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Abstract

As the use of Spoken Language Translation systems grows more prevalent, it is accompa-
nied by a staggering lack of quality estimation methods for their generated translations. Of
the few that exist, none are unsupervised and none are applicable to a black-box scenario.
This work’s product is a novel quality estimation method which provides reference-free
quality estimates without using system-specific information and without needing training
or training data, but instead relying on the perturbation of the source language audio. The
audio perturbation framework we built in scope of this work includes frequency band
filtering, noising, resampling and speed-pitch-warping. We evaluate our method in corre-
lation with reference-based COMET quality assessments and achieve almost five times
higher performance than the baseline of output sequence probabilities of the translating
model.






Zusammenfassung

Mit dem steigenden Wachstum der Anwendungsfille von Sprach-zu-Text Ubersetzungs-
systemen wird ein iiberwaltigender Mangel an Qualitatsschatzungsmethoden fiir deren
generierte Ubersetzungen erkenntlich. Von den wenigen existierenden Methoden mit
diesem Ziel sind keine uniiberwacht und keine anwendbar auf ein Black-Box-Szenario.
Das Produkt dieser Arbeit ist eine neuartige Qualitdtsschatzungsmethode, die ohne die
Verwendung von Referenziibersetzungen, ohne systemspezifische Informationen und ohne
Training oder Trainingsdaten zurechtkommt und sich stattdessen auf die gezielte Veran-
derung des Originalsprachenaudios verlasst. Das im Rahmen dieser Arbeit entstandene
Framework zur gezielten Audiomanipulation umfasst Frequenzbandfilter, Berauschung,
Umsampling und Geschwindigkeits- und Tonhéhenverschiebung. Wir evaluieren unsere
Methode in Korrelation mit den referenzbasierten Qualitdtsvoraussagen von COMET und
erreichen nahezu fiinffach hohere Ergebnisse im Vergleich zur Ausgabesequenzwahr-
scheinlichkeit des Ubersetzungsmodells.
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1. Introduction

Considering the vastly increased capability of language translation models in recent years,
it is only natural to observe an increase in demand for their use. Accompanying this rise
is the diversification of their domains of application, which makes reliance on translation
systems for matters of lives and livelihoods more common. Judicial and medical decisions
based on foreign-language information, for example, can be laden with grave implications
for those involved. In such domains, translation quality holds vital importance, but it is
not always viable or even possible to have it guaranteed by a certified translator or even
a native speaker. Therefore, the automated estimation of said quality without using a
reference translation becomes necessary.

Although many methods to estimate the quality of a given machine-generated Text-to-
Text Translation have already been developed, there is a severe lack of such methods for
Speech-to-Text Translation. The few that exist, proposed by Le et al. [11] and Besacier
et al. [2], use system-specific information from the translation-generating system to pro-
duce their quality estimates. This glass-box approach forces their methods into being
architecture-specific, making it difficult to apply them to certain translation systems, but
also to use the method at all when working with generations from an inaccessible system
whose interface does not allow sufficient access to the required information.
Notwithstanding their use of glass-box information, Le et al’s [11] and Besacier et al’s [2]
presented works on the topic culminate in the supervised training of a classifier, introduc-
ing domain dependence into the resulting quality estimation method. Taking into context
the aforementioned trend towards the diversification of translation system application
domains, this introduced domain specificity of quality estimation methods seems untimely
and calls for the development of unsupervised methods instead.

In this work, we present our new method PERTURBATION-BASED QUESTT: Perturbation-
based Quality Estimation for Speech-to-Text Translation. To our knowledge, it is the first
reference-free, black-box and unsupervised method for the quality estimation of Spoken
Language Translations. By using variations on tried and tested audio augmentation
methods as proposed by Nanni et al. [14], we let the translating system make predictions
for the original, as well as multiple perturbed versions of the source language audio. Using
common text similarity measures like BLEU [16], the Translation Edit Rate (TER) [25]
and the Character n-gram F-score (CHRF) [18], we compute the variation present in the
predicted translations of the perturbed audio compared to the prediction of the original.
We use the translation’s robustness and invariance under perturbation as an indicator of
quality and make quality estimation predictions on their basis.

We perform an experimental evaluation of our method using multiple different pertur-
bation and hyperparameter configurations on the IWSLT23 Quality Estimation dataset by
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Sperber et al. [27]. We record very good results, achieving nearly five times higher Pearson
correlation of our best-performing QE model variant with reference-based COMET scores
than the translating model’s output sequence probability baseline.

The implementation of our experiments can be found in our GitHub repository’, in-
cluding supplemental illustrative data on our various used perturbation strategies. More
detailed insight into Quality Estimation and Perturbation can be found in our Section
2 on related work. We illustrate how we apply this knowledge to the development of
PERTURBATION-BASED QUESTT in Section 3. Section 4 then describes the implementation
of our experiments, laying the groundwork for our evaluation, which we document in
Section 5. Based on our findings, we offer possibilities for future work and conclude our
work in Section 6.

Thttps: //github.com/13thWitch/QE- for-S2TT
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2. Related Work

Quality Estimation (QE) aims to autonomously provide quality assessments for machine
generated output without using an output reference [12] [28]. In Natural Language
Processing (NLP) this assessment is made on word level, analogously to a sequence
labelling problem [5], or on sentence level, commonly as a regression problem [22].

The machine-generated natural language sequences whose quality is meant to be estimated
are often translations, which are the focus of this work.

2.1. Quality Estimation of Text Translation

The nature of data used to produce the translation quality assessments classify QE methods
into glass-box, when utilizing system-specific information extracted before or during the
translation, and black-box. Black-box QE allows for the generation of system-independent
quality estimations without needing access to the generating systems’ inner workings.
Thus, it proves optimal for application in common use-cases of Machine Translation
(MT) systems with limited access to the systems themselves, like proprietary translation
systems.

Most state-of-the-art QFE methods are supervised [7] [26], meaning that they are learned
using human-labelled QE data which can be costly to obtain, erroneous, and can make
the QE method susceptible to domain-dependence [8]. These negative factors contributed
to the rise in development of unsupervised QE methods. Often combined with glass-box
knowledge, approaches to unsupervised QE have been discussed and improved [15] [6]
without being able to match the performance of supervised QE methods [7]. For example,
Niehues and Pham [15] estimate quality by calculating similarity between test input
and the examples seen in training, while Fomicheva et al. [6] use the posterior token
probabilities and the learned attention weights, limiting the applicability of their method
to attention-based models.

Mixed approaches attempt to avoid QFE data sparsity by learning from synthetic data.
One such approach by Tuan et al. [30] creates pseudo-labelled QE-data using an MT-system
to produce dirty translations. In turn, this method requires large amounts of MT data,
meaning source text and gold-standard translations, introducing not only MT-system
dependence into the QE method, but also domain dependence.

PERTURBATION-BASED QE by Dinh and Niehues [5] avoids these problems by assuming
a black-box scenario and eliminating training data as a necessity. They perform word-
level quality estimations working under the assumption that a token in the generated
translation is badly translated if it depends on too many parts of the source text. These
word-level assessments can be aggregated to form a sentence-level quality estimation. The
dependence of a translated token on specific parts of the input is extracted by variously
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perturbing the source text and monitoring resulting changes in the generated translation.
Therefore, only access to the generating model itself is required; none to its inner workings.
The method developed in this work, PERTURBATION-BASED QUESTT, is based on this T2TT
QE-method by Dinh and Niehues [5] and, as its counterpart for Speech-to-Text Tranlsation
(S2TT), requires neither system-specific information, nor training data. We propose a
novel method built around input perturbation to perform unsupervised, black-box QE for
the S2TT Scenario.

2.2. Quality Estimation of Spoken Language Translation

When working with S2TT-models, two general architectures present themselves: The
cascade approach, which employs an automatic speech recognition (ASR) component
followed by T2TT, and direct End-to-End S2TT solutions which are able to retain prosody
information and make for simpler training [21]. If working with cascade models and fol-
lowing a glass-box QE approach, using the transcription generated by the ASR component
can easily be used to apply T2TT QE methods as indicated above.

For black-box QE the cascade and End-to-End models are equivalent from a method design
perspective, as the inner structure and any differences therein are unusable and therefore
irrelevant. However, a performance gap in favor of cascade models has been observed in
most but for the newest End-to-End models like ZERoSwoT by Tsiamas et al. [29] [21],
which could challenge S2TT-QE method robustness. QE methods which are not sufficiently
robust and evaluate more accurately on higher performance End-to-End models could
prove to perform worse on cascade models, and vice versa.

Neither for cascade, nor for End-to-End architectures has S2TT QE received much atten-
tion from the NLP community. As far as we know, the only published quality estimation
methods for S2TT were proposed by Besacier et al. in 2014 [2], followed by Le et al. in 2016
[11]. Aiming to create a Word Confidence Estimation System for cascade S2TT, they both
use black- and glass-box methodology to train a supervised model and predict word-level
quality estimates. To achieve this, they separate their evaluated system into its ASR and
T2TT components, making their methods only applicable for cascade S2TT models.

To our knowledge, this work’s method PERTURBATION-BASED QUESTT, is therefore
the first unsupervised, black-box QE method for Spoken Language Translation (SLT). We
evaluate our method on the largest available QE dataset for SLT, the IWSLT23 dataset by
Sperber et al. [27]. It consists of human quality assessments for transcriptions, machine-
generated translations and reference translations of larger audio documents in form of TED!
talks and presentations given in scope of the Association for Computational Linguistics
(ACL)?. The dataset consists of about 72.6% TED data and 27.4% ACL data. While the ACL
speech contains domain-specific language and professional jargon, the TED data is more
colloquial.

https://www.ted. com/
Zhttps://www.aclweb.org/
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2.3. Perturbation

2.3. Perturbation

Separating from its predecessors’ glass-box methodology, this work’s aim is the devel-
opment of an architecture-agnostic method for S2TT QE based on input perturbation.
Perturbation has been a ubiquitous tool for nearly all types of Machine Learning and
is commonly used on training data to increase model generalization and reduce overfit-
ting [23], in which case it is commonly referred to as Augmentation. In particular, this
includes the perturbation of audio data for that exact purpose, ranging from image per-
turbation of audio spectrograms to perturbation of the signal itself [14]. Nanni et al. not
only improve task performance using audio data augmentation, but provide an extensive
repertoire of various audio perturbation techniques with detailed explanations of their
nature [14]. We partially draw from some of their presented perturbation strategies for
PERTURBATION-BASED QUESTT.

Perturbation at test-time instead of training-time has proven to be an effective tool
to achieve more robust and accurate performance [23]. Consistent predictions under
perturbation are found to be an indicator of high confidence and a robust model [23]. This
work builds on these insights and uses ensembled prediction on distinct perturbed variants
of the same input datum to estimate model confidence and translation quality.

2.3.1. On Audio Perturbation Scope

Contrary to the discrete nature of language, its manifestation through speech results in
a continuous signal of amplitude over time. Approaches to modifying this signal whilst
keeping intelligibility, quality and, when intended, meaning intact present themselves in
many forms.

Word-level perturbation is drawn into consideration due to it being tried and tested in
Natural Language Processing (NLP), including in other QE methods [5] [11]. The alignment
of continuous audio segments to source language words for word-level perturbation
remains an active research task in ASR and can be performed to varying degrees of
exactitude and complexity. The most accurate manner of segmentation would be the use
of a speech recognition model or a neural forced aligner [1] [19].

Avoiding this problem and instead taking advantage of the continuity of the signal,
sequence-level perturbation of the audio presents itself as a viable approach. To this
end, the entire signal is modified using some function applied consistently on every
sample. By itself, sequence-level perturbation has found application predominantly in
data augmentation techniques for boosting training performance of ASR models, with
positive results [14]. The intention behind this work’s reliance on sequence-level audio
perturbation stems from the thorough research which documents sequence-level audio
perturbation being used to increase, as well as measure a models’ robustness [14][23].
We use it to evaluate recognition invariance, prediction confidence and, consequently,
speech translation quality. The assumption behind this strategy is that the indicators
within human speech which give away its meaning are invariant when completely and
consistently spoken faster, slower, at different pitches or in noisy environments.






3. Method Design

The essence of this work is the development of a method which, given a machine-generated
speech-to-text translation and its source language audio, predicts the quality of the gener-
ated translation. As additional requirements to the integrity of the method, we stipulate
that this method shall be

Unsupervised. The method’s development shall not require any training data,
meaning human-generated quality assessments of machine gener-
ated speech-to-text translations.

Reference-free. The method shall not use reference translations to perform its
quality estimation.

Black-box. The method shall not rely on the use of any information with regard
to the inner workings of the predicting system.

To construe a method which incorporates these characteristics, we choose to rely on a
basis of perturbation. More concretely, this method’s quality estimations shall result from
a process rooted in the perturbation of the source language audio input. We can then infer
translation quality based on the prediction’s robustness when its input is manipulated
using said perturbation.

3.1. Method Structure

Our proposed method, PERTURBATION-BASED QUESTT, is a black-box, unsupervised QE
method, which given

« a source language audio and
« inference access to the predicting system

returns a quality estimate of the given translation as a number within [0, 100]. As illustrated
in Figure 3.1, the PERTURBATION-BASED QUESTT model consists of three main components.
The source language audio is perturbed using multiple preset strategies and passed to the
predicting system for translation. On the basis of the resulting translations’ similarity to
the initially given translation, a score is calculated and returned as the quality estimate.

3.2. Perturbation

After receiving the source language audio a, the Perturbator trims leading and following
silence from it, illustrated in Figure 3.2. Silence refers to a signal amplitude lower than
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-

Speech ——————> Perturbator | ¢

.

Figure 3.1.: The QE Model takes source language speech and inference access to the gener-
ating system marked in . The speech is perturbed and multiple variants
are passed through the generating system, as well as an unperturbed reference,
marked in red. Its predictions of the perturbed speech are compared to the pre-
diction of the original given machine translation and, based on the calculated
similarity, the QE-model returns its quality estimation.
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a fixed threshold of decibels relative to the full scale (dBFS). The maximally possible
amplitude represents 0 dBFS; lower amplitudes correspond to negative numbers up until
reaching the lowest possible signal at the end of the audio’s dynamic range, which is
dependent on the audio’s sample size. An audio with a sample size of 16-bit would have a
dynamic range of 96dB and its lowest dBFS value would be -96 dBFS.

55555

G b iLi b e Bk
hr& 11 D hrE 1 e
(a) Original Audio (b) Trimmed low-amplitude sections at be-
ginning and end with a threshold -16
dBFS.

Figure 3.2.: The Perturbator’s audio preprocessing step. Leading and trailing silences are

trimmed.
Using the preprocessed audio, the Perturbator creates n new, different audios a;, .. ., d,
by applying perturbations py, . .., p, to the given audio, as shown in Figure 3.3. n and its

corresponding perturbation functions p;(-) are fixed parameters of the Perturbator.
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Formally, the Perturbator can be written as a function

VmeN: P,:S" — S xS™x...xS™
Pl(a) ai
a— =
pn(a) dn
with

Viel,...,n: p;:S"— S™

a+— pi(a) = a;

where m is determined by the number of given audio samples and the exact content of the
sample space S depends on the samples themselves. For example, normalized samples at
float32 precision would yield a sample space S of [—1, 1]. The functions p; alter parts or
the entirety of the given audio a according to varying strategies, as illustrated in Section
3.2.1. The perturbations p; may also alter the number of samples and produce audio in S™.
To illustrate, #,(a) is similar to a matrix with unevenly long rows, but always n of them.

pile) —>t—> @
pz(a) —> > a4

Speecha —> .

Pn-1(a) —>—> an-1
pn(a) —>»—>» 4y

Figure 3.3.: The Perturbator (marked in green) takes a speech audio a and applies pertur-
bations py, ..., p, to produce n perturbed audio variants dy, . . ., d.

3.2.1. Perturbing Speech Signals

We perform sequence-level perturbations and decide against word-level perturbation. As
to avoid easy deprecation and dependence on foreign systems in PERTURBATION-BASED
QUESTT, we are neither willing to add a neural audio segmentation component to the
method, nor do we wish to compromise the integrity of our black-box, Speech to Text
Translation QE method by working with audio transcriptions.

To perform the sequence-level perturbations, we rely on multiple distinct strategies.
Speed shifts, pitch shifts, resampling and noising are shared with Nanni et al’s approach
to audio data augmentation [14], but are produced differently in this work to better fit the
test-time perturbation scenario.
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3.2.1.1. Noise

We add noise to the speech audio, which is a common technique for audio data perturbation
[14] [13]. Since our goal is not dataset inflation while staying close to the ground truth
distribution, like in many ASR applications of audio perturbation, we see no necessity to
add realistic noise, as is done by Morales et al.[13]. Instead, we add random values based
on a Gaussian distribution to each audio sample. The mean of the distribution is kept at 0,
but its exact standard deviation is a hyperparameter. A visualization of the noise addition
is provided in Figure 3.4.

(a) Clean Audio (b) Perturbed audio using Gaussian random
noise with a standard deviation of 0.007

Figure 3.4.: Comparison between clean speech audio and a perturbed version of the same
audio with added noise.

3.2.1.2. Resampling

To introduce variation in the technical characteristics of the audio, we utilize resampling
as a perturbation method. Common resampling using Bandwidth Interpolation shows a
very small amount of loss when keeping close to the original sample rate, so our choices
for the sampling rate hyperparameter are restricted to extreme differences in sampling
rates. When the sampling rate F; is lowered below the Nyquist rate Fy of the audio signal,
aliasing may occur [10]. The Nyquist Rate Fy is the frequency at which a signal with a
bandwidth of W = %FN is still losslessly reconstruable. If an audio’s sample rate is below
Fy, distortion is introduced during the interpolation, which is called aliasing. We use this
effect to perturb our input audio data as demonstrated in Figure 3.5.

3.2.1.3. Speed and Pitch

To mimic both changes in pitch and changes in speed, we perturb the original audio by
changing its audible speed and pitch. Given the audio a € S™ of duration T; sampled at
F; = m/T;, we resample a from a sample rate F{ with F, # F; to the original sample rate F;.
The audio is sped up when F, > F;, making it shorter as well. Conversely, for F; < F; the
resulting audio will be slowed down and elongated.

10



3.2. Perturbation

(a) Resampled to 32kHz from 48kHz. No (b) Resampled to 4kHz from 48kHz. Pres-

prominent aliasing noticeable. The spec- ence of aliasing clearly noticeable. Even
trogram of the resampled audio is almost at only 4kHz, the speech is still intelligi-
indiscernible from the original. ble, although muffled.

Figure 3.5.: Perturbed versions of the original audio using resampling. The original audio
(see Figure 3.2b) has a sample rate of 48kHz.

These changes in audio length for the same audio a shorten or elongate the perceived
wavelengths, increasing (or lowering) the recorded waves’ frequencies. The pitch of speech
then sounds higher (or lower) than before the perturbation.

A visualization of these effects is provided in Figure 3.6.

(a) Perturbed audio using resampling from (b) Perturbed audio using resampling from
F] = 0.5 - Fs. The duration is doubled and F] = 2 - F;. The duration is halved and
the frequencies are halved. the frequencies are doubled.

Figure 3.6.: Speed- and pitch-warping perturbation of the original audio (see Figure 3.2b.
Changes in frequency and duration can be observed.

3.2.1.4. Filtering

If an SLT-models’ predictions are highly dependent on frequencies which are not usually
employed for speech, it might be an indicator of a bad translation. To differentiate which
parts of the frequency spectrum the evaluated predictor pays attention to, we employ
band-pass and band-stop filtering on the speech audio. The lower and upper bounds of
the filters are hyperparameters.

To apply the required filter, a Fast Fourier Transform (FFT) [3] is applied to the given

11
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source audio a € S™ to get its discrete Fourier Transform (DFT) @ = DFT (a). Then, either
the frequency bins containing frequencies between the lower and upper bounds are zeroed
out (band-stop), or everything outside those bounds is (band-pass). To project a back into
S, the inverse DFT is calculated using the inverse FFT algorithm. The resulting audio is the
filtered perturbed version, as seen in Figure 3.7. Since the Fourier Transformation is not
lossless, inaccuracies may taint the exactness of the filter cutoff and make for "smudged"
filter edges.
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(a) Perturbed audio using a band-pass (b) Perturbed audio using a band-stop filter
filter with bounds (500Hz, 3000Hz). with bounds (500Hz, 3000Hz).
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Figure 3.7.: The preprocessed audio, as seen in Figure 3.2b is filtered using band-pass
and band-stop filters with the same bounds. Unclean edges are the results of
inaccuracies during FFT.

3.3. Translation Comparison

The QE-Head of PERTURBATION-BASED QUESTT calculates the perceived deviation of the
perturbed translations from the initially given machine translation. Thus, it receives the
initially given machine translation ¢, as well as n predicted textual translations t, . . ., #, of
each of the perturbed audio samples d;, . . ., a,. We present two variants for the translation
comparison: pairwise and corpus-like.

Pairwise translation comparison calculates the deviation of each #; from the initially
given t using BLEU [16], the inverse Translation Error Rate (TER) (1 — TER) [25] or the
CHRF-score [18], all scaled to fall within [0, 100]. A function A(-, -) shall be used in place
of the interchangeable translation distance metric.

The calculated deviations A(%;, t) are then aggregated using a weighted sum with fixed
weights wy, ..., w, € R to make the cumulative change CC:

CC = Z wi - A(E, t)
i=1

12



3.4. Weaknesses

To ensure consistent and comparable outputs, CC is normalized to fall within [0, 100]
and becomes the QE-model’s quality estimation QE.

ccC

QF = ———
100 - Y1 w;

This process of aggregation and normalization for pairwise translation comparison is
illustrated in Figure 3.8.

t % o o o —
ZEEN >
: . . . —> QE
~ ; y ° )
> >/ \—>—>
Similarity Calculation Aggregation

Figure 3.8.: The QE-Head (marked in green) receives the predicted translations of the
perturbed audio samples £, . . ., t,, along with the initial machine translation
t. For each t;, the translation similarity between #; and t is computed using
a predefined translation or sentence similarity metric (marked in red). The
weighted sum of these similarities using predefined weights wy,..., w, is
normalized to a score within [0, 100] and returned as the quality estimate.

Corpus-like translation comparison utilizes the intended similarity of the translations
of the perturbed audio #; and the initially given predicted translation. The set {f, ..., f,}
is interpreted as a corpus and passed as such to a corpus-based metric A like BLEU, which
then calculates the similarity of ¢ to its perturbed counterparts. The resulting score scaled
to [0, 100] makes for the QE-model’s quality estimation

QE = A(t,{t1,...,1x})

The corpus-like approach makes for easier hyperparameter setting, as there are no
weights to set for each perturbed version of the source audio the ; were predicted for.
However, the ability to balance out more grave perturbations and weaken the stabilizing
influence of less altering ones forces an alignment of perturbation severity, possibly
undercutting variance.

3.4. Weaknesses

The perturbation-based approach comes with inherent drawbacks. Procuring a quality
estimation for a single audio-translation pair takes an additional n inference passes, multi-
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3. Method Design

plying the time and effort it took to translate in the first place. It is therefore difficult to
optimize time complexity considering this conceptual drawback.

The pairwise translation additionally fails to exploit mutual information and requires
a metric call for each t; instead of one for all. This adds to computational complexity.
However, corpus-like translation comparison does not include a weighing process for the
different perturbation strategies. Making some perturbations more influential than others
is therefore not possible following that strategy.

Additionally, the choice of perturbation strategies may prove to be suboptimal. Out of
the many possible audio perturbation methods, only a few of the available perturbations are
selected [14]. To improve performance of quality without overextending time complexity,
we attempt to collect a representative assortment of perturbation strategies. The selection
for PERTURBATION-BASED QUESTT may not offer a sufficient amount of variance in the
type of obscured information. Especially speed-warping, which is essentially simultaneous
pitch- and speed-shifts, may prove to be more useful separated into the two components
than it is as a combined variant.

14



4. Experimental Setup

Considering the use cases for PERTURBATION-BASED QUESTT, we formulate qualitative
goals regarding the method we seek to achieve. We aim to keep the method as agnostic
as possible. On the one hand, this refers to the type of translating system and the fact
that this type should not signify. On usage of the quality estimation method, the only
information known about the system is that it takes speech input in a source language,
and is able to generate a textual translation of the source audio into a target language. The
method should be functional for every such system without additional assumptions or
requirements.

On the other hand, we wish to avoid the curse of easy deprecation. The conscious decision
against the integration of neural components or resources on the verge of deprecation as
essential method elements follows the wish for method continuity, especially considering
the high speed at which the field of Machine Learning and the tools used therein have
been changing in recent times.

During the experimental setup, the most important values we considered were agnos-
ticity and independence, as per our qualitative method goals, thus complete optimality
in terms of computation and time was not prioritized. However, some optimizations
were made, especially for the inference passes through the evaluated predictor system, by
distributing calculations between GPU and CPU.

Our QF model implementation is written predominantly using python! to be compatible
with modern ML resources, but also because it is lightweight in its syntax, very open and
adaptable, which aligns well with our qualitative goals. Python package management
enabled us to track the implementation’s requirements, while customizing to operating
system requirements and availability of a GPU. This makes reproduction of this work’s
results easier and more straightforward.

On a higher level, our architecture mimics the core components of PERTURBATION-
BASED QUESTT as illustrated in Figure 3.1 in the Method Design Section 3. Each com-
ponent is represented as a separate class and can be instantiated on demand, where the
Quality_Estimator class controls the flow of information and acts as the access point for
inference and evaluation.

To provide maximal flexibility for hyperparameter customization, the evaluation and in-
ference scripts for our QE model may be configured by . json configuration files containing
a list of perturbation configurations, their relative importance, the translation similarity
metric and whether it should be passed the predicted translations of the perturbed audios
as a corpus or individually. For evaluation purposes, multiple distinct such configurations

Thttps://www.python.org/
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4. Experimental Setup

are bundled and evaluated on the bwUniCluster (v2)?>. We, the authors, acknowledge
support by the state of Baden-Wiirttemberg through bwHPC.

For instructional information concerning result reproduction and work environment
setup, refer to the README in our provided GitHub Repository>.

4.1. Data Preprocessing

We use the IWSLT23 dataset for evaluation. It contains audio segments mapped to a
reference transcription, translation and a machine generated translation with a human an-
notator score. These segments are, however, not fully coordinated with the corresponding
segmented audio files, making data preprocessing necessary to adapt it to our scenario.
The corresponding audio data to the annotated translations in the dataset was acquired
from IWSLT %. The TED audio was provided in shape of entire talks with durations partly
longer than ten minutes. Therefore, it was segmented using an accompanying YAML file
containing timestamps for each audio file and text segment spoken in it. Some resulting
audio segments were removed due to faulty timestamps producing audios that contained
no speech or were too short for inference. As the number of resulting audio segments is
very large, not all were checked for correct- and completeness.

4.2. Resources

4.2.1. Handling Models

Any interaction with the translation generating system passes through a model wrapper,
which provides inference access and can be configured with the correct model information
upon instantiation of the class. Keeping inference access to the evaluated translation
systems as uniform as possible through this model wrapper follows our qualitative goals
for translation system agnosticity.

By working with widely-used libraries like huggingface’s transformers library® and
torch®, we aimed to make integrating and evaluating own models as easy as possible.
For demonstration and method evaluation purposes, some models have been previously
embedded. In addition to this, further models can be loaded from huggingface by adding a
model to the supported huggingface key list, with a custom inference method if necessary.
Custom models can be loaded from a local path by providing a model loading method
using a corresponding implementation of torch.nn.Module and a fitting inference method
within the model wrapper.

When embedding Meta’s Seamless model from huggingface, we found discrepancies
between a manually calculated output sequence probability and the specially provided

Zhttps://wiki.bwhpc.de/e/BwUniCluster2.0
3https://github.com/13thwitch/QE- for-S2TT

4https ://iwslt.org/2023/multilingual

5h‘ctps ://huggingface.co/docs/transformers/en/index
6h‘ctps ://pytorch.org/docs/stable/torch.html
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4.3. Implementing Perturbation

huggingface method for that purpose’. As the manually calculated output sequence

probabilities were unusually tiny, we use the huggingface method in our evaluation.

4.2.2. Handling Audio

We load audio using the lightweight soundfile® module, which provides integrated sup-
port for .mp3 as well as .wav files. Working with the resulting numpy array proves to be
convenient and allows for transparent audio editing. For example, using the renowned
pydub’ module, we are able to detect leading and trailing silences and trim them from
given audio.

Initially, we had planned on using a popular audio augmentation library named SpecAug-
ment which implements time and frequency warping on mel spectrograms [17]. Unfor-
tunately, the perturbations performed using SpecAugment are too insignificant to force
any perceivable change to human hearing, let alone in machine predicted translations.
Although this could have been mitigated by making some manual adjustments, additional
version compatibility issues and performance issues could not be overlooked. The conver-
sion of the source language audio to mel spectrogram and back either came with an audible
loss in audio quality, or at the cost of long inference times of an embedded neural Vocoder
system. The combination of SpecAugment and our chosen state-of-the-art Vocoder, Hifi-
GAN [9], was therefore not feasible. We then favoured a manual implementation of the
audio perturbation methods instead, following our quality and independence goals and
avoiding easy deprecation.

4.3. Implementing Perturbation

The Perturbator class is configured upon instantiation using the passed desired pertur-
bations. When it is called upon to generate perturbations for a given audio, this audio
is trimmed before it is passed on to the respective perturbation strategy functions with
the requested specifications. For the remainder of this section we will be focusing on the
implementation of these individual perturbation methods.

4.3.1. Resampling and Speed-Pitch-Warping

The resampling process was performed using the python resampy ' module, which imple-
ments the band-limited sinc interpolation method for sampling rate conversion following
Smith’s work on Bandlimited Interpolation and the corresponding algorithm presented
therein [24]. On certain audios resampy outperforms many similar tools in terms of speed
by significant margins. We resample as a perturbation method to frequencies well below

7https://discuss .huggingface.co/t/announcement-generation-get-probabilities-for-generated-
output/30075

8h‘ctps://pypi .org/project/soundfile/

9ht‘cps://gi‘chub .com/jiaaro/pydub

Ohttps://github.com/bmcfee/ resampy
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4. Experimental Setup

(e.g. 8kHz) and well above (e.g. 32kHz) the source language audio’s Nyquist Rate (e.g.
16kHz in the IWSLT23 dataset).

To mimic variations in speech velocity, we resampled the audio to its original sample
rate while assuming it was sampled at a different sample rate using resampy. The thereby
slowed or accelerated speech changes in pitch as well, testing for pitch-agnostic phoneme
recognition at the same time. After hyperparameter tuning, speed perturbations within
[0.5, 2] times the original sample rate proved most effective for the QE task.

4.3.2. Frequency Filtering

To restrict the frequency spectrum of the source language audio, we use band pass and
band stop filters. They either restrict to

« a certain section of the human speech base frequency spectrum,
« its formant-giving harmonics, or

« to outside of it, letting only noise at frequencies outside the human speech spectrum
pass.

We apply these filters using the python scipy.ftt module ''. We reconstruct the audio
to shift the data’s x-axis from indicating time to indicating frequency and apply a simple
binary mask on top, depending on the filters” cutoff. We reconstruct back to the time-based
view with the inverse fourier transform available in scipy.fft.

4.3.3. Noising

For most of our computations regarding audio, we work with numpy '2. This includes
the addition of Gaussian Noise as a perturbation strategy. To this end, we use numpy to
generate an array of random numbers drawn from a normal distribution with a mean of 0
and an experimentally determined standard deviation within [0.001, 1.0].

https://docs.scipy.org/doc/scipy/tutorial/fft.html
2https://numpy.org/
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5. Results

We evaluate using only Meta’s Seamless M4T v2 model, a state-of-the-art multi-modal
translation system [4], which we apply as a cascade Speech-to-Text Translation System.
As evaluation data, we use the first 90 entries of the IWSLT23 dataset [27]. Out of the
three available language variants in the IWSLT23 set, we work with the en-de split to tune
parameters and hyperparameters. Using reference-based COMET [20], we compare the
translation quality predicted by our QE model to the COMET score given the predicted
translation and the references for translation and transcription provided in the IWSLT23
data. Iteratively, we perform loosely structured parameter and hyperparameter tuning.
The decision against systematic approaches like grid-search was made due to a lack of
computational resources and time for extensive hyperparameter optimization. A more
extensive account on our evaluation’s execution times can be found in Section 5.2.

We present multiple variants of our QE model, using each of the three translation com-
parison metrics in pairwise and corpus-like fashion. The translation similarity calculation
strategy and metric are treated as hyperparameters and define our model variants. On
their basis, we tune our remaining parameters, which includes exactly which perturbations
are performed and, if performing pairwise translation similarity calculation, weights for
each applied perturbation.

As indicated in Table 5.1, our best-performing variant by Pearson Correlation with the
reference-based COMET scores is PB-QUESTT-chrf*, configured with corpus-like transla-
tion similarity calculation using CHRF. This model variant solely employs resampling at
target sample rates 21kHz, 22kHz, 23kHz, 24kHz and 25kHz as perturbation strategies.
Following the MAE and the RMSE to the reference-based COMET scores, PB-QUESTT-chrf
performs best. It employs

« added Gaussian noise at standard deviations 0.1, 0.5, and 0.7,
« warping at factors 0.66 and 2.0, and
« a frequency band pass filter with bounds [100, 3000]

as perturbation strategies, performing a total of six perturbations.

The configurations of the other mentioned models in Table 5.1, as well as those of the
performed ablations and single-perturbation tests shown in Table 5.2, can be found in the
corresponding Section A.2 in the appendix.

5.1. Robustness

Additionally to the quantitative performance evaluation we complete, we evaluate our QF
Model’s performance in various input and parameter settings to test its quality and robust-
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5. Results

QE variant | Pearson MAE RMSE

PB-QUESTT-chrf* | 0.598579465070 | 12.00920995 15.6684637964
PB-QUESTT-chrf 0.519477215283 | 11.87913072 | 14.5200751896
PB-QUESTT-bleu” 0.518029160540 | 17.51945238 22.1468098974
PB-QUESTT-bleu 0.512772074737 | 17.30039246 21.8373347467
PB-QUESTT-ter” 0.484574537952 | 17.53206198 22.7090405640
PB-QUESTT-ter 0.217075104305 | 43.10477027 46.7448233976

Sequence Prob. | 0.120589519967 | 79.41471707 | 78.0789525817

Table 5.1.: Performance of our QF model variants as relation to COMET scores on Seamless
translations. The similarity between our scores and COMET scores is given
as rounded Pearson correlation, the Root Mean Squared Error (RMSE) and
the Mean Absolute Error (MAE). An asterisk (*) next to our model variant
designation marks corpuslike translation similarity calculation. We provide the
sequence probability of Seamless as a baseline. The bold scores are the best for
the respective metric.

ness. We perform ablations of PB-QUESTT-chrf, our best-performing model according to
two out of three evaluative metrics. We take a closer look at the effect each perturbation
strategy has on model predictions, and test QE model performance on out-of-distribution
inputs.

5.1.1. Ablation Studies

Aiming to more closely inspect each perturbation strategy’s contribution to PERTURBATION-
BASED QUESTT, we evaluate QF model variants configured to only perform one type of
perturbation. Each of these models can, however, use different perturbation specifications,
for example multiple noising perturbations varying only in the standard deviation of their
random distribution and the respective weights.

We provide a frame of reference for the ablated perturbations by additionally comparing
to the best-performing parameter and hyperparameter configuration we found which
uses only one kind of perturbation each. These cumulative results, as listed in Table 5.2,
show each ablation performing significantly worse than its counterpart. It follows, that
individual good performance of a perturbation strategy is not a direct indicator of good
performance in combination with other perturbation strategies, and vice versa.

5.1.1.1. Pure Resampling

When perturbing the source language audio only by resampling it to sampling rates well
below the audio’s Nyquist Rate, we observe quite strong results, demonstrating a Pearson
correlation with the reference COMET [20] predictions of up to ~ 0.5986. We find that
for source audios with a sample rate of 48kHz, pure resampling to sample rates within
[21000, 25000] Hz proves to be the most effective specification we tested.

In general, the amount of change in the observed model’s translation resulting from
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5.1. Robustness

QE variant ‘ Pearson MAE RMSE
Filter only 0.3782313554 | 19.758169403 | 26.051006034
Filter best 0.3336799863 | 13.938110087 | 19.595256695
Noise only | -0.0561381232 | 49.187997378 | 51.857298658
Noise best 0.4906354995 | 19.461261940 | 24.439950805
Warp only 0.0627406393 | 33.388123066 | 37.676180935
Warp best 0.4124354996 | 14.970776571 | 19.996201139

Resample best | 0.5985794651 | 12.009209946 | 15.668463796

Table 5.2.: Similarity of ablations and single-perturbation QE model variants to COMET
scores given as rounded Pearson Correlation, Root Mean Squared Error (RMSE)
and Mean Absolute Error (MAE). Note that Resample-optimal is equivalent to
PB-QUESTT-chrf™

the perturbation is severe and observable. The increasing degradation of the produced
translations when the perturbed audio’s sample rate falls below the original audio’s Nyquist
Rate is apparent and exemplified in Figure 5.3. We therefore conclude that the resampling
target interval of [21000, 25000] Hz proves to be the tipping point for intelligibility of
speech audio.

Sample Rate [Hz] ‘ Translation

26000 We are big fans of our football club.
25000 We are big fans of our football club.
24000 We’re the biggest fans of our club.
23000 "We are great fans of our club, the Football Club."
22000 Five thousand dollars for you and your wife.
21000 What'’s the matter with you?

20000 I'll go with you.

19000 I’'m going to take a look at it.

18000 I'm going to do it.

17000 I'm not going to do it.

16000 I’'m going to go back to the beginning.

Table 5.3.: Note the translation’s deterioration with lowered sample rates. The original
audio contains Portuguese speech which translates to “We are big fans of our
football club.”. The original audio is sampled at 48kHz and has a bandwidth of
~ 15kHz. The translations are produced by Seamless.

5.1.1.2. Pure Noising

A mere addition of noise to the source language audio proves to be a relatively good
perturbation strategy, correlating with the reference-based metric COMET [20] at more
than 0.49 Pearson. Perturbing example audio reveals that a robust translation can stay
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stable, even using perturbation with added Gaussian noise with large deviations like
0.2 or higher, as can be seen in Table 5.4. However, the best performing QE-Model
variant only using added noise as a perturbation strategy employs Gaussian noise with a
comparably very small standard deviation within [0.003, 0.012]. We interpret that, although
some translations stay stable at high standard deviations, stabilization and low-impact
perturbation better suit the QE task. A reason for this discrepancy may be that Seamless
demonstrates state-of-the-art quality and a bias toward positive quality estimations when
evaluating on its translations might raise performance.

Standard Deviation ‘ Translation
0.1 We are big fans of our football club.
0.2 We are big fans of our football team.
0.3 We are big fans of our team.
0.4 We’re in the middle of our first day of the festival.
0.5 for our big fans.
0.6 We’re not discussing anything about this.
0.7 I’'m going to take a look at the video.
0.8 I’'m going to go to the bathroom.
0.9 It’s not like I'm going to be able to do it.

Table 5.4.: Note the translation’s deterioration with rising standard deviations on the
added Gaussian Noise. The original audio contains Portuguese speech which
translates to “We are big fans of our football club.”. The translations are produced
by Seamless.

5.1.1.3. Pure Warping

We use warping to emulate varying pitches and velocities of speech. To extract the factor
thresholds at which the generated translations react to the perturbation, we perform an
exemplary analysis of the transition of the Seamless predicted translations from consistent
prediction of the original translation to increasingly deviating and nonsensical generated
sequences, as depicted in Table 3.6. It identifies values around 0.66 and 2.1 as the warp
factors at the predictions’ tipping point, with values closer to 1.0 naturally increasing in
similarity to the originally predicted translation.

However, the ablation from the PB-QUESTT-chrf model only performing warping at the
tipping point factors 0.66 and 2.0 performs catastrophically, reaching a Pearson correlation
of near 0 with the reference-based COMET scores, as presented in Table 5.2. The optimal
warping configuration instead applies warping to a range of factors, starting from the
tipping points and extending inward towards the original at factor 1.0. This approach
performs more than four times better than the two tipping point values on their own,
further supporting the notion that slightly more conservative perturbation over finer
grained parameter intervals proves more effective.
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5.1. Robustness

Warp Factor ‘ Translation

0.5 The first thing that comes to mir'ld is
the fact that the world is changing.

0.55 ‘ The nine verses of the Qur’an are the verses of the Qur’an.

0.6 ‘ The nine-year-old is not a child, he is a child, he is a child .

0.63 The first thing I want to do is to make sure that the people who
are going to be in the room are safe.

0.66 ‘ They’re our biggest fans, our football club.

0.7 ‘ We are big fans of our football club.

|

1.8 ‘ We are big fans of our football club.

1.9 ‘ "We are big fans of our football club”

2.0 ‘ We’re the biggest fans of our club.

2.1 ‘ "We are the great brothers of our football club

2.2 ‘ "We’'re going to the festival”

2.3 ‘ I’'m going to take a shower.

Table 5.5.: Note the translation’s deterioration increasing with warp factors further away
from the original at 1.0. The original audio contains Portuguese speech which
translates to “We are big fans of our football club.”. The translations are produced
by Seamless.
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5.1.1.4. PureFiltering

To extract which part of the frequency spectrum of the source language audio the predicting
model pays attention to when generating its translation, we apply frequency band filters as
a perturbation. Our results only using this perturbation method prove to be quite mediocre
compared to the other presented perturbations and ablations in this work. This fact is
expected given the comparatively higher parameter complexity in frequency band filtering.
Not only is every filtering-based perturbation characterized by whether it is a band pass or
band stop filter, each bound is another free parameter to be set. Our unautomated process
of parameter optimization presumably fails to find completely, or even approximatingly,
optimal filter settings for speech perturbation, therefore generating poorer results than
the other perturbations.

However, we do gain some insight from inspecting the variation of predicted translations
on a variously filtered speech audio example, the results of which can be inspected using
Table 5.6. The frequency range of [50, 600] Hz seems to contain the core speech components.
Multiple layers of harmonics are stacked on top of these frequencies, so that a sufficiently
wide band containing these harmonics, e.g. [1000,7000] Hz can reproduce the missing
information to a certain extent. Some perceived threshold bounding values therefore seem
to be a band of at least 500Hz width within the scope of the core speech components,
and filters which rely only on harmonics with a bandwidth of about 6000 Hz. Further
examination of the relevant frequency bands is required to improve the effectiveness of
filtering as a perturbation strategy.

Type  Bounds ‘ Translation
PASS (100, 1100) We are the big fans of our football club.
PASS (50, 1000) We are big fans of our football club.

PASS (1000, 7000) We are the key to the foundation of our football club.
What’s the matter with you? What’s the matter with you?

PASS (500, 3000) What’s the matter with you?

STOP (100, 1000) We are big fans of our football club.

STOP (2000, 5000) We are big fans of our football club.

STOP (200, 1200) We are the big ones in the soccer club.

STOP (550, 4500) I’'m a big fan of the football club.

STOP (500, 5000) We are the great fans of the team that I got from you.
STOP (450, 5500) We're great friends, and we’re all good friends.

Table 5.6.: Translation variance under filtering perturbation. The original audio contains
Portuguese speech which translates to “We are big fans of our football club.”.
The translations are produced by Seamless. The bounds are given in Hz.

5.1.2. Out-of-distribution Performance

We performed our quantitative evaluation on SEAMLESS, a state-of-the-art S2TT-model.
To evaluate the behaviour of our QE model on out of distribution data, meaning an atypical
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S2TT model predicting atypical translations, we implemented a trivial predictor which
always outputs the same German sentence “Dieser Satz is eine sehr einténige Ubersetzung,
finde ich.”. This trivial predictor is therefore maximally robust, as its predictions do not
deviate under perturbation, but demonstrates catastrophic performance, as it is almost
never correct.

We assume that our perturbation-based QE method which infers quality through robust-
ness would give overwhelmingly and erroneously positive estimations for the predicted
translations. This assumption is confirmed after an evaluation of the trivial predictor
on a subset of the IWSLT23 dataset, indeed revealing maximal predicted quality scores
by our QE Model and a Pearson correlation with the reference-based COMET scores of
~ —-8.13-1071°.

5.2. Runtime Evaluation

The applicability of our method to real-time translation scenarios depends on low inference
times of our quality estimation model. We analyze execution time and QE-model inference
time during our evaluation to examine the implementation’s applicability. The runtimes
are given for evaluation on an Intel Xeon Gold 6230 GPU with four NVIDIA Tesla V100
accelerators' unless otherwise indicated.

We collect inference and evaluation execution times in Table 5.7 and record inference
times of at least 3.7 seconds. This inference time is tolerable for asynchronous use, but for
real-time systems, potentially as an embedded system with further computation based on
its result, this implementation of PERTURBATION-BASED QUESTT does not seem applicable.

When comparing identical perturbation configurations and their runtimes from Table
5.7, once with pairwise and once with corpus-like translation similarity calculation, which
is the case for PB-QUESTT-bleu and PB-QUESTT-bleu*, we observe that, contrary to our
intuition, one larger pass through the metric instead of many smaller ones is not faster.
In fact, as can be extracted from Table 5.8, in two out of three cases, the inference times
for the corpus-like computation with the same metric proves slower than the pairwise
translation similarity calculation.

However, the outliers in Table 5.8, PB-QUESTT-ter and PB-QUESTT-ter”, not only differ
in the number of performed perturbations, but also in the kinds of perturbation used. While
PB-QUESTT-ter* uses noising, warping and filtering, its counterpart PB-QUESTT-ter uses
noising, warping and resampling. To investigate the runtime differences between different
kinds of perturbations, we compare the runtimes of single-perturbation-method QE-model
variants in Table 5.9. They reveal that this outlier can either be explained by the higher
time cost of using resampling as a perturbation method over filtering. We additionally
observe that added Gaussian noise proves to be the fastest perturbation strategy.

However, we only use these observations as indicators and do not postulate absolute
fact. We notice that these differences in runtime do not remain completely consistent over

Exact device specifications can be found under GPU_4 on the bwUniCluster https://wiki.bwhpc.de/e/
BwUniCluster2.0/Hardware_and_Architecture
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5. Results

QE Model | Median LT. | Mean LT. | Execution Time

PB-QUESTT-chrf 4.911639 | 5.5412335 738.3733
PB-QUESTT-chrf* 4.633770 | 5.0436238 698.8798
PB-QUESTT-bleu 3.799485 | 4.1151464 617.4134
PB-QUESTT-bleu* 3.890306 | 4.2727717 674.3913
PB-QUESTT-ter 6.796510 | 7.5684684 906.0613
PB-QUESTT-ter” 4.347694 | 4.8486077 664.2408

Table 5.7.: Median and Mean Inference Times (I.T.) and evaluation execution time for our
QE model variants, in seconds.

QE Model ‘ Normalized Mean Inference Time
PB-QUESTT-chrf 0,923539
PB-QUESTT-chrf” 1.008725
PB-QUESTT-bleu 1.028787
PB-QUESTT-bleu” 1.068193
PB-QUESTT-ter 0.840941
PB-QUESTT-ter” 0.808101

Table 5.8.: Mean Inference Times (LT.) for our QE-Model variants, in seconds, divided by
their corresponding number of performed perturbations. Example: PB-QUESTT-
chrf performs 6 perturbations: 3 noising, 2 warping, 1 filtering.
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5.3. Discussion

the same evaluation data. Therefore, to make definitive statements on the exact runtime
differences, a larger evaluation set is needed.

QE Model ‘ Normalized Median Inference Time

Filter best 0,883220
Noise best 0,821450
Resampling best 0.863926
Warp best 0.834579

Table 5.9.: Median Inference Times of single-perturbation-method QE-variants evaluated
on a subset of our evaluation data. It is given in seconds, divided by the number
of performed perturbations. All configurations of the listed variants specify cor-
puslike CHRF. The runtimes were collected on the GPU_8 of the bwUniCluster.

5.3. Discussion

Our results confirm that PERTURBATION-BASED QUESTT is indeed a viable method for SLT
quality estimation. The measured high Pearson correlation with reference-based COMET
values surpasses our output sequence probability baseline by almost five times its value.
The RMSE and MAE to the COMET scores of our best-performing QE-model-variants,
PB-QUESTT-chrf and PB-QUESTT-chrf*, are lower than 16%. We achieve our qualitative
goals, including retaining model agnosticity and having avoided the embedding of easily
deprecated components.

However, the method demonstrates inherent flaws on out-of-distribution data, which
can cause dramatic drops in performance, for example when a bad model is very robust.
Additionally, our recorded runtimes, while acceptable for asynchronous QE-model infer-
ence, prove too slow for use in a real-time scenario. We are also not able to make any
definitive assessments of which translation similarity calculation strategy is faster, as the
margins by which they deviate are too small and inconsistent. As our evaluation set is
quite small due to the very limited computational resources at our disposal, the reliability
of our results, regarding performance and runtime, can not be unequivocally guaranteed.
A larger-scale evaluation is needed to confirm the insights we draw from our limited
experiments.

The perturbation framework used in this work fulfills its purpose completely. Using its
perturbations, we register added Gaussian noise as the fastest perturbation, and reach peak
performance of our QE-model implementation using only resampling as a perturbation
technique. In general, more conservative and less aggressive perturbation specifications
prove to be more effective for quality estimations.
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6. Conclusion

Quality Estimation for Spoken Language Translation has barely received any attention from
the scientific community. To our knowledge, of the methods available none are applicable to
a fully black-box scenario and none are unsupervised. This work fills that gap by presenting
the novel method PERTURBATION-BASED QUESTT. Not only is it unsupervised and requires
no training or training data, it also exclusively relies on black-box information. This makes
it applicable to a wider array of usage scenarios where system-specific information may
be inaccessible, for example because the predicting translation system is proprietary and
its API too restricted. Additionally, the lack of training, especially on domain-specific data,
makes PERTURBATION-BASED QUESTT applicable to all domains and predicting translation
systems.

Drawing from previous work on audio data augmentation, we integrate simple and

fast audio perturbation into our method. The translation system’s resulting predictions
for perturbed audio are then used as indicators of translation robustness and confidence.
We connect these qualities to overall translation quality, characterizing this work’s core
assumption. This assumption holds merit, as we discover during our experimental eval-
uation, measuring a Pearson Correlation to the reference-based COMET scores of more
than 0.59, almost five times that of the output sequence probability baseline. We also
record a mean absolute error to the COMET scores lower than 12%. With relatively sparse
parameter and hyperparameter tuning, we achieve good QE performance using multiple
different variations of our translation similarity calculation between the predictions on
perturbed and unperturbed audio.
Next to our standard performance evaluation, we analyze runtime 5.2, out-of-distribution
performance 5.1.2 and ablations 5.1.1. Giving concrete examples, we find the parameter
intervals for which the presented perturbation strategies prove effective, changing the
speech audio enough to prompt a response in the predicted translation, but not so much
as to make it unintelligible. We find that resampling proves to be the most effective pertur-
bation strategy for estimating quality, but also uncover potential in other perturbations,
which may be realized after more hyperparameter tuning. Due to limited computational
resources, we only perform manual hyperparameter tuning and only evaluate on a small
dataset, which calls into question the unequivocal reliability of our results.

Additionally, we test for our method’s weaknesses. The method’s foundational assump-
tion, that robustness can indicate quality, falls short when predictors are very robust and
confident in their translations, but rarely correct. We explicitly showcase a staggering
performance drop caused by an extreme instance of this phenomenon. However, even at
peak performance, our method exhibits flaws concerning its applicability. The concept of
a perturbation-based method requires repeated inference of the same translation system,
making each inference pass through the QE model potentially many times longer than the
initial translation’s generation. Especially in real-time systems, which are quite common
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6. Conclusion

in SLT, an increase in duration of this magnitude could render the method unusable in
certain scenarios.

Nevertheless, PERTURBATION-BASED QUESTT proves to be an effective method to esti-
mate the quality of most SLT models’ translations, its applicability depending on the use
case. Our experimental evaluation of it also yielded a fully-functional implementation
of an independently usable audio perturbation framework for frequency band filtering,
noising, resampling and speed-pitch-warping, providing foundational resources for future
work using audio perturbation.

6.1. Future Work

Aside from the conceptional weaknesses iterated above, there is much potential to be
found for improvements upon this method.

Resulting from the strict time-constraints of a thesis and inexperience with the resources
at hand, we perform quite sparse (hyper-)parameter tuning in this work. It is therefore
quite probable that the optimal parameters and hyperparameters have not yet been discov-
ered and that the maximum performance yield of our method has not yet been reached.
Further (hyper-)parameter tuning strategies like grid search being applied to polish this
method could vastly increase its performance. The necessity for polish also applies to our
evaluation: Evaluation on such a small data subset as ours may not yield fully reliable
results. An additional, more extensive evaluation in terms of evaluation data and diversity
in the translating model would improve credibility and usability of the achieved results.
To ensure domain independence, additional evaluation on the French-English QE dataset
by Besacier et al. [2] could be performed.

As the implementation provided in this work was not built to optimize performance in
terms of temporal and computational complexity, a grid search using this implementation
may be quite expensive. An improved implementation, focused on maximal parallelization
and device optimization, would not only ease the process of parameter and hyperparameter
optimization, but conversely lower the implemented QE model’s inference time, making
the method’s application more practically feasible.

On a larger scale, we see potential in combining more of the audio data augmentation
strategies presented by Nanni et al. [14] with our perturbation-based approach to quality
estimation for SLT. They not only perform perturbations on the audio signal, but also on
the audio’s spectrograms, drawing from computer vision data augmentation strategies as
well. We find this promising considering the widespread use and extensive research of
image data augmentation in Computer Vision [23].

Finally, we recognize the merit of a word-level QF method for SLT in line with Dinh
and Niehues’ perturbation-based approach to QE for text-to-text translation [5]. Using
a sufficiently performant word boundary identification system for speech audio, the
perturbation framework built in the scope of this work could be used to perform word-
level audio perturbations by only perturbing certain audio segments within the given
speech. We provide an example of this possibility through the implementation of segment-
level perturbation into our audio perturbation framework. Examples of this segment-level
perturbation can be inspected in the appendix A.1.
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A. Appendix

A.1. Segment-level Perturbation

We implement word-level perturbation based on a given transcription of the source
language speech by dividing the audio into n pieces where n — 1 is the number of spaces in
the transcription. This trivial audio segmentation aims to approximate a word-boundary
identification system. Figure A.1 shows each perturbation strategy applied on the fourth
section of speech audio, as per our implementation.
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Figure A.1.: Audios with perturbed segments. Each perturbation strategy is applied on the
segment.
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A. Appendix

A.2. Configurations of Exhibited QE-model variants

During our evaluation, we perform multiple ablations and compare various models on
performance. Their respective configurations can be found here.

Parameter | PB-QUESTT-chrf* | PB-QUESTT-ter* | PB-QUESTT-bleu*
Metric CHRF TER BLEU
Corpus/Pairwise Corpuslike Corpuslike Corpuslike
R I 21kHz, 22kHz, 23kHz, i i
esatping 24kHz, 25kHz
Warping - 0.66, 2.0 -
. 0.001, 0.003,
Noising - 0.1, 0.5, 0.7 0.005, 0.007
Filtering - pass-[100Hz, 3000Hz] -

Table A.1.: Configurations of QE-Model variants using the corpuslike translation similarity
calculation strategy.

Parameter | PB-QUESTT-chrf PB-QUESTT-ter |  PB-QUESTT-bleu
Metric CHRF TER BLEU
Corpus/Pairwise Pairwise Pairwise Pairwise
Resampling - 24kHz, 23kHz, 22kHz -
Warping 0.66, 2.0 0.7,2.0,1.9 -
Noising 0.1, 0.5, 0.7 0.2,0.3,0.35 0.001, 0.003, 0.005,0.007
Filtering pass-[100Hz, 3000Hz] - -
noise-0.3: 0.9,
noise-0.2: 0.8,
noise-0.35: 0.7, noise-0.001: 0.7,
. warp-0.7: 0.6, noise-0.003: 0.9,
Weights evenly warp-2.0: 0.8, noise-0.005: 1.3,
warp-1.9: 0.6, noise-0.007: 1.9
resampling-24000: 0.6,
resampling-23000: 0.8

Table A.2.: Configurations of QE-Model variants using the pairwise translation similarity
calculation strategy.
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A.2. Configurations of Exhibited QE-model variants

Ablation ‘ Metric ‘ C/p ‘ Specs ‘ Weights
Noise only | CHRF | Pairwise 0.1, 0.5, 0.7 evenly
Warp only | CHRF | Pairwise 0.66, 2.0 evenly

Filter only | CHRF | Pairwise | pass-[100Hz, 3000Hz]| | evenly

Table A.3.: Configurations of ablations of PB-QUESTT-chrf.

Variant ‘ Metric ‘ C/P Specs Weights

. 0.003, 0.005, 0.007,
Noise best BLEU | Corpus 0.009, 0.012 -
Resample best | CHRF | Corpus ZIkI_ZIii(IZ_IZZITI;I;idz_ISfHZ’ -
Warp best CHRF | Corpus 0.66, 0.7, 1.9, 2.0, 2.1 -
pass-[100Hz, 1100Hz],
pass-[50Hz, 1000Hz],
pass-[500Hz, 3000Hz],
pass-[1000Hz, 7000Hz],
) stop-[2000Hz, 5000Hz],
Filter best CHRF | Corpus stop-[ 200Hz, 1200Hz], -
stop-
stop-
stop-

stop-

|
100Hz, 1000Hz],
500Hz, 5000Hz],
450Hz, 5500Hz],
550Hz,4500Hz],

—_——_——_——_—

Table A.4.: Configurations of exhibited QE-Model variants using only a single perturbation
strategy.
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