human judgements.

41

Bibliography

Ao, Junyi, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko,

Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, and Furu Wei (2022). SpeechT5:

Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing.

Baevski, Alexei, Henry Zhou, Abdelrahman Mohamed, and Michael Auli (2020). Wav2vec

2.0: A Framework for Self-Supervised Learning of Speech Representations. In Proceedings
of the 34th International Conference on Neural Information Processing Systems. NIPS’20.
Vancouver, BC, Canada: Curran Associates Inc. isbn: 9781713829546.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2014). Neural Machine Trans-

lation by Jointly Learning to Align and Translate. In 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, ed. by Yoshua Bengio et al.

Bai, Yuntao, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma,

Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav

Kadavath, Jackson Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-

Dodds, Danny Hernandez, Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt,

Neel Nanda, Catherine Olsson, Dario Amodei, Tom Brown, Jack Clark, Sam McCandlish,

Chris Olah, Ben Mann, and Jared Kaplan (2022). Training a Helpful and Harmless

Assistant with Reinforcement Learning from Human Feedback.

Borsos, Zalán, Raphaël Marinier, Damien Vincent, Eugene Kharitonov, Olivier Pietquin,

Matt Sharifi, Dominik Roblek, Olivier Teboul, David Grangier, Marco Tagliasacchi, and

Neil Zeghidour (2023). AudioLM: a Language Modeling Approach to Audio Generation.

arXiv: 2209.03143 [cs.SD].

Brown, Tom, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini

Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya

Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric

Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,

Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei (2020). Language

Models are Few-Shot Learners. In Advances in Neural Information Processing Systems,
ed. by H. Larochelle et al. Vol. 33. Curran Associates, Inc., pages 1877–1901.

Chan, William, Navdeep Jaitly, Quoc Le, and Oriol Vinyals (2016). Listen, attend and

spell: A neural network for large vocabulary conversational speech recognition. In

2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 4960–4964.

43

https://arxiv.org/abs/2110.07205
https://arxiv.org/abs/2110.07205
https://proceedings.neurips.cc/paper_files/paper/2020/file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2209.03143
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://dx.doi.org/10.1109/ICASSP.2016.7472621
https://dx.doi.org/10.1109/ICASSP.2016.7472621

Bibliography

Cheng, Jianpeng, Li Dong, and Mirella Lapata (2016). Long Short-Term Memory-Networks

for Machine Reading. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing. Austin, Texas: Association for Computational Linguistics,

pages 551–561.

Chiang, Wei-Lin, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin

Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P.

Xing (2023). Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT

Quality.

Cho, Kyunghyun, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio (2014). Learning Phrase Represen-

tations using RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP).
Doha, Qatar: Association for Computational Linguistics, pages 1724–1734.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2019). BERT: Pre-

training of Deep Bidirectional Transformers for Language Understanding. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).
Minneapolis, Minnesota: Association for Computational Linguistics, pages 4171–4186.

Di Gangi, Mattia A., Roldano Cattoni, Luisa Bentivogli, Matteo Negri, and Marco Turchi

(2019). MuST-C: a Multilingual Speech Translation Corpus. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis,

Minnesota: Association for Computational Linguistics, pages 2012–2017.

Fu, Zhenxin, Xiaoye Tan, Nanyun Peng, Dongyan Zhao, and Rui Yan (2018). Style Transfer

in Text: Exploration and Evaluation. In Proceedings of the AAAI Conference on Artificial
Intelligence 32.1.

Ganin, Yaroslav, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle,

François Laviolette, Mario Marchand, and Victor Lempitsky (2016). Domain-Adversarial

Training of Neural Networks.

He, Pengcheng, Jianfeng Gao, and Weizhu Chen (2023). DeBERTaV3: Improving DeBERTa

using ELECTRA-Style Pre-Training with Gradient-Disentangled Embedding Sharing.

Hinterleitner, Florian (2017). Quality of Synthetic Speech. isbn: 978-981-10-3733-7.

Ho, Jonathan, Ajay Jain, and Pieter Abbeel (2020). Denoising Diffusion Probabilistic Models.

In Proceedings of the 34th International Conference on Neural Information Processing
Systems. NIPS’20. Vancouver, BC, Canada: Curran Associates Inc. isbn: 9781713829546.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White (1989). Multilayer feedforward

networks are universal approximators. In Neural Networks 2.5, pages 359–366. issn:
0893-6080.

Howard, Jeremy and Sebastian Ruder (2018). Universal Language Model Fine-tuning for

Text Classification. In Proceedings of the 56th Annual Meeting of the Association for

44

https://aclanthology.org/D16-1053
https://aclanthology.org/D16-1053
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://aclanthology.org/D14-1179
https://aclanthology.org/D14-1179
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1202
https://ojs.aaai.org/index.php/AAAI/article/view/11330
https://ojs.aaai.org/index.php/AAAI/article/view/11330
https://arxiv.org/abs/1505.07818
https://arxiv.org/abs/1505.07818
https://arxiv.org/abs/2111.09543
https://arxiv.org/abs/2111.09543
https://dx.doi.org/10.1007/978-981-10-3734-4
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://aclanthology.org/P18-1031
https://aclanthology.org/P18-1031

Computational Linguistics (Volume 1: Long Papers). Melbourne, Australia: Association

for Computational Linguistics, pages 328–339.

Huggingface (2023). Pre-trained models for text-to-speech. Accessed: 2023-09-11. url:

https://huggingface.co/learn/audio-course/chapter6/pre-trained_models.

Jin, Di, Zhijing Jin, Zhiting Hu, Olga Vechtomova, and RadaMihalcea (2022). Deep Learning

for Text Style Transfer: A Survey. In Computational Linguistics 48.1, pages 155–205.

Juang, B. and Lawrence Rabiner (2005). Automatic Speech Recognition - A Brief History

of the Technology Development.

Jurafsky, Dan and James H. Martin (2023). Speech and Language Processing (3rd ed. draft).

Kepler, Fabio, Jonay Trénous, Marcos Treviso, Miguel Vera, and André F. T. Martins (2019).

OpenKiwi: An Open Source Framework for Quality Estimation. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics: System Demonstrations.
Florence, Italy: Association for Computational Linguistics, pages 117–122.

Kiefer, J. and J. Wolfowitz (1952). Stochastic Estimation of the Maximum of a Regression

Function. In The Annals of Mathematical Statistics 23.3, pages 462–466.

Klakow, Dietrich and Jochen Peters (2002). Testing the Correlation of Word Error Rate

and Perplexity. In Speech Commun. 38.1, pages 19–28. issn: 0167-6393.

Krishna, Kalpesh, John Wieting, and Mohit Iyyer (2020). Reformulating Unsupervised

Style Transfer as Paraphrase Generation. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP). Online: Association for

Computational Linguistics, pages 737–762.

Kudo, Taku (2018). Subword Regularization: Improving Neural Network Translation

Models with Multiple Subword Candidates. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). Melbourne,

Australia: Association for Computational Linguistics, pages 66–75.

Kudo, Taku and John Richardson (2018). SentencePiece: A simple and language independent

subword tokenizer and detokenizer for Neural Text Processing. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing: System Demonstrations.
Brussels, Belgium: Association for Computational Linguistics, pages 66–71.

Lakew, Surafel Melaku, Mauro Cettolo, and Marcello Federico (2018). A Comparison of

Transformer and Recurrent Neural Networks on Multilingual Neural Machine Transla-

tion. In Proceedings of the 27th International Conference on Computational Linguistics.
Santa Fe, New Mexico, USA: Association for Computational Linguistics, pages 641–652.

Li, Juncen, Robin Jia, He He, and Percy Liang (2018). Delete, Retrieve, Generate: a Simple

Approach to Sentiment and Style Transfer. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers). New Orleans, Louisiana: Association

for Computational Linguistics, pages 1865–1874.

Liu, Danni and Jan Niehues (2022). Learning an Artificial Language for Knowledge-Sharing

in Multilingual Translation. In Proceedings of the Seventh Conference on Machine Transla-

45

https://huggingface.co/learn/audio-course/chapter6/pre-trained_models
https://huggingface.co/learn/audio-course/chapter6/pre-trained_models
https://aclanthology.org/2022.cl-1.6
https://aclanthology.org/2022.cl-1.6
https://web.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/354_LALI-ASRHistory-final-10-8.pdf
https://web.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/354_LALI-ASRHistory-final-10-8.pdf
https://web.stanford.edu/~jurafsky/slp3/ed3book_jan72023.pdf
https://aclanthology.org/P19-3020
https://doi.org/10.1214/aoms/1177729392
https://doi.org/10.1214/aoms/1177729392
https://doi.org/10.1016/S0167-6393(01)00041-3
https://doi.org/10.1016/S0167-6393(01)00041-3
https://aclanthology.org/2020.emnlp-main.55
https://aclanthology.org/2020.emnlp-main.55
https://aclanthology.org/P18-1007
https://aclanthology.org/P18-1007
https://aclanthology.org/D18-2012
https://aclanthology.org/D18-2012
https://aclanthology.org/C18-1054
https://aclanthology.org/C18-1054
https://aclanthology.org/C18-1054
https://aclanthology.org/N18-1169
https://aclanthology.org/N18-1169
https://aclanthology.org/2022.wmt-1.12
https://aclanthology.org/2022.wmt-1.12

Bibliography

tion (WMT). Abu Dhabi, United Arab Emirates (Hybrid): Association for Computational

Linguistics, pages 188–202.

McCulloch, Warren S. and Walter Pitts (1943). A logical calculus of the ideas immanent in

nervous activity. In The bulletin of mathematical biophysics 5.4, pages 115–133. issn:
1522-9602.

Mir, Remi, Bjarke Felbo, Nick Obradovich, and Iyad Rahwan (2019). Evaluating Style

Transfer for Text. In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers). Minneapolis, Minnesota: Association for Computational

Linguistics, pages 495–504.

Oord, Aäron van den, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,

Alexander Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu (2016).

WaveNet: A Generative Model for Raw Audio. In Arxiv.

Radford, Alec, Jong Wook Kim, Tao Xu, Greg Brockman, Christine Mcleavey, and Ilya

Sutskever (2023). Robust Speech Recognition via Large-Scale Weak Supervision. In

Proceedings of the 40th International Conference on Machine Learning, ed. by Andreas

Krause et al. Vol. 202. Proceedings of Machine Learning Research. PMLR, pages 28492–

28518.

Radford, Alec, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever (2018). Improving

Language Understanding by Generative Pre-Training.

Raffel, Colin, Noam Shazeer, AdamRoberts, Katherine Lee, Sharan Narang, MichaelMatena,

Yanqi Zhou, Wei Li, and Peter J. Liu (2020). Exploring the Limits of Transfer Learning

with a Unified Text-to-Text Transformer. In J. Mach. Learn. Res. 21.1. issn: 1532-4435.

Rei, Ricardo, Marcos Treviso, Nuno M. Guerreiro, Chrysoula Zerva, Ana C Farinha, Chris-

tine Maroti, José G. C. de Souza, Taisiya Glushkova, Duarte Alves, Luisa Coheur, Alon

Lavie, and André F. T. Martins (2022). CometKiwi: IST-Unbabel 2022 Submission for

the Quality Estimation Shared Task. In Proceedings of the Seventh Conference on Ma-
chine Translation (WMT). Abu Dhabi, United Arab Emirates (Hybrid): Association for

Computational Linguistics, pages 634–645.

Reimers, Nils and Iryna Gurevych (2019). Sentence-BERT: Sentence Embeddings using

Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP). Hong Kong, China: Association for Computational

Linguistics, pages 3982–3992.

Roux, Thibault Bañeras, Mickael Rouvier, Jane Wottawa, and Richard Dufour (2022).

Qualitative Evaluation of Language Model Rescoring in Automatic Speech Recognition.

In Proc. Interspeech 2022, pages 3968–3972.

Rugayan, Janine, Torbjørn Svendsen, and Giampiero Salvi (2022). Semantically Meaningful

Metrics for Norwegian ASR Systems. In Proc. Interspeech 2022, pages 2283–2287.

Sanchez, Guillaume, Honglu Fan, Alexander Spangher, Elad Levi, Pawan Sasanka Am-

manamanchi, and Stella Biderman (2023). Stay on topic with Classifier-Free Guidance.

46

https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://aclanthology.org/N19-1049
https://aclanthology.org/N19-1049
https://arxiv.org/abs/1609.03499
https://proceedings.mlr.press/v202/radford23a.html
https://openai.com/research/language-unsupervised
https://openai.com/research/language-unsupervised
https://dl.acm.org/doi/pdf/10.5555/3455716.3455856
https://dl.acm.org/doi/pdf/10.5555/3455716.3455856
https://aclanthology.org/2022.wmt-1.60
https://aclanthology.org/2022.wmt-1.60
https://aclanthology.org/D19-1410
https://aclanthology.org/D19-1410
https://dx.doi.org/10.21437/Interspeech.2022-10931
https://dx.doi.org/10.21437/Interspeech.2022-817
https://dx.doi.org/10.21437/Interspeech.2022-817
https://arxiv.org/abs/2306.17806

Sellam, Thibault, Dipanjan Das, and Ankur Parikh (2020). BLEURT: Learning Robust

Metrics for Text Generation. In Proceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics. Online: Association for Computational Linguistics,

pages 7881–7892.

Sennrich, Rico, Barry Haddow, and Alexandra Birch (2016). Neural Machine Translation

of Rare Words with Subword Units. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Berlin, Germany:

Association for Computational Linguistics, pages 1715–1725.

Sindel, Aline, Abner Hernandez, Seung Hee Yang, Vincent Christlein, and Andreas Maier

(2022). SliTraNet: Automatic Detection of Slide Transitions in Lecture Videos using

Convolutional Neural Networks.

Touvron, Hugo, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine

Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel,

Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,

Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,

Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin

Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh

Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu,

Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin

Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten,

Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang,

Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov,

Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez,

Robert Stojnic, Sergey Edunov, and Thomas Scialom (2023). Llama 2: Open Foundation

and Fine-Tuned Chat Models.

Tsiamas, Ioannis, Gerard I. Gállego, José A. R. Fonollosa, and Marta R. Costa-jussà (2022).

SHAS: Approaching optimal Segmentation for End-to-End Speech Translation.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan NGomez,

Łukasz Kaiser, and Illia Polosukhin (2017). Attention is All you Need. In Advances in
Neural Information Processing Systems, ed. by I. Guyon et al. Vol. 30. Curran Associates,

Inc.

Viswanathan, Mahesh and Madhubalan Viswanathan (2005). Measuring speech quality

for text-to-speech systems: development and assessment of a modified mean opinion

score (MOS) scale. In Computer Speech & Language 19.1, pages 55–83. issn: 0885-2308.

Yu, Dong and Li Deng (2014). Automatic Speech Recognition: A Deep Learning Approach.

Springer Publishing Company, Incorporated. isbn: 1447157788.

Zen, Heiga, Keiichi Tokuda, and Alan W. Black (2009). Statistical parametric speech

synthesis. In Speech Communication 51.11, pages 1039–1064. issn: 0167-6393.

Zerva, Chrysoula, Frédéric Blain, Ricardo Rei, Piyawat Lertvittayakumjorn, José G. C. de

Souza, Steffen Eger, Diptesh Kanojia, Duarte Alves, ConstantinOrăsan,Marina Fomicheva,

André F. T. Martins, and Lucia Specia (2022). Findings of the WMT 2022 Shared Task

47

https://aclanthology.org/2020.acl-main.704
https://aclanthology.org/2020.acl-main.704
https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1162
https://arxiv.org/abs/2202.03540
https://arxiv.org/abs/2202.03540
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2202.04774
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0885230803000676
https://www.sciencedirect.com/science/article/pii/S0885230803000676
https://www.sciencedirect.com/science/article/pii/S0885230803000676
https://link.springer.com/book/10.1007/978-1-4471-5779-3
https://www.sciencedirect.com/science/article/pii/S0167639309000648
https://www.sciencedirect.com/science/article/pii/S0167639309000648
https://aclanthology.org/2022.wmt-1.3
https://aclanthology.org/2022.wmt-1.3
https://aclanthology.org/2022.wmt-1.3

Bibliography

on Quality Estimation. In Proceedings of the Seventh Conference on Machine Translation
(WMT). Abu Dhabi, United Arab Emirates (Hybrid): Association for Computational

Linguistics, pages 69–99.

48

https://aclanthology.org/2022.wmt-1.3
https://aclanthology.org/2022.wmt-1.3
https://aclanthology.org/2022.wmt-1.3

A. Appendix

A.1. Adversarial Training Code

1 import os

2 from itertools import chain

3

4 os.environ["CUDA_VISIBLE_DEVICES"] = "1"

5

6 import sklearn

7 import evaluate

8 import torch

9 from datasets import load_dataset

10 from tensorboardX import SummaryWriter

11 from torch import nn

12 from torch.autograd import Function

13 from torch.optim import AdamW

14 from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts

15 from torch.utils.data import DataLoader

16 from tqdm.auto import tqdm

17 from transformers import AutoModel, AutoTokenizer, DataCollatorWithPadding

18

19 data_files = {"train": "train.csv",

20 "validation": "dev.csv", "test": "test.csv"}

21 raw_datasets = load_dataset("csv", data_files=data_files)

22 checkpoint = "microsoft/deberta-v3-base"

23 tokenizer = AutoTokenizer.from_pretrained(checkpoint)

24

25

26 def tokenize_function(example):

27 return tokenizer(example["Sentence"], truncation=True)

28

29

30 tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)

31 data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

32

33 tokenized_datasets = tokenized_datasets.remove_columns(

34 ["Sentence Index", "Sentence", "Split"])

35 tokenized_datasets = tokenized_datasets.rename_column(

36 "Style Label", "style_labels")

37 tokenized_datasets = tokenized_datasets.rename_column(

38 "Content Label", "content_labels")

39 tokenized_datasets.set_format("torch")

40

41 train_dataloader = DataLoader(

49

A. Appendix

42 tokenized_datasets["train"], shuffle=True, batch_size=16, collate_fn=data_collator

43)

44 eval_dataloader = DataLoader(

45 tokenized_datasets["validation"], batch_size=32, collate_fn=data_collator

46)

47

48

49 class GradientReversal(Function):

50 @staticmethod

51 def forward(ctx, x, alpha):

52 ctx.save_for_backward(x, alpha)

53 return x

54

55 @staticmethod

56 def backward(ctx, grad_output):

57 grad_input = None

58
_, alpha = ctx.saved_tensors

59 if ctx.needs_input_grad[0]:

60 grad_input = - alpha*grad_output

61 return grad_input, None

62

63

64 revgrad = GradientReversal.apply

65

66

67 class GradientReversal(nn.Module):

68 def __init__(self, alpha):

69 super().__init__()

70 self.alpha = torch.tensor(alpha, requires_grad=False)

71

72 def forward(self, x):

73 return revgrad(x, self.alpha)

74

75

76 class AdversarialModel(nn.Module):

77 def __init__(self, alpha=1.0):

78 super().__init__()

79 self.deberta = AutoModel.from_pretrained(checkpoint)

80 self.style_classifier = nn.Linear(self.deberta.config.hidden_size, 2)

81 self.dropout = nn.Dropout(self.deberta.config.hidden_dropout_prob)

82 self.gradient_reversal = GradientReversal(alpha)

83 self.content_classifier = nn.Linear(

84 self.deberta.config.hidden_size, 208)

85

86 # Freeze all parameters

87 for param in self.deberta.parameters():

88 param.requires_grad = False

89

90 # Unfreeze the last layers

91 for i in range(-1, -7, -1):

92 for param in self.deberta.encoder.layer[i].parameters():

93 param.requires_grad = True

94

95 def forward(self, input_ids, attention_mask):

50

A.1. Adversarial Training Code

96 outputs = self.deberta(input_ids, attention_mask=attention_mask)

97 pooled_output = outputs.last_hidden_state[:, 0, :]

98 pooled_output = self.dropout(pooled_output)

99 style_logits = self.style_classifier(pooled_output)

100 reversed_output = self.gradient_reversal(pooled_output)

101 content_logits = self.content_classifier(reversed_output)

102 return style_logits, content_logits

103

104

105 model = AdversarialModel()

106

107 base_lr = 5e-5

108 decay_factor = 0.75

109

110 # Get the layers of the DeBERTa model

111 layers_to_train = model.deberta.encoder.layer[-1:-7:-1]

112

113 # Calculate learning rates for each layer

114 layerwise_lr = [base_lr * (decay_factor ** i) for i in range(len(layers_to_train))]

115

116 # Create parameter groups with the calculated learning rates

117 param_groups = []

118 for lr, layer in zip(layerwise_lr, layers_to_train):

119 param_groups.append({’params’: layer.parameters(), ’lr’: lr})

120

121 # Add other model parameters (e.g., style_classifier) with the base learning rate

122 param_groups.append({’params’: model.style_classifier.parameters(), ’lr’: base_lr*10})

123

124 content_optimizer = AdamW(model.content_classifier.parameters(), lr=base_lr*10, eps=1e-6)

125 style_optimizer = AdamW(param_groups)

126

127 T_0 = 6 # Number of epochs before the first restart

128 content_scheduler = CosineAnnealingWarmRestarts(content_optimizer, T_0=T_0)

129 style_scheduler = CosineAnnealingWarmRestarts(style_optimizer, T_0=T_0)

130

131

132 # Retrieve the current learning rates of the optimizer.

133 def get_current_lr(optimizer):

134 lrs = [pg[’lr’] for pg in optimizer.param_groups]

135 return lrs

136

137

138 num_epochs = 120

139 num_training_steps = num_epochs * len(train_dataloader)

140

141 device = torch.device(

142 "cuda") if torch.cuda.is_available() else torch.device("cpu")

143 print(device)

144 model.to(device)

145

146 progress_bar = tqdm(range(num_training_steps))

147

148 run = ’adversarial_training_1.19’

149

51

A. Appendix

150 writer = SummaryWriter(log_dir=f’runs/{run}’)

151

152 metrics = {

153 "accuracy": evaluate.load("accuracy"),

154 "f1": evaluate.load("f1"),

155 "precision": evaluate.load("precision"),

156 "recall": evaluate.load("recall"),

157 }

158

159 model.train()

160

161

162 def evaluate_model(model, dataloader, metrics):

163 model.eval()

164 total_style_loss = 0

165 total_content_loss = 0

166 style_preds = []

167 style_labels = []

168 content_preds = []

169 content_labels = []

170

171 with torch.no_grad():

172 for batch in dataloader:

173 batch = {k: v.to(device) for k, v in batch.items()}

174 style_logits, content_logits = model(

175 batch["input_ids"], batch["attention_mask"])

176

177 style_loss = nn.CrossEntropyLoss()(

178 style_logits, batch["style_labels"])

179 content_loss = nn.CrossEntropyLoss()(

180 content_logits, batch["content_labels"])

181 total_style_loss += style_loss.item()

182 total_content_loss += content_loss.item()

183 style_preds.extend(style_logits.argmax(dim=1).cpu().numpy())

184 content_preds.extend(content_logits.argmax(dim=1).cpu().numpy())

185 style_labels.extend(batch["style_labels"].cpu().numpy())

186 content_labels.extend(batch["content_labels"].cpu().numpy())

187

188 results = {}

189 avg_style_loss = total_style_loss / len(dataloader)

190 avg_content_loss = total_content_loss / len(dataloader)

191 results[’Loss/style’] = avg_style_loss

192 results[’Loss/content’] = avg_content_loss

193 for name, metric in metrics.items():

194 if (name == ’accuracy’):

195 style_result = metric.compute(

196 predictions=style_preds, references=style_labels)

197 content_result = metric.compute(

198 predictions=content_preds, references=content_labels)

199 else:

200 style_result = metric.compute(

201 predictions=style_preds, references=style_labels, average=’micro’)

202 content_result = metric.compute(

203 predictions=content_preds, references=content_labels, average=’micro’)

52

A.1. Adversarial Training Code

204 results[f’{name}/style’] = style_result[name]

205 results[f’{name}/content’] = content_result[name]

206

207 model.train()

208 return results

209

210

211 gradient_accumulation_steps = 4

212

213 avg_style_loss = 0

214 avg_content_loss = 0

215 avg_combined_loss = 0

216

217 for epoch_block in range(0, num_epochs, 12): # Alternating training of objectives

218 for objective in range(2): # Two objectives: style and content

219 for sub_epoch in range(6): # Train each objective

220 epoch = epoch_block + objective*6 + sub_epoch

221 results = evaluate_model(model, eval_dataloader, metrics)

222 print(f’Evaluation Results Epoch {epoch}:’, results, flush=True) # Print the

results

223 writer.add_scalar(’Loss/style_val’, results[’Loss/style’], epoch)

224 writer.add_scalar(’Loss/content_val’, results[’Loss/content’], epoch)

225

226 # Log metrics to TensorBoard

227 for name, value in results.items():

228 writer.add_scalar(f’{name}_val’, value, epoch)

229

230 total_style_loss = 0

231 total_content_loss = 0

232 total_combined_loss = 0

233

234 if objective == 0:

235 # Content classifier update

236 for step, batch in enumerate(train_dataloader):

237 batch = {k: v.to(device) for k, v in batch.items()}

238 input_ids = batch["input_ids"]

239 attention_mask = batch["attention_mask"]

240 style_logits, content_logits = model(

241 input_ids=input_ids, attention_mask=attention_mask)

242 content_loss = nn.CrossEntropyLoss()(

243 content_logits, batch["content_labels"])

244 style_loss = nn.CrossEntropyLoss()(

245 style_logits, batch["style_labels"])

246 total_content_loss += content_loss.item()

247 total_style_loss += style_loss.item()

248

249 # Adversarial loss for content

250 content_probs = torch.softmax(content_logits, dim=-1)

251 content_target_probs = content_probs[range(

252 content_logits.shape[0]), batch["content_labels"]]

253 adv_content_loss = torch.log(1 - content_target_probs).mean()

254 combined_loss = style_loss + 0.1 * adv_content_loss

255 total_combined_loss += combined_loss.item()

256

53

A. Appendix

257 content_loss = content_loss / gradient_accumulation_steps

258 content_loss.backward()

259

260 if (step + 1) % gradient_accumulation_steps == 0:

261 content_optimizer.step()

262 content_optimizer.zero_grad()

263 content_scheduler.step(epoch + step / len(train_dataloader))

264 progress_bar.update(1)

265

266 else:

267 # Style classifier and DeBERTa update

268 for step, batch in enumerate(train_dataloader):

269 batch = {k: v.to(device) for k, v in batch.items()}

270 input_ids = batch["input_ids"]

271 attention_mask = batch["attention_mask"]

272 style_logits, content_logits = model(

273 input_ids=input_ids, attention_mask=attention_mask)

274 style_loss = nn.CrossEntropyLoss()(

275 style_logits, batch["style_labels"])

276 content_loss = nn.CrossEntropyLoss()(

277 content_logits, batch["content_labels"])

278 total_style_loss += style_loss.item()

279 total_content_loss += content_loss.item()

280

281 # Adversarial loss for content

282 content_probs = torch.softmax(content_logits, dim=-1)

283 content_target_probs = content_probs[range(

284 content_logits.shape[0]), batch["content_labels"]]

285 adv_content_loss = torch.log(1 - content_target_probs).mean()

286 combined_loss = style_loss + 0.1 * adv_content_loss

287 total_combined_loss += combined_loss.item()

288

289 combined_loss = combined_loss / gradient_accumulation_steps

290 combined_loss.backward()

291

292 if (step + 1) % gradient_accumulation_steps == 0:

293 style_optimizer.step()

294 style_optimizer.zero_grad()

295 style_scheduler.step(epoch + step / len(train_dataloader))

296 progress_bar.update(1)

297

298 avg_style_loss = total_style_loss / len(train_dataloader)

299 avg_content_loss = total_content_loss / len(train_dataloader)

300 avg_combined_loss = total_combined_loss / len(train_dataloader)

301 writer.add_scalar(’Loss/style_train’, avg_style_loss, epoch)

302 writer.add_scalar(’Loss/content_train’, avg_content_loss, epoch)

303 writer.add_scalar(’Loss/combined_train’, avg_combined_loss, epoch)

304

305 content_lrs = get_current_lr(content_optimizer)

306 writer.add_scalar(’lr/content_classifier’, content_lrs[0], epoch)

307 style_lrs = get_current_lr(style_optimizer)

308 writer.add_scalar(’lr/deberta’, style_lrs[0], epoch)

309 writer.add_scalar(’lr/style_classifier’, style_lrs[-1], epoch)

310

54

A.2. KL Divergence Training Code

311 writer.close()

312

313 torch.save({

314 ’epoch’: epoch,

315 ’model_state_dict’: model.state_dict().copy(),

316 ’content_optimizer_state_dict’: content_optimizer.state_dict(),

317 ’style_optimizer_state_dict’: style_optimizer.state_dict(),

318 }, f’runs/{run}/last_checkpoint.pth’)

319

320 print(’FINISHED’)

A.2. KL Divergence Training Code

1 import os

2 from itertools import chain

3

4 os.environ["CUDA_VISIBLE_DEVICES"] = "1"

5

6 import sklearn

7 import evaluate

8 import torch

9 from datasets import load_dataset

10 from tensorboardX import SummaryWriter

11 from torch import nn

12 from torch.autograd import Function

13 from torch.optim import AdamW

14 from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts

15 from torch.utils.data import DataLoader

16 from tqdm.auto import tqdm

17 from transformers import AutoModel, AutoTokenizer, DataCollatorWithPadding

18

19 data_files = {"train": "train.csv",

20 "validation": "dev.csv", "test": "test.csv"}

21 raw_datasets = load_dataset("csv", data_files=data_files)

22 checkpoint = "microsoft/deberta-v3-base"

23 tokenizer = AutoTokenizer.from_pretrained(checkpoint)

24

25

26 def tokenize_function(example):

27 return tokenizer(example["Sentence"], truncation=True)

28

29

30 tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)

31 data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

32

33 tokenized_datasets = tokenized_datasets.remove_columns(

34 ["Sentence Index", "Sentence", "Split"])

35 tokenized_datasets = tokenized_datasets.rename_column(

36 "Style Label", "style_labels")

37 tokenized_datasets = tokenized_datasets.rename_column(

38 "Content Label", "content_labels")

55

A. Appendix

39 tokenized_datasets.set_format("torch")

40

41 train_dataloader = DataLoader(

42 tokenized_datasets["train"], shuffle=True, batch_size=16, collate_fn=data_collator

43)

44 eval_dataloader = DataLoader(

45 tokenized_datasets["validation"], batch_size=32, collate_fn=data_collator

46)

47

48

49 class KLDivModel(nn.Module):

50 def __init__(self):

51 super().__init__()

52 self.deberta = AutoModel.from_pretrained(checkpoint)

53 self.dropout = nn.Dropout(self.deberta.config.hidden_dropout_prob)

54 self.style_classifier = nn.Linear(self.deberta.config.hidden_size, 2)

55 self.content_classifier = nn.Linear(

56 self.deberta.config.hidden_size, 208)

57

58 # Freeze all parameters

59 for param in self.deberta.parameters():

60 param.requires_grad = False

61

62 # Unfreeze the last layers

63 for i in range(-1, -7, -1):

64 for param in self.deberta.encoder.layer[i].parameters():

65 param.requires_grad = True

66

67 def forward(self, input_ids, attention_mask):

68 outputs = self.deberta(input_ids, attention_mask=attention_mask)

69 pooled_output = outputs.last_hidden_state[:, 0, :]

70 pooled_output = self.dropout(pooled_output)

71 style_logits = self.style_classifier(pooled_output)

72 content_logits = self.content_classifier(pooled_output)

73 return style_logits, content_logits

74

75

76 model = KLDivModel()

77

78 base_lr = 5e-5

79 decay_factor = 0.75

80

81 # Get the layers of the DeBERTa model

82 layers_to_train = model.deberta.encoder.layer[-1:-7:-1]

83

84 # Calculate learning rates for each layer

85 layerwise_lr = [base_lr * (decay_factor ** i) for i in range(len(layers_to_train))]

86

87 # Create parameter groups with the calculated learning rates

88 param_groups = []

89 for lr, layer in zip(layerwise_lr, layers_to_train):

90 param_groups.append({’params’: layer.parameters(), ’lr’: lr})

91

92 # Add other model parameters (e.g., style_classifier) with the base learning rate

56

A.2. KL Divergence Training Code

93 param_groups.append({’params’: model.style_classifier.parameters(), ’lr’: base_lr*10})

94

95 content_optimizer = AdamW(model.content_classifier.parameters(), lr=base_lr*10, eps=1e-6)

96 style_optimizer = AdamW(param_groups)

97

98 T_0 = 6 # Number of epochs before the first restart

99 content_scheduler = CosineAnnealingWarmRestarts(content_optimizer, T_0=T_0)

100 style_scheduler = CosineAnnealingWarmRestarts(style_optimizer, T_0=T_0)

101

102

103 # Retrieve the current learning rates of the optimizer.

104 def get_current_lr(optimizer):

105 lrs = [pg[’lr’] for pg in optimizer.param_groups]

106 return lrs

107

108

109 num_epochs = 120

110 num_training_steps = num_epochs * len(train_dataloader)

111

112 device = torch.device(

113 "cuda") if torch.cuda.is_available() else torch.device("cpu")

114 print(device)

115 model.to(device)

116

117 progress_bar = tqdm(range(num_training_steps))

118

119 run = ’kl_div_training_1.18’

120

121 writer = SummaryWriter(log_dir=f’runs/{run}’)

122

123 metrics = {

124 "accuracy": evaluate.load("accuracy"),

125 "f1": evaluate.load("f1"),

126 "precision": evaluate.load("precision"),

127 "recall": evaluate.load("recall"),

128 }

129

130 model.train()

131

132

133 def evaluate_model(model, dataloader, metrics):

134 model.eval()

135 total_style_loss = 0

136 total_content_loss = 0

137 style_preds = []

138 style_labels = []

139 content_preds = []

140 content_labels = []

141

142 with torch.no_grad():

143 for batch in dataloader:

144 batch = {k: v.to(device) for k, v in batch.items()}

145 style_logits, content_logits = model(

146 batch["input_ids"], batch["attention_mask"])

57

A. Appendix

147

148 style_loss = nn.CrossEntropyLoss()(

149 style_logits, batch["style_labels"])

150 content_loss = nn.CrossEntropyLoss()(

151 content_logits, batch["content_labels"])

152 total_style_loss += style_loss.item()

153 total_content_loss += content_loss.item()

154 style_preds.extend(style_logits.argmax(dim=1).cpu().numpy())

155 content_preds.extend(content_logits.argmax(dim=1).cpu().numpy())

156 style_labels.extend(batch["style_labels"].cpu().numpy())

157 content_labels.extend(batch["content_labels"].cpu().numpy())

158

159 results = {}

160 avg_style_loss = total_style_loss / len(dataloader)

161 avg_content_loss = total_content_loss / len(dataloader)

162 results[’Loss/style’] = avg_style_loss

163 results[’Loss/content’] = avg_content_loss

164 for name, metric in metrics.items():

165 if (name == ’accuracy’):

166 style_result = metric.compute(

167 predictions=style_preds, references=style_labels)

168 content_result = metric.compute(

169 predictions=content_preds, references=content_labels)

170 else:

171 style_result = metric.compute(

172 predictions=style_preds, references=style_labels, average=’micro’)

173 content_result = metric.compute(

174 predictions=content_preds, references=content_labels, average=’micro’)

175 results[f’{name}/style’] = style_result[name]

176 results[f’{name}/content’] = content_result[name]

177

178 model.train()

179 return results

180

181

182 gradient_accumulation_steps = 4

183

184 avg_style_loss = 0

185 avg_content_loss = 0

186 avg_combined_loss = 0

187

188 for epoch_block in range(0, num_epochs, 12): # Alternating training of objectives

189 for objective in range(2): # Two objectives: style and content

190 for sub_epoch in range(6): # Train each objective

191 epoch = epoch_block + objective*6 + sub_epoch

192 results = evaluate_model(model, eval_dataloader, metrics)

193 print(f’Evaluation Results Epoch {epoch}:’, results, flush=True) # Print the

results

194 writer.add_scalar(’Loss/style_val’, results[’Loss/style’], epoch)

195 writer.add_scalar(’Loss/content_val’, results[’Loss/content’], epoch)

196

197 # Log metrics to TensorBoard

198 for name, value in results.items():

199 writer.add_scalar(f’{name}_val’, value, epoch)

58

A.2. KL Divergence Training Code

200

201 total_style_loss = 0

202 total_content_loss = 0

203 total_combined_loss = 0

204

205 if objective == 0:

206 # Content classifier update

207 for step, batch in enumerate(train_dataloader):

208 batch = {k: v.to(device) for k, v in batch.items()}

209 input_ids = batch["input_ids"]

210 attention_mask = batch["attention_mask"]

211 style_logits, content_logits = model(

212 input_ids=input_ids, attention_mask=attention_mask)

213 content_loss = nn.CrossEntropyLoss()(

214 content_logits, batch["content_labels"])

215 style_loss = nn.CrossEntropyLoss()(

216 style_logits, batch["style_labels"])

217 total_content_loss += content_loss.item()

218 total_style_loss += style_loss.item()

219

220 # KL divergence loss for content

221 content_probs = log_softmax(content_logits, dim=-1)

222 # Create a uniform distribution tensor of the same size as

content_logits

223 num_classes = content_logits.size(-1)

224 uniform_distribution = torch.full_like(content_probs, 1.0 / num_classes)

.to(device)

225 # Compute the KL divergence

226 kl_div_content_loss = kl_div(content_probs, uniform_distribution,

reduction=’batchmean’)

227 combined_loss = style_loss + kl_div_content_loss

228 total_combined_loss += combined_loss.item()

229

230 content_loss = content_loss / gradient_accumulation_steps

231 content_loss.backward()

232

233 if (step + 1) % gradient_accumulation_steps == 0:

234 content_optimizer.step()

235 content_optimizer.zero_grad()

236 content_scheduler.step(epoch + step / len(train_dataloader))

237 progress_bar.update(1)

238

239 else:

240 # Style classifier and DeBERTa update

241 for step, batch in enumerate(train_dataloader):

242 batch = {k: v.to(device) for k, v in batch.items()}

243 input_ids = batch["input_ids"]

244 attention_mask = batch["attention_mask"]

245 style_logits, content_logits = model(

246 input_ids=input_ids, attention_mask=attention_mask)

247 style_loss = nn.CrossEntropyLoss()(

248 style_logits, batch["style_labels"])

249 content_loss = nn.CrossEntropyLoss()(

250 content_logits, batch["content_labels"])

59

A. Appendix

251 total_style_loss += style_loss.item()

252 total_content_loss += content_loss.item()

253

254 # KL divergence loss for content

255 content_probs = log_softmax(content_logits, dim=-1)

256 # Create a uniform distribution tensor of the same size as

content_logits

257 num_classes = content_logits.size(-1)

258 uniform_distribution = torch.full_like(content_probs, 1.0 / num_classes)

.to(device)

259 # Compute the KL divergence

260 kl_div_content_loss = kl_div(content_probs, uniform_distribution,

reduction=’batchmean’)

261 combined_loss = style_loss + kl_div_content_loss

262 total_combined_loss += combined_loss.item()

263

264 combined_loss = combined_loss / gradient_accumulation_steps

265 combined_loss.backward()

266

267 if (step + 1) % gradient_accumulation_steps == 0:

268 style_optimizer.step()

269 style_optimizer.zero_grad()

270 style_scheduler.step(epoch + step / len(train_dataloader))

271 progress_bar.update(1)

272

273 avg_style_loss = total_style_loss / len(train_dataloader)

274 avg_content_loss = total_content_loss / len(train_dataloader)

275 avg_combined_loss = total_combined_loss / len(train_dataloader)

276 writer.add_scalar(’Loss/style_train’, avg_style_loss, epoch)

277 writer.add_scalar(’Loss/content_train’, avg_content_loss, epoch)

278 writer.add_scalar(’Loss/combined_train’, avg_combined_loss, epoch)

279

280 content_lrs = get_current_lr(content_optimizer)

281 writer.add_scalar(’lr/content_classifier’, content_lrs[0], epoch)

282 style_lrs = get_current_lr(style_optimizer)

283 writer.add_scalar(’lr/deberta’, style_lrs[0], epoch)

284 writer.add_scalar(’lr/style_classifier’, style_lrs[-1], epoch)

285

286 writer.close()

287

288 torch.save({

289 ’epoch’: epoch,

290 ’model_state_dict’: model.state_dict().copy(),

291 ’content_optimizer_state_dict’: content_optimizer.state_dict(),

292 ’style_optimizer_state_dict’: style_optimizer.state_dict(),

293 }, f’runs/{run}/last_checkpoint.pth’)

294

295 print(’FINISHED’)

60

A.3. Prompting Techniques

A.3. Prompting Techniques

System Prompt LLaMA 2

You are an automated rephrasing tool. You produce accurate outputs and follow the user’s

instructions precisely. You use words for math (“plus” instead of “+”, “divided by” instead

of “/” etc.).

System Prompt Vicuna

A chat between a user and an automated rephrasing tool. The tool produces accurate

outputs and follows the user’s instructions precisely. The tool uses words for math (“plus”

instead of “+”, “divided by” instead of “/” etc.).

Prompting Techniques

Zero-shot:
Rephrase the following text, delimited by ```, such that the rephrased text has improved

structure and fluency. The rephrased text is to be semantically equivalent to the original

text.

Original text:

```

{text}

```

Zero-shot with Original Context:
Rephrase the following text, delimited by ``` such that the rephrased text has improved

structure and fluency. The rephrased text is to be semantically equivalent to the original

text.

Context (the three original sentences before the original text):

```

{context}

```

Original text:

```

{text}

```

61

A. Appendix

Prompting Techniques

Zero-shot with Rephrased Context:
Rephrase the following text, delimited by ``` such that the rephrased text has improved

structure and fluency. The rephrased text is to be semantically equivalent to the original

text.

Context (the three rephrased sentences before the original text):

```

{context}

```

Original text:

```

{text}

```

Few-shot:
Rephrase the following text, delimited by ``` such that the rephrased text has improved

structure and fluency. The rephrased text is to be semantically equivalent to the original

text.

Original text:

```

{text}

```

62

A.3. Prompting Techniques

Interactions for Proper Output Format

The following describes the interaction format for ensuring proper output format for

parsing. It only outlines the general interactions, the concrete realization of this then

depends on the official prompt format recommended for the respective model.

Zero-shot:

USER: {instruction}

{context}

Original text:

```

Example text.

```

ASSISTANT : Rehrased text:

```

Example text.

```

USER: Original text:
```

{text}

```

Few-shot:

Same approach as zero-shot (without context), but instead of “Example text.” use the

sentences from below for the first three interactions.

63

A. Appendix

Sentences for Few-shot

Original sentences:

1. I mean, so I just took the logs from the task and I compared our system with them,

this was done after the fact so we didn’t participate in IWCD 2020 this is just our

system compared with the three with the three submissions.

2. So what you’re doing then is, if you have my dog is cute, he likes to play, he likes

playing, you’re putting in, you can put in the whole input, and you have some extra

tokens, so you put an extra separator between the sentence.

3. Techniques, there’s like a, yeah, I could give like one complete lecture only about

like how to smooth things.

Rephrased sentences:

1. I took the logs from the task and compared our system with them. This was done

after the fact since we didn’t participate in IWCD 2020. Now, this is our system

compared with the three submissions.

2. What you’re doing then is, if you have sentences like "My dog is cute. He likes

playing.", you can put in the whole input, and since you have some extra tokens, you

put a separator between the sentences.

3. Techniques, I could give one complete lecture only on how to smooth things.

Prompt for Single Retry on Parsing Error

This does not seem right. Please only output the rephrased text, wrapped by ```.

64

	Abstract
	Zusammenfassung
	List of Abbreviations
	Introduction
	Motivation
	Problem Statement
	Research Questions
	Thesis Outline

	Background & Related Work
	Fundamentals
	artificial neural networks
	Training
	Encoder-Decoder Architecture
	Attention Mechanism
	Transformer Architecture
	Generative Models
	Tokenization
	large language models

	Automatic Speech Recognition
	text style transfer
	text-to-speech

	Approach
	Structure of the Generation System
	Models
	SHAS
	Whisper
	Vicuna
	Llama 2
	Bark

	Datasets
	Evaluation Metrics
	Style Classification with DeBERTa
	BLEURT
	COMET
	SentenceTransformers

	Results
	Style Classification
	Style Transfer Strength of Transformations
	Content Preservation of Transformations

	Conclusion
	Answers to Research Questions
	Future Work

	Bibliography
	Appendix
	Adversarial Training Code
	KL Divergence Training Code
	Prompting Techniques

