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Abstract

Low-latency speech translation aims to deliver real-time translations of spoken language
with minimal delay and high accuracy. However, early translation often suffers from
limited context, leading to degraded performance. A naive way to overcome this issue is to
make the system wait for enough input tokens, which in turn increases the latency. This
thesis investigates an alternative solution, the use of unobserved future-context prediction,
to enhance both latency and translation quality in cascaded speech translation systems.

By integrating lightweight large language models (LLMs) such as Qwen2.5-0.5B into a
cascaded low-latency speech translation system to predict the next tokens in the so far
predicted transcription/translation, the system gains additional context at each segment
step. Moreover, several methods, such as using previous context, filtering future-context
predictions based on a prediction threshold, are introduced to improve the accuracy of
unobserved future-context prediction.

A comprehensive experimental setup evaluates step by step the performance of a
cascaded speech translation system, including offline/low-latency performance of isolated
ASR/MT and cascaded speech translation. In the next step, the setup examines the impact
of different hyperparameters, such as input size, previous context size, prediction threshold,
and timing of prediction, on the accuracy of future-context prediction. At the end, future-
context-prediction-integrated low latency speech translation system is evaluated with
many different scenarios. The results on the English-German subset of the Europarl-ST
dataset show that incorporating selected future-context predictions is a promising method
to improve system’s latency with a negligible impact on translation quality.






Zusammenfassung

Die sprachliche Ubersetzung mit niedriger Latenz zielt darauf ab, gesprochene Sprache in
Echtzeit mit minimaler Verzogerung und hoher Genauigkeit zu iibersetzen. Frithzeitige
Ubersetzungen leiden jedoch hiufig unter begrenztem Kontext, was zu einer verringerten
Leistungsfahigkeit fithrt. Eine naive Losung fiir dieses Problem besteht darin, das System
warten zu lassen, bis geniigend Eingangstoken verfiigbar sind — was jedoch die Latenz
erhoht. Diese Arbeit untersucht eine alternative Losung: die Vorhersage von nicht beob-
achtetem zukiinftigen Kontext, um sowohl die Latenz als auch die Ubersetzungsqualitit in
kaskadierten Sprachiibersetzungssystemen zu verbessern.

Durch die Integration leichtgewichtiger grofier Sprachmodelle (LLMs) wie Qwen2.5-
0.5B in ein kaskadiertes System zur Sprachiibersetzung mit niedriger Latenz, welches
die nachsten Token in der bisher vorhergesagten Transkription/Ubersetzung vorhersagt,
erhalt das System bei jedem Segmentierungsschritt zusétzlichen Kontext. Dariiber hinaus
werden verschiedene Methoden eingefiihrt — wie die Nutzung von vorherigem Kontext und
das Filtern von Vorhersagen des zukiinftigen Kontexts basierend auf einem Vorhersage-
schwellenwert —, um die Genauigkeit der Vorhersage von nicht beobachtetem zukiinftigen
Kontext zu verbessern.

Ein umfassendes experimentelles Setup bewertet schrittweise die Leistung eines kas-
kadierten Sprachiibersetzungssystems, einschlieflich der Offline- bzw. niedrigen Latenz-
leistung von isolierter ASR/MT sowie der kaskadierten Sprachiibersetzung. Im néachsten
Schritt untersucht das Setup den Einfluss verschiedener Hyperparameter — wie Einga-
begrofie, Grofle des vorherigen Kontexts, Vorhersageschwellenwert und Zeitpunkt der
Vorhersage — auf die Genauigkeit von Vorhersage des zukiinftigen Kontexts. Abschlieend
wird das mit Vorhersage des zukiinftigen Kontexts integrierte System zur Sprachiiber-
setzung mit niedriger Latenz unter verschiedenen Szenarien evaluiert. Die Ergebnisse
auf dem Englisch-Deutsch-Teil des Europarl-ST-Datensatzes zeigen, dass die Verwen-
dung von ausgewihlten Vorhersagen des zukiinftigen Kontexts eine vielversprechende
Methode zur Verbesserung der Systemlatenz mit vernachlassigbarem Einfluss auf die
Ubersetzungsqualitit ist.
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1. Introduction

1.1. Motivation

Translation is becoming increasingly crucial with the accelerating globalization. The
number of international summits, conferences, and organizations has increased drastically
in the last few decades. In addition to this, more people have access to world-wide live
broadcasts thanks to digital platforms. However, it is usually the case that the speech
is delivered in a language that the audience is not familiar with. All of these develop-
ments indicate that low-latency, aka real-time speech translation, is the key to modern
communication.

In low-latency speech translation, the goal is to translate the spoken utterance into
the target language with as little delay as possible. Unlike pre-recorded or consecutive
translation, the interpreter does not wait for the speaker to complete their sentence or
entire speech.

Recent developments in speech processing and natural language processing (NLP)
disciplines, such as automatic speech recognition (ASR), neural machine translation (neural
MT), and speech synthesis have enabled us to implement low-latency speech translation
with Al-driven models.

However, the quality and latency of the early Al-driven low-latency speech translation
systems have been far from being sufficient for practical use. To address this, several
methods have been developed to enhance the performance of the automatic low-latency
speech translation, such as partial hypothesis selection, training models with partial
sentence translations, etc.

Currently, the focus is on leveraging unobserved future-context prediction in low-
latency translation to further enhance performance. Unobserved future-context prediction
involves predicting unobserved parts of the spoken utterance, allowing the translation to
begin earlier. By providing the model with unobserved future-context as an additional
context during the early stages of translation, this approach can improve the latency and
accuracy of the translation. However, research on this topic remains limited. Therefore,
my thesis will analyze whether unobserved future-context prediction can improve the
latency and/or accuracy of low-latency speech translation models.
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1.2. Research Questions

In this work, the main objective is to explore the implementation techniques and impacts
of unobserved future-context prediction in the field of low-latency speech translation. The
thesis addresses the following research questions:

« Research Question 1: How can unobserved future-context be predicted?

Future-context prediction is not a trivial task. Therefore, the following points must be
clarified: algorithms/models to be used, the scope of prediction (whether to predict a
few tokens or complete sentence), and amount of input context required.

+ Research Question 2: How can unobserved future-context prediction be inte-
grated into existing low-latency speech translation systems?

There are essentially two ways to integrate future-context prediction: predicting future-
context at the end of each ASR stage or at the end of each MT stage. What is more, the
generated future-context prediction must be verified before being committed. Providing
the system with incorrect context may negatively affect translation quality. In this work,
different approaches are tested to determine which ones perform better.

+ Research Question 3: How do different configurations of the future-context
prediction module impact low-latency speech translation performance?

One of the drawbacks of low-latency speech translation is that the model must wait
to receive sufficient context before starting the translation. Otherwise, the translation
quality drops significantly, as explained in Section 5. By using future-context prediction,
the model is provided with additional context and can therefore start the translation
earlier. This may result in lower latency. Moreover, there is a possibility that the
translation accuracy improves thanks to having a richer context in the early stages of
translation.



2. Background and Related Work

Before examining the actual work, it is important to review basic information and related
studies on the topic. This section covers the definition of low-latency speech translation
and the implementation logic behind it. In addition, methods developed to improve the
performance of such systems are also presented.

2.1. System Architecture

Essentially, there are two architectures to implement speech translation systems:

« End-to-End (E2E) Architecture: by using a single model, this architecture enables
the translation of spoken utterances without relying on intermediate text representa-
tions. Thanks to its simple structure, the computational overhead and the inference
latency are reduced. However, it is less efficient due to the integration of ASR and
MT tasks into a single model [8].

« Cascaded Architecture: consists of two different components that handle ASR and
MT tasks separately. The ASR model is trained to transcribe spoken utterances into
corresponding textual representations. In the next step, the MT model receives the
transcribed text in the source language as input and generates its translation in the
target language. Thanks to its modular structure, each module can be specialized for
its specific task, which enhances the overall performance significantly. Furthermore,
each component of the system can be developed, tested and replaced independently,
making the entire system easier to manage [8], [2].

2.2. Low-Latency Speech Translation

2.2.1. Task Definition

In this work, speech translation is defined as the process of translating a spoken utterance
in a source language into its textual representation in a target language. And low-latency
speech translation refers to speech translation performed in real-time. The goal is to
reduce the delay between the spoken utterance and the translation while maintaining the
translation accuracy. It is also known as simultaneous or real-time speech translation.

There are different ways to implement an Al-driven low-latency speech translation
system. In the cascaded approach, the following two tasks are performed by different
models, one for each task [8]:
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+ Automatic Speech Recognition: automatic process of converting speech signals
to corresponding text [15].

« Machine Translation: the study of how to use computers to translate texts from
one natural language to another. State-of-the-art approach for machine translation
is the neural machine translation which is based on deep learning techniques [23].

In the E2E approach, these two tasks are merged into a single task and performed by a
single E2E model. The E2E model does not rely on intermediate text representations, as it
processes input speech directly into the translated text [8].

2.2.2. Incremental Decoding

[6] introduces a method called incremental decoding which is used to implement low-
latency speech translation. It involves dividing the spoken utterance into fixed-size chunks
and feeding them incrementally as inputs to the encoder-decoder-based Al model. As
the model receives a new chunk, all segments received so far are decoded. Moreover, the
decoder is conditioned on the output of the previous chunk step. In doing so, an attention
mechanism is established that spans over all chunk steps processed so far, rather than
focusing on the current chunk step alone. The non-committed portion of the output which
is generated at the end of the chunk step is committed and no longer modified to prevent
the translation from being overwritten at each chunk step.

There are two methods to condition the decoding process with the output of the previous
chunk step: using buffered decoder state or forced decoding of the output tokens from the
previous chunk step.

2.2.3. Input Segmentation Strategies

Simultaneous speech translation requires the segmentation of the input speech into smaller
units. Segmented input is then provided to the system incrementally. There are three main
strategies to achieve segmentation:

+ Fixed-length Segmentation: divides the speech into equally-sized input segments
with a fixed frame length [7].

« Word-based Segmentation: uses detectors to locate word boundaries of the input
and divides input into segments accordingly [7].

+ Adaptive Segmentation: reads the acoustic information from the encoder and
locates the boundaries of meaningful speech units [7].

Fixed-length segmentation offers a solution easier to implement, but it lacks the ability
to locate semantic boundaries of the input speech. It is an important ability, since poor
acoustic information in the input may lead to the generation of poor-quality outputs.
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2.2.4. Simultaneous Read-Write Policies

To implement low-latency incremental speech translation, numerous policies are developed.
They can be categorized into fixed and flexible policies [7]. Fixed policies are easier to
implement. On the other hand, flexible policies can determine dynamically when to read
more input and write an output by analyzing the current partial input and output.

Fixed policies are listed below:

« Hold-n: removes the last n tokens from the output of current chunk step [6].

« Wait-k: waits until the model receives the first k input segments and output at a
fixed rate [9].

Besides that, there are different versions of the wait-k strategy, such as wait-k-stride-n
[27].
And flexible policies are:

« Continuous Integrate-and-Fire (CIF): a monothonic alignment method which
uses a weight prediction network. If the accumulated weights fall below a pre-
defined threshold value, it proceeds to the next encoder step. Otherwise, a operation
called integrate and fire is triggered to retain the remaining weight for the next
integration. Then the CIF generates an integrated embedding which is sent to the
decoder. This step is called firing [1].

« Cross Attention Augmented Transducer (CAAT): based on the Transducer
framework, a model is trained to optimize the decision-making of the read-write
policies by calculating a latency loss in addition to the accuracy loss [5].

« Encoder-Decoder Attention (EDATT): leverages the attention matrix of the
encoder-decoder model. The received partial input is analyzed in terms of its calcu-
lated attention. If the attention is concentrated on the most recent tokens, then the
model decides to read more input segments. Otherwise it emits a partial translation,
as it thinks that it received enough input context [17].

+ Incremental Blockwise Beam-Search (IBWBS) a policy which dynamically
manages generated beams. Beams with a unreliable hypothesis are considered
problematic and therefore halted. Meanwhile, other beams are allowed to continue
[19].

+ Local Agreement: take the longest common prefix of the current chunk step’s
output and the-not-yet committed output of the previous chunk step [6].

« Monotonic Multi-head Attention (MMA): utilizes multi-head attention to realize
flexible decision-making. Each head within a layer calculates an independent step
probability which determines when to read and write during the simultaneous
translation [10].
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2.3. Methods for Improving Performance of Low-Latency
Speech Translation

2.3.1. Partial Hypothesis Selection

Latency is not the only criterion in low-latency speech translation. The translation quality
is also an important factor. Therefore, low-latency speech translation techniques, such as
incremental decoding, must maintain high translation quality while reducing delay.

Partial hypothesis selection from [6] suggests that the model should be selective with
the output predictions at each chunk step, as earlier predictions lack sufficient context
information about the spoken utterance. Moreover, the acoustic information towards the
chunk-endpoints is uncertain, increasing the likelihood of incorrect token predictions
at the end of the generated output text. These problems can lead to the generation of
unstable predictions at each chunk step. Conditioning the decoder on unstable predictions
may trigger a chain of low-quality translationsss at different chunk steps.

To address this problem, the conditioning predictions are carefully selected using policies
like hold-n, wait-k and local agreement which are explained in the previous section.

The results from [6] show that local agreement outperforms the aforementioned policies
in terms of accuracy-latency trade-off of online transcription. Compared to the offline
transcription results, it reduces latency by 3.8 seconds at the cost of 0.9% additional
WER.

2.3.2. Multi-Task Learning with Partial and Complete Sentence Translation

The training data for speech translation models typically consists of complete sentence
translations. As a result, the model is not exposed to the translation of partial sentences
which is essential in low-latency speech translation. This lack of exposure in this area
leads to a performance drop in low-latency speech translation.

By using multi-task learning as explained in [13], the model can be trained on a balanced
distribution of partial and complete sentences to enhance the accuracy of partial sentence
translation while preserving the accuracy of complete sentence translations.

2.3.3. Unobserved Future-Context Prediction
2.3.3.1. Future-Contextin Simultaneous Machine Translation

The paper [16] proposes Translation by Anticipating Future (TAF), a method for
improving the quality and retaining the latency of simultaneous machine translation
systems by incorporating predicted future-context into the machine translation. In essence,
a separate large language model (LLM) is used to predict multiple possible continuations
of a partial source sentence. In the next step, each predicted continuation is appended to
the source prefix and the MT model generates translations from each one of them. Then,
the TAF applies a majority voting mechanism to select the most agreed-upon prediction.
Finally, the selected prediction is committed, if the following condition with a pre-defined
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threshold 7 € [0, 1] is met:
Count(MAP) S
_— 2 T

n

, where MAP stands for the most agreed-upon prediction and Count(MAP) is the number
of occurrences of the MAP within the translation candidates. n is the number of candidates
generated by the LLM. If the condition is not met, nothing is committed and the next
source segment is read. This method is inspired by the RALCP [24] policy and ensures that
a committed prediction is the common prefix of at least a certain number of translation
candidates.

When combined with the existing policies such as SM2 [26], Wait-k-Stride-N [27], and
Local Agreement [6], the TAF policy improves the translation quality by up to 5 BLEU
in comparison to existing policies at the same latency across four translation directions,
including German-English, English-Chinese, Chinese-English, and English-Japanese [16].
It is also shown that the TAF improves the translation quality by up to 5 BLEU in comparison
to the RALCP policy at the same latency on all combinations of the LLM and MT models
[16]. Furthermore, increasing the sample length, the number of future tokens predicted by
LLM for each candidate, and the number of candidates to a certain degree improves the
quality-latency trade-off of the TAF [16].

These results show that the TAF is an effective policy to improve the quality-latency
trade-off of simultaneous machine translation systems. However, this work focuses only
on text-to-text translation. Besides, the improvement is observed only on the translation
quality, rather than the latency. Therefore, further work is necessary to investigate the
effect of the future-context prediction on low-latency speech translation performance,
particularly in terms of system latency.

2.4. Large Language Models

Large language models (LLMs) are deep learning algorithms that can recognize, summarize,
translate, predict, and generate content using very large datasets [12]. They are pretrained
on vast amounts of textual data to perform natural language processing (NLP) tasks and
can be finetuned on additional data to specialize in specific domains and tasks [12]. During
training, their weights are adjusted so that they learn to make better predictions. The
adjustment is done using techniques like backpropagation and weight gradient.

The input of LLMs can be natural language texts, code parts, and structured data such
as JSON. Pretrained tokenizers are used to split text into meaningful small units which
are called tokens and have unique values called token ids [12]. Each token id is mapped
to a learned embedding vector which is the numerical representation of a token. Instead
of processing the tokens directly, LLMs process these token embeddings. The output of
LLMs is a probabilistic distribution over its vocabulary, which is a collection of tokens.
Based on the decoding strategy, a specific number of tokens with the highest probabilities
are selected as output.

LLMs have several features which we can utilize for enhanced speech translation perfor-
mance. One of the most fundamental features of LLMs is that they are trained to predict the
next tokens in a given input sequence. In the context of low-latency speech translation, this
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feature can be used to predict the next words within the partial transcriptions/translations.
Additionally, the output of LLMs being a probabilistic distribution over all tokens in its
vocabulary makes it easier to determine whether the predicted future-context is likely to
be true or false. Predictions with lower probabilities can be considered low-confidence
predictions and be filtered out, which prevents the output from being destabilized.

State-of-the-art LLMs are built on the Transformer [22] architecture which is based on
an encoder-decoder architecture. The Transformer architecture does not use recurrent or
convolutional layers to know about the order of the tokens within the sequence. Instead,
positional encoding of tokens are generated and added to input embeddings. Both have
same dimensions so that the two can be summed [22].

One of the key strengths of this architecture is its self-attention mechanism, which allows
for weighing the importance of each token in a sequence relative to every other token,
thereby improving the model’s understanding of the overall context. In this approach,
each token embedding, the sum of semantic and positional encoding of a token, is mapped
into three different vectors: query, key and value. Using these vectors, the mechanism
calculates weights representing the attention of tokens to each other. At the last step, a
new representation of the input sequence is calculated as a weighted sum of the values
from the value vectors [22], [12]. Understanding the overall context is crucial for both
machine translation and future-context prediction, as the predicted output depends on
both the current input and the previously generated context. Therefore, the system must
effectively capture this information.

Below is the most common NLP tasks performed by LLMs:

« Machine Translation: the study of how to use computers to translate texts from
one natural language to another [23].

+ Named Entity Recognition: a NLP task determining which items in the text relates
to proper names [4].

+ Question Answering: a NLP task, which aims to provide precise answers in
response to the users’ questions in natural language [28].

« Sentiment Analysis: the process of analyzing large volumes of text to determine
whether it expresses a positive sentiment, a negative sentiment or a neutral sentiment

[4].

« Text Generation: the process of automatically producing coherent and meaningful
text, which can be in the form of sentences, paragraphs or even entire documents

[4].

« Text Summarization: a NLP task for producing an understandable summary of a
set of text [4].

Machine translation (MT) is the most related task to speech translation (ST) among
the listed NLP tasks. The key difference is the form of the input: MT translates text,
whereas ST translates speech. However, this work focuses on a cascaded implementation
of low-latency speech translation, where an ASR and a MT model are used together. In
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this regard, LLMs can be used as MT models inside of this cascaded system. Apart from
that, LLMs can also be used for future-context prediction of partial translations, as they
are trained for predicting the next tokens in a given input text.






3. Methodology

In this section, research methods and techniques are presented.

3.1. Cascaded System Architecture

The speech translation is implemented based on the cascaded system architecture where
the ASR and MT models are separate from each other but sequentially integrated. One
of its main benefits is the enhanced modularity. Each model can be trained, tested and
modified independently from each other [2]. This enables us to build a speech translation
which is easier to manage. Moreover, cascaded systems often outperform the E2E systems
in terms of speech translation quality, even tough the performance of E2E models are
improving thanks to techniques like knowledge distillation [8]. This is due to the fact
that a cascaded system allows for independent optimization of the ASR and MT tasks [2].
Lastly, it is easier to localize errors, as the ASR and MT tasks are performed separately.

3.2. Low-Latency Inference

To implement low-latency speech translation, the method of incremental decoding is
used which is explained in subsection 2.2.2. Furthermore, partial hypothesis selection is
used to select outputs from each segment step, thereby making the predictions more stable.
We adopt the wait-k strategy from [6], which is one of the concrete implementations of
partial hypothesis selection. The strategy follows a simple algorithm: the system begins
processing the partial input sequence as soon as the first k input tokens are received.
Partial outputs from each step are then committed at a fixed rate which is defined as the
output rate. The following formula describes how the algorithm works:

ifc <k

0
PREFIX(W ) = { () ife>k

min(|W©|,r)

where PREFIX() gives the selected part of the output to commit and W is the output
tokens from the c-th chunk/segment step.

11
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3.3. Unobserved Future-Context Prediction

3.3.1. Motivation

One of the drawbacks of low-latency speech translation is that the system has poor context
information about input sequence in the early stages of incremental decoding. Starting
the translation too early results in low translation quality and accuracy. To mitigate the
problems caused by this issue, the system needs to wait for several steps to receive enough
input context before beginning the translation. However, this approach increases delay
and latency which undermines the primary goal of low-latency speech translation [16].

Predicting unobserved future-context with a LLM may provide the system with addi-
tional context information about the input sequence, particularly in the early stages. As a
result, the system can begin translating the input sequence earlier without significantly
degrading the translation quality.

3.3.2. Prediction Before/After MT

In the cascaded system, there are two approaches for predicting the unobserved future-
context. In the first approach, the future-context is predicted by a LLM after each ASR
segment step. The model receives the ASR output, which is committed by the system
so far at the current step, and predicts the next tokens of the given sequence. Selected
future-context tokens are committed at each step along with the selected ASR output
tokens. Another approach is to predict the future-context after each MT segment step.
The LLM receives the MT translation tokens committed by the system so far as input and
predicts the next tokens. These predicted tokens are then selected and committed along
with the selected MT output tokens at the end of the segment step.

3.3.3. Providing Fixed-Size Previous Context

Previously translated sentences can serve as additional context for improving future-
context prediction accuracy, as they are often semantically related to the current input
sentence. Therefore, we adopt a fixed-size window approach in which a fixed number of
recently translated sentences are provided as additional context to a selected LLM. These
sentences are called previous context. The reason for using a fixed-size approach is to
avoid overloading the system with too much information and maintain low inference time.

3.3.4. Prediction Probability Threshold

Incorporating prediction probability thresholds plays a crucial role in the process of
selecting unobserved future-context tokens in low-latency speech translation systems. A
key challenge in such systems is that not all predictions made by the model are equally
reliable. Some tokens predicted by the model may have a low probability, leading to less
confidence in their correctness. Inaccurate predictions can negatively impact the overall
translation quality, especially in real-time applications.

12
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To address this, a probability threshold is introduced to filter out low-confidence pre-
dictions. By setting a minimum threshold for the prediction probability, the system can
ensure that only those future-context predictions which the model is confident about are
selected and committed. This approach helps to prevent the introduction of uncertain
predictions that could degrade the translation quality.

The selection of an optimal threshold value is essential, as too low of a threshold may
allow incorrect predictions, while too high of a threshold may result in fewer predictions
being selected, reducing the amount of context available for the translation task. The
threshold is typically adjusted based on empirical evaluations, with the goal of achieving a
balance between maintaining high translation quality and minimizing the latency impact.

In summary, the prediction probability threshold serves as a control mechanism to
ensure that only reliable predictions are included in the system’s future-context predictions,
thereby improving both the stability and accuracy of the low-latency speech translation
system.

13
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4.1. Models

In order to implement low-latency speech translation using the methods explained in the
previous chapter, different models are used in the following areas:

4.1.1. Automatic Speech Recognition (ASR)

For low-latency speech translation, we need to use a high-performance ASR model, which
requires a state-of-the-art architecture such as the Transformer. Such models are capable
of capturing long-range dependencies in audio and producing accurate transcriptions
quickly. To ensure reliable performance across various real-world conditions, the ASR
model must be robust to background noise and diverse speaker accents. Additionally, it
should be trained on a large and diverse dataset to generalize well across different domains
and speaking styles.

For these reasons, V\/hisper1 [21] is used. It is a Transformer-based model which is
trained on multiple tasks, including multilingual speech recognition, speech translation,
spoken language identification, and voice activity detection.

Whisper comes with six models, each varying in model size and inference speed. In this
work, the whisper turbo? model is used, as it is the optimized version of whisper large-
v33, the largest model in the Whisper family. It is eight times faster than the whisper
large-v3 model.

Moreover, Whisper uses a sequence of tokens as the training format to handle all speech
processing tasks, such as language identification, voice activity detection, with a single
model. These tasks are represented with special tokens. In addition, there is a language
token which represents the language used in the audio. The sequence also contains
text-tokens and timestamp tokens. (See Figure 4.1 for detailed information of Whisper’s
architecture)

Last but not least, the performance of Whisper models varies depending on the language.
Since this work focuses on the evaluation of English-to-German speech translation, it is
important to use an ASR model which performs well in English. On the "CommonVoice
15" dataset, the whisper large-v3 model achieves a word error rate (WER) of 9.3% across
various tasks. On the "FLEURS" dataset, the WER is measured at 4.1%. Considering that
the whisper turbo model’s accuracy is close to that of the whisper large-v3 model, it
can be used for the ASR of English.

'https://github.com/openai/whisper
*https://huggingface.co/openai/whisper-large-v3-turbo
Shttps://huggingface.co/openai/whisper-large-v3
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Figure 4.1.: Whisper Architecture
image taken from [21]

4.1.2. Machine Translation (MT)

Low-latency speech translation systems generally produce lower translation quality com-
pared to offline systems. To minimize this quality loss, a high-performance MT model
must be used. In this regard, neural machine translation models, which are based on
deep learning algorithms, are the state-of-the-art solution for machine translation [13].
Moreover, our low-latency speech translation system utilizes incremental decoding. In
this approach, the current translation is conditioned on the received input segments and
previously committed translation. Therefore, the system’s MT model must be autoregres-
sive. Besides, the model should not attempt to retranslate parts of the input that have
already been translated. Therefore, it must be aware of the point from which to continue
the translation in the current incremental decoding step. Last but not least, we need to
use a distilled lightweight MT model which can perform high-quality translation at low
inference time.

For these reasons, NLLB-200-distilled-600M* is used as the system’s MT model which
is a distilled version of NLLB-200> (No-Language-Left-Behind) [14]. NLLB-200 is an open-
source multilingual neural machine translation model which is based on Transformer
architecture and developed by Meta Al It supports the translation of 200 languages,

*https://huggingface.co/facebook/nllb-200-distilled-600M
>https://ai.meta.com/blog/nllb-200-high-quality-machine-translation/
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including low-resource languages. Furthermore, it translates between languages without
relying on any intermediate language.

The reason for using the distilled version, NLLB-200-distilled-600M, is that this
version can perform inference significantly faster than the original NLLB-200 under
limited computational resources. While the original NLLB-200 contains over 54 billion
parameters, the distilled version contains approximately 600 million parameters. In other
words, the lightweight model is about 90 times smaller in terms of parameter count.

4.1.3. Next-Word Prediction

In order to predict next-words of a given input text as unobserved future-context, two
models from the Qwen2.5° model family [25] are selected:

« Qwen2.5-0.5B’

- Qwen2.5-0.5B-Instruct®

These models are the smallest models in the Qwen2.5 model family in terms of the
parameter size. They are chosen in order to minimize the latency, which is crucial in
low-latency speech translation. In the experiment, both models are evaluated on the
next-word prediction. The results of the evaluation are then compared to determine which
model should be used in the low-latency speech translation system for predicting the
future-context.

The Qwen2.5 model family is a decoder-only LLM family which is based on the Trans-
former architecture. It supports multilingual capabilities across more than 29 languages,
including English and German. Moreover, all models are trained on a dataset which
contains over 18 trillion tokens.

4.2. Decoding Configurations

4.2.1. Automatic Speech Recognition

The values for both Prompt and prefix parameters are set to the transcription generated so
far so that the decoder receives the output generated so far and continues the transcription
from that point. The language is set to the source language manually. Additionally,
half-precision is enabled for faster decoding. The rest of the configurations are set to the
default values defined for the model.

4.2.2. Machine Translation

forced_bos_token_id is set to the token id of the target language, forcing the decoder
to generate output in the target language. Moreover, max_new_tokens, the maximum

Shttps://github.com/QwenLM/Qwen3
"https://huggingface.co/Qwen/Qwen2.5-0.5B
8https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct
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4. Experimental Setup

number of output tokens to predict,is set to 50 to limit the model’s inference at each step
while ensuring sufficient token generation in line with the highest output rate value used
by the MT model which is 3. The rest of the configurations are set to the default values
defined for the model.

4.2.3. Next-Word Prediction

max_new_tokens value is determined differently depending on the future-context being
predicted in token-level or word-level. If the prediction is in token-level, the parameter
is set to the future-context prediction size. Otherwise, the future-context prediction size
is multiplied by a predefined token_size_per_word (number of tokens to be predicted
for word-level prediction, it is set to 4 by default, as most of the words are tokenized into
less than 5 tokens) value and the result is assigned to the parameter. Apart from that,
the default system prompt is used for both models. As the user prompt, the base model
is only provided with the partial text to complete, whereas the instruction-tuned model
receives an additional instruction prefix: "Predict the next token for the incomplete
sentence:". The rest of the configurations is set to default values defined for the model.

4.3. Data

To evaluate the performance of low-latency speech translation, the Europarl-ST v1.1° [3]
is used. It is a multilingual dataset for speech translation. It contains paired audio-text data
samples derived from European Parliament debates. It supports nine European languages,
including English and German, across 72 translation directions. Since the data is based
on political speeches, it covers a broad range of topics. Additionally, the dataset features
spoken utterances from a diverse set of speakers, making it a realistic and challenging
benchmark.

4.3.1. General Structure

The dataset has four data subsets for each translation direction:

« train: training set
« train-noisy: training set with noisy audio samples
+ dev: validation set

o test: test set

It includes only unsegmented audio samples. The information required to extract
individual audio segments is stored in a separate file, which specifies the original audio
filename, as well as the start and end times of each segment. Therefore, the audio segments
must be generated by following the segment informations. In addition to that, the dataset
provides corresponding reference transcriptions and reference translations for each audio
segment.

*https://www.mllp.upv.es/europarl-st/
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4.3. Data

4.3.2. Datasets for Evaluation

This work focuses on the English-to-German speech-to-text translation. That’s why
only samples from this translation direction is used for the evaluation. The evaluation
dataset consists of two separate sets: validation set for hyperparameter tuning and test set
for unbiased performance evaluation. Both are subsets of Europarl-ST’s test set for the
aforementioned translation direction.

19



4. Experimental Setup

4.3.2.1. Validation Set

It consists of the first 500 audio segments of the test set of English-German speech-to-text
translation and their corresponding reference transcriptions and translations. Its total
length is around 80 minutes. Figure 4.2 shows the length distribution of the validation set.
Seeing the length distribution is important, as the speech translation system is evaluated
on partial transcription, translation and next-word prediction for varying input sizes.
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Figure 4.2.: Length distribution of the validation set.
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4.3.2.2. Test Set

It consists of the last 753 audio segments of the test set of English-German speech-to-text
translation and their corresponding reference transcriptions and translations. Its total
length is around 100 minutes. Figure 4.3 shows the length distribution of the test set.
Seeing the length distribution is important, as the speech translation system is evaluated
on partial transcription, translation and next-word prediction for varying input sizes.
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4.4, Evaluation Metrics

To evaluate the performance of a cascaded low-latency speech translation system, two
key aspects must be measured: output quality and latency of the system.

Since this work also involves future-context prediction, its performance must be mea-
sured as well.

4.4.1. Word Error Rate (WER)

Word error rate is a common metric used to measure the accuracy of ASR and machine
translation outputs by comparing them to reference texts. In this work, WER is used to
measure ASR performance. The metric ranges from 0 to 1, where 0 indicates a perfect
match and 1 indicates that the compared sentences are completely different. It is calculated
as shown below:

S+D+1

N
where S, D, and I are the number of substitutions, deletions, and insertions respectively,
and N is the total number of words in the reference transcript.

To measure the WER, jiwer!’ is used, a Python package developed to evaluate ASR
systems. It supports the calculation of various metrics, such as word error rate (WER)
and word information preserved. In this work, we focus on the WER, as it is the most
commonly used metric to evaluate ASR performance.

WER =

4.4.2. Bilingual Evaluation Understudy (BLEU)

BLEU [18] is a commonly used string-based metric to measure quality of machine transla-
tion. It does so by measuring the overlap between the MT output and a set of reference
translations using n-gram precision. For each n-gram (1-gram, 2-gram, etc.), the precision
is calculated as the ratio of the number of matching n-grams in the MT output and the
reference translations to the total number of n-grams in the MT output. BLEU score ranges
from 0 to 1 (or 0 to 100), with a higher score indicating better translation quality. For a
detailed explanation of the BLEU score, please see [18].

To measure the BLEU score, SacreBLEU!! [20] is used, a Python package for evaluating
MT systems. It computes BLEU scores which are shareable and comparable. It also supports
using multiple reference translations.

4.4.3. Success Rate

We define success rate (SR) to evaluate the performance of future-context prediction. It is
calculated as shown below:

M
SR = —
T

Ohttps://github.com/jitsi/jiwer
Uhttps://github.com/mjpost/sacrebleu
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where M is the number of matches and T is the total number of predictions. A match
is counted only if all tokens (words) generated by a prediction exactly match with the
corresponding ground-truth tokens (words). A word match is counted only if all tokens of
that word are predicted correctly.

4.4.4, Average Lagging

In this work, a version of Average Lagging (AL), which is introduced in [11], is used to
measure the latency of low-latency speech translation systems. It measures the average
lagging of the system behind the ideal policy which is defined later in this section. It is
length-invariant. Furthermore, AL measures only computation-unaware latency, meaning
that it does not take into account the model’s computation time for inference.

Before formalizing AL, it is necessary to define some key terms.

4.4.4.1. Latency Formalizations

« X = [x1,...,x)x|]: the source sequence of the speech translation,
« Y = [y1,...,yy]: the output sequence generated by the translation model,

« Y& = [y#1,...,y*y«]: the reference target sequence,

x;: araw audio segment of duration T},

 Xi:j = [x1,...,x);]: the partial source sequence which must be read by the model to
predict y;.

Furthermore, the actual (d;) and ideal (d;) delay of y; can be defined as the following:

k=1

T.
d=(i—-1) .
;IYI

4.4.4.2. AL Formula

Let 7(|X]) = mini| d=s X 7. It is the index of the first target token for which the entire
i=2ij=11j

source sequence is read. Then AL for low-latency speech translation can be defined as:

XD

AL = —— i —d;
Speech ’l'( |X|) - i i
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4.5.

Hyperparameters

There are a set of hyperparameters that affect the performance of low-latency speech
translation with future-context prediction. The system is first tested on the validation set
using different hyperparameter values. Then, its performance is evaluated on the test set
using the optimal hyperparameter values, which are extracted from the results for the
validation set.

4.5.1. Hyperparameter List

24

segment/chunk size: fixed size of segments which are extracted from the input
sequence and provided to the system during incremental decoding. In this work,
only one setup for this hyperparameter is selected: 1 second as the segment size for
the ASR and 1 word for the MT. These values are chosen for their simplicity.

wait-k value: k-value which is used in the wait-k strategy. Two k-values must be
selected: one for ASR, one for MT. Higher k-value usually leads to better output
quality, but also higher latency. The k-values used in the evaluations range from 1
to 20 to simulate and compare realistic scenarios for low-latency speech translation.

output rate: the output rate which is used in the wait-k strategy. Just like the
k-value, two rates must be selected: one for ASR, one for MT. Higher output rates
can reduce latency, but decrease output quality at the same time. In this work,
evaluated output rate values range from 1 to 3, as higher values lead to unstable
predictions.

previous-context size: the number of sentences that precede the current input
sentence. They are called previous context and provided to the future-context
prediction model before the current input sentence. Feeding additional context
to the model can increase the likelihood of a correct prediction. As the number
of previous sentences increases continuously during translation and causes high
inference time at some point, only a few context sizes, up to 10 sentences, are selected
for the evaluation.

future-context prediction size: the number of tokens (words) to be generated by
a prediction. Predicting more tokens (words) may lead to less stable future-context
predictions, which can negatively impact the overall performance of the system.
The prediction size is limited to a maximum of 3 tokens/words, as predicting even 3
units causes a significant drop in the success rate.

prediction probability threshold: the minimum prediction probability required to
accept a future-context prediction. A higher threshold may help filter out incorrect
predictions which tend to have lower prediction probabilities. On the other hand, it
may increase the latency of the system due to having less selected future-context
predictions for the system. To determine the optimal threshold, values ranging from
10 to 100 in increments of 10 are tested.



4.6. SimulEval Framework

+ time of future-context prediction: the time at which future-context prediction is
performed. It can be executed either right after each ASR incremental decoding step
or at the end of each MT step.

4.5.2. Hyperparameter Setup for Low-Latency Cascaded System

To see the performance of the low-latency cascaded system without future-context predic-
tion on different wait-k setups, the following setups are chosen:

1. wait-2 - output rate=2 (ASR) & wait-5 - output rate=2 (MT)
2. wait-2 - output rate=2 (ASR) & wait-5 - output rate=3 (MT)
3. wait-2 - output rate=3 (ASR) & wait-5 - output rate=2 (MT)
4. wait-2 - output rate=3 (ASR) & wait-5 - output rate=3 (MT)

These setups are selected based on their superior quality-latency trade-off compared to
other setups from subsection 5.2.1 and subsection 5.2.2.

4.6. SimulEval Framework

SimulEval'? is a framework designed to run and evaluate simultaneous/low-latency trans-
lation on text and speech. In addition to this, SimulEval can measure the system’s latency
and translation quality by using metrics like average lagging, average proportion, WER
and BLEU.

2https://github.com/facebookresearch/SimulEval
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5. Evaluation

In this section, performance evaluation results for different types of low-latency speech
translation setups are presented and discussed.

5.1. Speech Translation - Offline Implementation

5.1.1. ASR Results

To establish a benchmark for the system’s low-latency performance, the performance of
the offline ASR is measured. This refers to the model’s performance when it transcribes
after receiving the entire input sequence. It serves as the upper bound for the performance
of the ASR system on the validation set.

The whisper turbo model achieves a WER of 19.35% on the validation set. Commonly
observed errors include missing the beginning of a sentence, confusion of words with
their homophones or near-homophones (i.e., different words with identical or similar
pronunciation), and inconsistent use of punctuation.

5.1.2. MT Results

Following the same logic used for evaluating the ASR performance, the MT model’s offline
performance is measured first.

The nllb-200-600M model is used for the MT system as mentioned earlier. To evaluate
the offline MT system in isolation, the reference transcriptions provided by the Europarl-ST
dataset are used. In this setup, the system achieves a BLEU score of 22.89.

5.1.3. Cascaded System Results

The last step for evaluating the offline implementation is to measure the performance of the
offline cascaded system. To do so, the transcriptions predicted by the offline ASR system are
provided to the offline MT model. In this setup, the cascaded system achieves a BLEU score
of 19.87, approximately 3 points lower than the previous setup from subsection 5.1.2.
The lower score compared to the isolated MT performance can be explained by the fact that
the transcription provided by the ASR system does not match entirely with the reference
transcriptions, and the reference translations are based on the reference transcriptions.
This result can be used as a benchmark to evaluate the performance of the cascaded
low-latency speech translation system.
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5.2. Speech Translation - Low-Latency Implementation
Without Future-Context Prediction

5.2.1. ASR Results

In the next step, the performance of the low-latency ASR system is evaluated. This setup
does not include future-context prediction. Later, the results for this setup can be used for
comparison to evaluate the effect of future-context prediction on the performance of the
low-latency ASR system.

To run and evaluate this setup, the SimulEval framework is used, and an agent is
implemented which uses the whisper turbo model and wait-k strategy.

The model receives audio segments from the validation set. As the results from Figure 5.1
show, the average lagging (AL) decreases with lower k-values when the output rate is
fixed. However, lowering the k-value increases the word error rate (WER), resulting in
lower output quality. For example, the wait-2 strategy with an output rate of 2 achieves a
WER of approx. 24% and AL of approx. 2.5 seconds. It means an increase of the WER by
24% and a decrease of the AL by 70% compared to the offline ASR performance (using
the AL of the wait-1000 setup as the AL for the offline ASR latency baseline). Moreover, it
can be concluded that output rate has also a significant impact on the WER and AL when
the same k-value is used. Increasing the output rate reduces latency while decreasing the
output quality. Another finding is that the system’s performance sensitivity to the output
rate increases when smaller k-values are used.
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Figure 5.1.: WER (word error rate) and AL (average lagging) results for setups with different
wait-k strategies used for the low-latency ASR with whisper turbo
In the legend, k represents wait-k value for the ASR system and out.rate stands for output
rate for the wait-k strategy. Setups with the same marker shape have identical output
rates. For example, setups with square has an output rate of 1.
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5.2. Speech Translation - Low-Latency Implementation Without Future-Context Prediction

5.2.2. MT Results

It is also necessary to evaluate the MT system in the same way as the ASR system, as
explained in the previous section. This time, the segment size is chosen as 1 token and
the model receives the reference transcriptions provided by the Europarl-ST dataset. The
nllb-200-600M model is used as the MT model.

Looking at Figure 5.2, it can be observed that using smaller k-values while fixing the
output rate leads to decreased latency and reduced translation quality at the same time.
Similarly, increasing the output rate while keeping the k-value fixed results in the same
effect. In essence, one needs to compromise translation quality in order to reduce latency.

To see the effect of low-latency MT on the performance, let’s compare the results for
the wait-3 and wait-1000 setup (using an output rate of 2). Again, the wait-1000 setup
serves as baseline for the performance of the offline MT system. With the former setup,
the model achieves an AL of approximately 2, down from 23 tokens. However, the wait-2
setup achieves a BLEU score of approximately 13, which is almost 10 points lower than
the score of the wait-1000 setup (91.3% decrease in latency and 43% lower quality).

24 k = 1000
99 | | |-k =20 & out.rate = 2
—4a—k =20 & out.rate = 3
—k%—k =20 & out.rate = 4
20 7./ |- k=10
) " k=5
<RUIS . k=3
M k=2 & out.rate = 1
16 | .

14 I .
12 l | | | | | | | | | |
2 4 6 8 10 12 14 16 18 20 22 24
AL (tokens)

Figure 5.2.: BLEU and AL (average lagging) results for setups with different wait-k strate-
gies used for the low-latency MT with the nllb-200-600M model

5.2.3. Cascaded System Results

Finally, the cascaded model is evaluated by using the same ASR and MT models from the
previous sections with the same segment sizes. The chosen setups for the evaluation are
listed in subsection 4.5.2.

The results are illustrated in Figure 5.3. Increasing only the output rate for the MT
decreases both latency and translation quality. Similarly, increasing only the output rate
for the ASR results in the same effect, although the change in the translation quality is
more moderate.

Setups 1 and 3 perform better than the second setup from subsection 5.1.2 (which
achieves a BLEU score of 19.87) in terms of translation quality, whereas setups 2 and 4
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Figure 5.3.: AL (average lagging) and BLEU score results for different low-latency cascaded
model setups

perform worse in this regard. However, even the worst-performing setup achieves a BLEU
score of approximately 17 which is only 2.87 points lower than the translation quality of
the offline MT setup.

5.3. Future-Context Prediction on ASR Reference Sentences

Before integrating future-context prediction into the low-latency cascaded speech transla-
tion model, the optimal hyperparameter values must be found. Furthermore, it must be
decided which model from subsection 4.1.3 should be used in the cascaded model for future-
context prediction. To evaluate the performance of the models, reference transcriptions
from the validation set are used.

5.3.1. Impact of Input Size On Performance

It is important to decide on the time in which the future-context prediction is used in the
low-latency speech translation, as predicting in the earlier stages may result in unstable
predictions, which can affect the translation quality negatively.

In Figure 5.4, the success rate of the future-context prediction based on the input size is
illustrated for both base model and instruction-tuned model. The input size is the number
of words from the input sentence provided to the model. For this evaluation, only the
next word is predicted and five previous sentences are provided before the current input
sentence as previous context. Sentences which don’t have more words than the examined
input size are excluded from that part of the evaluation, as there is not next word to be
predicted for them.
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(a) Results for the Qwen2.5-0.5B base model
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(b) Results for the Qwen2.5-0.5B-Instruct instruction-tuned model

Figure 5.4.: Success rate of future-context prediction by number of words provided as input
from the reference sentences of the validation set
Only the next word is predicted. Maximum " of sentences us as previous context is 5.

The results show that the success rates achieved by the base model are approximately
8% higher than the ones achieved by the instruction-tuned model. It means that the base
model performs better in the future-context prediction task. Therefore, the base model
can be used in the cascaded model to optimize the performance of the low-latency speech
translation with future-context prediction.

Another finding is that no correlation is observed between the size of the current input
sentence and the success rate. For example, the success rate increases with larger input
size in the interval 10-25. However, the success rate for the input size 5 is higher than the
success rate for the input size 30 in both models. Therefore, the future-context prediction
can be used in each stage of the low-latency speech translation, without waiting for the
model to receive a specific number of input segments. By starting to use the future-context
prediction from the very beginning, system latency can be reduced further.
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5.3.2. Impact of Previous-Context Size On Performance

As mentioned earlier in subsection 3.3.3, using previous sentences before the sentence
to be predicted can provide the model additional context, thus increasing its success on
predicting the future-context. However, using large number of previous sentences increases
the number of input tokens and may slow down the model’s inference. Additionally, it
increases the computational cost, as more tokens need to be processed by the model.
Therefore, adopting a fixed-size previous context approach can be more efficient in terms
of the system’s latency.

Success Rate by Previous Context Size
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Figure 5.5.: Success rate of future-context prediction of the Qwen2.5-0.5B base model by
maximum number of sentences provided as previous context
Only the next word is predicted.

Figure 5.5 shows the success rate of the base model based on the size of the previous
context. The evaluation is performed using different number of words from the current
input sentence. In general, the success rate increases significantly up to a previous context
size of 5, especially when predicting the earlier words in the sentence. Doubling the
previous context to 10 leads to only a slight increase in the success rate, and in some cases,
the prediction performance even decreases. One factor leading to this result can be that
the contents of the previous sentences and the current sentence begins to differ as the
range of previous context increases. Therefore, utilizing more previous sentences may not
help with predicting the current context. As a result, previous context is set to the last 5
sentences preceding the current input sentence.

32



5.3. Future-Context Prediction on ASR Reference Sentences

5.3.3. Impact of Future-Context Prediction Size On Performance

Another hyperparameter that needs to be considered is the prediction size. It means the
number of next words which the model must predict in a single prediction. Predicting
more words provides the model with more context in the earlier stages, thus reducing the
system’s latency. However, it becomes harder for the model to predict correctly as the
prediction size grows which can effect the quality of the resulting output negatively.

Success Rate by Prediction Size
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Figure 5.6.: Success rate of future-context prediction of the Qwen2.5-0.5B base model by
the number of words predicted as future-context
Maximum number of previous sentences used as previous context is 5.

In Figure 5.6, the success rate of the base model is shown based on the number of
predicted words. Similar to the evaluation in subsection 5.3.2, the performance of the
model is evaluated on different input sizes. For each input size, the success rate drops
drastically when more than one word is predicted. For example, the success rate of the
base model drops from approximately 40% to below 20% when predicting the next two
words instead of one only. Predicting the next three words decreases the success rate even
further, to approximately 10%. Therefore, in the following setups, only the very next word
is predicted when using future-context prediction in the low-latency speech translation
system.
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5.3.4. Impact of Prediction Probability Threshold On Performance

Setting the threshold, which is used to filter out the low-confidence future-context pre-
dictions, to different values, the sensitivity of the success rate to the threshold can be
observed. To do so, reference transcriptions from the validation set and test set are used.
Starting from the second word of each sentence, the model predicts the very next word one
by one when provided with the preceding words of the sentences. In order to calculate the
success rate for a specific threshold value, only the predictions with a probability over the
threshold value are compared with the ground-truth words. The probability of a predicted
word is calculated as the mean of the probabilities of all tokens making that word.
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(b) Results on the test set

Figure 5.7.: Word prediction accuracy of the Qwen2.5-0.5B base model by different predic-
tion probability threshold values
Predictions with a probability lower than the threshold value are excluded from the
accuracy calculation for that threshold. Only the next word is predicted as future-context.

Figure 5.7 illustrates the results of the described evaluation on both the validation and
test sets. The results show a positive correlation between the threshold value and word
accuracy in both cases. On the test set, the model achieves a word accuracy close to 90%
(80%) with 80% (70%) threshold when previous context is used. Moreover, using previous
context consistently improves accuracy across all threshold values. It can also be observed
that the accuracy results on the validation set are close to those on the test set.

34



5.3. Future-Context Prediction on ASR Reference Sentences

- w/o previous context

_ 40 |- - |— (green) w previous context (5 sentences)
o
8 351 \ i
g
S 30r )
pe]
Q
2 25| \ :
3
-
A 20 ml
2 N
Bo 15 | .
10 | \\\\\\\ y
5 | | | | |
40 50 60 70 80

Word Probability Threshold (%)
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Figure 5.8.: Percentage of word predictions which exceeds a specific threshold value
On the validation set, a total of 11 215 words are predicted by the model. It is 15 499 word
predictions for the test set.

Even though setting the threshold value higher consistently improves accuracy, it is
likely that fewer and fewer predictions are validated as the threshold increases. When
the model is provided with less predicted future-context, the latency of the cascaded
speech translation system may increase. In Figure 5.8, it is shown how much percent
of the next word predictions exceed a specific threshold. As expected, the percentage
decreases consistently as the threshold value increases. The same trend is observed in
the test set as well. On the validation set, approximately 4 out of 10 predictions have a
higher probability than 40%, whereas only about 1 out of 10 predictions exceeds the
threshold value of 80%.
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5.4. ASR - Low-Latency Implementation With Future-Context
Prediction

After evaluating the future-context prediction in isolation, the first step is to evaluate
the future-context-prediction-backed ASR system. By doing so, the impact of the future-
context prediction can be observed on the ASR performance. In this setup, future-context
is predicted after each chunk step of the incremental ASR and committed alongside the
ASR prediction if it is selected.

Figure 5.9 shows the results of the evaluation for the next word future-context prediction
using the validation set. The results of the same evaluation for the token-level future-
context prediction can be found in Figure A.2. For this evaluation, three setups are used:
ASR without future-context prediction, ASR with future-context prediction using threshold
values of 70% and 80% for the prediction probability. In all setups except for the wait-2
setup, w/o future-context setup performs worse than other setups in terms of the output
quality. Additionally, using future-context, regardless of which threshold value is used,
reduces the latency slightly for each setup. Moreover, selecting the future-context
predictions with the 70% threshold results in higher WER than the one when
using 80% as threshold, with a slight improvement in latency. This can be explained
with the fact that the probability of the selected predictions is higher when setting the
threshold higher. Such predictions tend to be more stable. However, higher the threshold is,
less future-context prediction is selected due to low-confidence predictions being filtered
out. With less future-context, the speech translation system does not become faster which
increases the latency. Apart from that, the WER gap between the two future-context
setups with different thresholds increases as the ASR prediction starts earlier (by using
lower k-value for the wait-k).

Figure 5.10 illustrates the results of the same evaluation, but using the test set. Since
latency is the priority in low-latency speech translation and the WER results are close
for both threshold setups, future-context prediction is performed using only 70% as the
threshold value for evaluation of the test set. On the contrary to the results on the validation
set, w/o future-context setup performs slightly better for each wait-k setup in terms of the
output quality. Furthermore, using future-context reduces the latency slightly for each
wait-k setup.
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Inference Results for ASR + Future-Context (by Wait-k)
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(a) Results by different wait-k values. The output rate is fixed at 2.

Inference Results for ASR + Future-Context (by Output Rates)
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(b) Results by different output rates. The wait-k value is fixed at 2.

Figure 5.9.: WER (word error rate) and AL (average lagging) results for ASR with/without
word-level future-context prediction on the validation set
Future-context is predicted by the Qwen2.5-0.5B base model. Previous context size is set
to 5 and only the next-word is predicted.
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Inference Results for ASR + Future-Context (by Wait-k)
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(a) Results by different wait-k values. The output rate is fixed at 2.

Inference Results for ASR + Future-Context (by Output Rates)
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(b) Results by different output rates. The wait-k value is fixed at 2.

Figure 5.10.: WER (word error rate) and AL (average lagging) results for ASR with/without
word-level future-context prediction on the test set

Future-context is predicted by the Qwen2.5-0.5B base model. Previous context size is set
to 5 and only the next-word is predicted.
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5.5. Cascaded System - Low-Latency Implementation With
Future-Context Prediction

Finally, I evaluate the online cascaded model which performs the entire low-latency speech
translation, including the ASR and MT. This evaluation uncovers whether future-context
prediction improves the performance of the low-latency speech translation in terms of the
latency and translation quality.

Figure 5.11 shows the evaluation results. When the output rate value for the MT is
fixed, both future-context setups (using different thresholds of 70% and 80%) improves the
latency by a few milliseconds. Also , using a lower threshold value helps with improving
the latency even further. These results are observed for all setups with different wait-k
values. Apart from that, future-context prediction has a minimal impact on translation
quality, with differences remaining below 1 BLEU point. Predicting future-context before
MT and using wait-2 strategy even increases the translation quality slightly. Another
interesting finding is that selecting future-context with higher probability threshold leads
to a slight increase in BLEU score, thus improving the translation quality.

Looking at the result for setups with different output rate values (and fixed value of
2 as the MT wait-k strategy), we observe the same findings which are explained in the
last paragraph: using future-context predictions improves the system latency in all setups
while the translation quality is preserved.

The graphs in Figure 5.11 also illustrate the impact of the timing of future-context
prediction (for next word) on the performance of the low-latency speech translation
system, using the validation set. In nearly all setups, predicting the future-context before
MT results in higher translation quality than predicting it after MT. This difference is more
noticeable when the threshold value for selecting future-context predictions is set to a
lower value (here 70%). Several factors may contribute to this finding:

1. When future-context is predicted before MT, the MT model receives the predicted
future-context at each step, functioning as an additional input context. Having more
context than the "after MT" setup, the MT model may generate better translations
in terms of quality and accuracy.

2. Future-context is predicted in English in the "before MT" setup, whereas it is pre-
dicted in German in the "after MT" setup. The base model may predict English words
better than German words. Therefore, the translation quality may be higher in the
"before MT" setup.

Additionally, the "before MT" future-context prediction improves the latency by a few
milliseconds compared to the "after MT" setup.
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Inference Results for ASR + MT + Future-Context Before MT (by Wait-k)
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Inference Results for ASR + MT + Future-Context Before MT (by Output Rate)
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Inference Results for ASR + MT + Future-Context After MT (by Output Rate)
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Figure 5.11.: BLEU score vs AL (average lagging) results for low-latency speech translation
with/without next word future-context prediction by the Qwen2.5-0.5B base
model on the validation set
All setups use the same ASR strategy: wait-2 with output rate 2. Only the next word is
predicted. Previous context size is set to 5 sentences.
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Inference Results for ASR + MT + Future-Context Before MT (by Wait-k)
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(a) Results for setups with different wait-k values. Output rate for the MT
is fixed at 2.

Inference Results for ASR + MT + Future-Context Before MT (by Output Rate)
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Figure 5.12.: BLEU score vs AL (average lagging) for low-latency speech translation
with/without next word future-context prediction by the Qwen2.5-0.5B base
model on the test set

ASR strategy is same for all setups: wait-2 with an output rate of 2. Only the next word is

predicted. Previous context size is set to 5 sentences.

Lastly, the graphs in Figure 5.12 show the results of the same evaluation, but using
the test set. In this evaluation, the performance of the two setups are compared: speech
translation without future-context and with future context using a threshold value of 70%
to select predictions. In nearly all setups, future-context prediction improves both the
latency and translation quality. The difference in BLEU score is lower than 1 point for
each setup. The latency improvement is limited with a few milliseconds.
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6. Conclusion

In this work, we investigated the potential of using unobserved future-context prediction
to improve the performance of low-latency speech translation systems. While traditional
approaches to reduce latency often sacrifice translation quality due to insufficient con-
text, this work proposed an alternative: predicting future tokens using lightweight large
language models (LLMs) to enrich the contextual input available during early stages of
translation.

The implementation was based on a cascaded architecture involving separate ASR and
MT components, with Qwen2.5-0.5B serving as the future-context predictor. A series of
experiments were conducted to evaluate low-latency speech translation with/without
future-context prediction in numerous scenarios. The findings suggest that selecting only
high-confidence future-context predictions, especially the very next word, can reduce the
system’s latency with minimal change in translation quality.

In conclusion, this thesis provides empirical evidence that unobserved future-context
prediction is an effective method to address the latency-quality trade-off in low-latency
speech translation in the English-German direction.

6.1. Answers to Research Questions

+ Research Question 1: How can unobserved future-context be predicted?

Answer: The unobserved future-context can be predicted by lightweight LLMs, par-
ticularly by base models such as Qwen2.5-0.5B. To do so, the model receives the so far
generated transcription or translation along with recently completed translations as
input. The model predicts then the next tokens in the given input sequence.

« Research Question 2: How can unobserved future-context prediction be inte-
grated into existing low-latency speech translation systems?

Answer: The predictions can be generated after each ASR (MT) segment step by pro-
viding a fixed-size of previously generated transcriptions (translations) and the so far
generated current transcription (translation), including the predicted tokens to commit
at the end of the current segment step, as input to the future-context prediction model.
In the next step, high-confidence future-context predictions are selected based on a
pre-defined probability threshold. Selected future-context tokens are then committed
along with the ASR (MT) predictions to commit.
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» Research Question 3: How do different configurations of the future-context
prediction module impact low-latency speech translation performance?

Answer: One of the most important findings was that the setups predicting future-
context before MT (using generated transcriptions as input) outperformed the setups
predicting it after MT (using generated translations as input) in almost all scenarios. This
shows that the timing of the future-context prediction plays a vital role in low-latency
speech translation.

Another factor impacting the performance of low-latency speech translation systems was
found to be the size of previous context. To boost future-context prediction performance,
recently completed translations can be used as previous context, adopting a fixed-size
window strategy. We noticed that the prediction accuracy increased consistently with
increasing size of previous context up to 5 sentences. After including the last 5 sentences
however, the impact of additional previous context on the prediction accuracy stagnated.

Moreover, we found that the probability threshold played also important role in the per-
formance of low-latency speech translation systems. Using higher threshold values, the
accuracy of both future-context prediction and low-latency speech translation increased
in nearly all scenarios. On the other hand, setups using lower threshold values reduced
latency more than the setups with higher threshold values. These results show that
its value must be selected carefully to balance the latency-accuracy trade-off of such
systems.

Finally, the most effective prediction was found to be the prediction of the very next
word, as predicting more words reduced the accuracy of future-context prediction by
more than half.

6.2. Limitations and Future Work

This thesis focused on improving low-latency speech translation using unobserved future-
context prediction, but several limitations remain.

First, the experiments were conducted only on the English-German language pair, both
of which are high-resource languages. Future work should examine the effectiveness
of this approach in low-resource scenarios, where data scarcity may impact prediction
accuracy. Second, only the next word was predicted to maintain high accuracy. However,
this limits the amount of additional context available. Future research could explore
improving multi-word prediction accuracy through better decoding or confidence-based
filtering methods. Third, this work uses only the wait-k strategy as the read-write policy.
Future studies should also investigate the effect of future-context prediction while using
different read-write policies such as local agreement. Finally, although this work used a
cascaded system, future studies could explore integrating future-context prediction into
end-to-end architectures for potentially greater performance gains, particularly in terms
of improved latency.
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A. Appendix

A.1. ASR - Wait-k Implementation With Future-Context
prediction

Inference Results for ASR + Future-Context (by Wait-k)
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(a) Results by different wait-k values. The output rate is fixed at 2.

Inference Results for ASR + Future-Context (by Output Rates)
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(b) Results by different output rates. The wait-k value is fixed at 3.

Figure A.1.: WER (word error rate) and AL (average lagging) results for ASR with/without
token-level future-context prediction on the validation set
Future-context is predicted by the Qwen2.5-0.5B base model. Previous context size is set
to 5 and only the next word is predicted.
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Inference Results for ASR + Future-Context (by Wait-k)
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(a) Results by different wait-k values. The output rate is fixed at 2.

Inference Results for ASR + Future-Context (by Output Rates)
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(b) Results by different output rates. The wait-k value is fixed at 2.

Figure A.2.: WER (word error rate) and AL (average lagging) results for ASR with/without
token-level future-context prediction on the test set

Future-context is predicted by the Qwen2.5-0.5B base model. Previous context size is set
to 5 and only the next word is predicted.
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A.2. Cascaded System - Wait-k Implementation With Future-Context prediction

A.2. Cascaded System - Wait-k Implementation With
Future-Context prediction

Inference Results for ASR + MT + Future-Context Before MT (by Wait-k)
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(a) Results when future-context is predicted before MT, right after
each ASR step.

Inference Results for ASR + MT + Future-Context After MT (by Wait-k)
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(b) Results when future-context is predicted after MT, right after each
MT step.

Figure A.3.: BLEU score and AL (average lagging) results for cascaded low-latency speech
translation system with/without token-level future-context prediction by
different wait-k values on the validation set.

ASR wait-k strategy is same for all setups: wait-2 with output rate of 2. The output rate

for the MT is fixed at 2. Previous context size is set to 5. Only the next word is predicted

as future-context.
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Inference Results for ASR + MT + Future-Context Before MT (by Output Rate)
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(a) Results when future-context is predicted before MT, right after each ASR
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Inference Results for ASR + MT + Future-Context After MT (by Output Rate)
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Figure A.4.: BLEU score and AL (average lagging) results for cascaded low-latency speech
translation system with/without token-level future-context prediction by
different output rate values on the validation set

ASR wait-k strategy is same for all setups: wait-2 with output rate of 2. The wait-k value

for the MT is fixed at 3. Previous context size is set to 5. Only the next word is predicted

as future-context.
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A.2. Cascaded System - Wait-k Implementation With Future-Context prediction

Inference Results for ASR + MT + Future-Context Before MT (by Wait-k)
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Inference Results for ASR + MT + Future-Context Before MT (by Output Rate)

(b) Results for different output rate values. Wait-k value for the MT is fixed at
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Figure A.5.: BLEU score and AL (average lagging) results for cascaded low-latency speech
translation system with/without token-level future-context prediction before

MT on the test set

ASR wait-k strategy is same for all setups: wait-2 with output rate of 2. Previous context
size is set to 5. Only the next word is predicted as future-context.
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