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Abstract

Large Language Models (LLMs) have shown strong performance on machine transla-
tion (MT) tasks through in-context learning (ICL), where models generate translations
conditioned on a few examples in the prompt. While ICL has been widely studied in
classification tasks, its behavior in generative settings like translation remains underex-
plored — especially under imperfect prompting conditions. This thesis investigates how
the quality of in-context examples impacts translation performance, with a focus on gram-
matical noise, incorrect alignments, and random mismatches. We conduct a structured
evaluation comparing two distinct model types: Llama 3.1, a general-purpose instruction-
tuned model, and Tower, a translation-optimized LLM fine-tuned on multilingual MT data.
Using controlled perturbations of prompt examples, we assess model robustness across
language pairs and error types. Our findings reveal that translation-optimized models are
substantially more robust to noisy in-context examples than general-purpose models. For
language pairs included in their instruction fine-tuning, optimized models demonstrate
the ability to mitigate or ignore incorrect or grammatically flawed examples, whereas
general-purpose models show a strong reliance on example quality and often degrade
under misleading inputs. Moderate grammatical errors tend to have limited impact. Errors
in target sentences consistently cause more severe degradation than those in source sen-
tences. These results highlight the critical role of example quality and model specialization
in in-context machine translation. They suggest that improving translation through ICL
may require careful prompt design and targeted fine-tuning, rather than relying solely on
general-purpose scaling.






Zusammenfassung

Large Language Models (LLMs) haben starke Leistungen bei maschinellen Ubersetzungs-
aufgaben (MT) durch In-Context Learning (ICL) gezeigt, bei dem Modelle Ubersetzungen
auf Grundlage weniger Beispiele im Prompt generieren. Wahrend ICL bereits umfassend in
Klassifikationsaufgaben untersucht wurde, ist das Verhalten in generativen Szenarien wie
der Ubersetzung bislang wenig erforscht — insbesondere unter unvollkommenen Prompt-
Bedingungen. Diese Arbeit untersucht, wie sich die Qualitat der In-Context-Beispiele auf
die Ubersetzungsleistung auswirkt, mit Fokus auf grammatikalisches Rauschen, fehlerhafte
Zuordnungen und zufillige Fehlanpassungen. Wir fithren eine strukturierte Evaluation
durch, in der zwei unterschiedliche Modelltypen verglichen werden: Llama 3.1, ein allge-
mein einsetzbares, instruktionstuniertes Modell, und Tower, ein auf maschinelle Uberset-
zung spezialisiertes LLM, das auf mehrsprachigen MT-Daten feinabgestimmt wurde. Durch
gezielte Storungen der Beispiele im Prompt bewerten wir die Robustheit der Modelle iber
Sprachpaare und Fehlertypen hinweg. Unsere Ergebnisse zeigen, dass auf Ubersetzung op-
timierte Modelle deutlich robuster gegeniiber fehlerhaften In-Context-Beispielen sind als
allgemein einsetzbare Modelle. Fiir Sprachpaare, die in das instruktionstunierte Training
einbezogen wurden, zeigen optimierte Modelle die Fahigkeit, fehlerhafte oder grammatika-
lisch mangelhafte Beispiele abzumildern oder zu ignorieren. Allgemeine Modelle hingegen
sind stark von der Qualitit der Beispiele abhingig und zeigen bei irrefiithrenden Eingaben
haufig eine verschlechterte Leistung. Moderat ausgepragte Grammatikfehler wirken sich
meist nur geringfiigig aus. Fehler in den Zielsédtzen fithren durchweg zu einer stiarke-
ren Verschlechterung als Fehler in den Quellsdtzen. Diese Ergebnisse unterstreichen die
entscheidende Rolle der Beispielqualitdt und Modellspezialisierung in der maschinellen
Ubersetzung mit In-Context Learning. Sie legen nahe, dass Fortschritte in der ICL-basierten
Ubersetzung sorgfaltiges Prompt-Design und gezieltes Fine-Tuning erfordern — anstatt
sich ausschlieBllich auf die Skalierung allgemeiner Modelle zu verlassen.
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1. Introduction

1.1. Problem Context and Motivation

Machine translation (MT) addresses a fundamental human need: communication across
language barriers. While people seek connection, the diversity of languages complicates
understanding, and manual translation remains time-consuming and resource-intensive
(Baker, 1992). Recent advances in large language models (LLMs) have introduced a pow-
erful alternative — systems capable of learning translation patterns directly from vast
textual corpora without manual supervision (Vaswani et al., 2023). LLMs such as GPT-3
(T. B. Brown et al., 2020) and Llama (Touvron et al., 2023; Grattafiori et al., 2024) have
demonstrated remarkable capabilities across a wide spectrum of natural language process-
ing (NLP) tasks, including MT, question answering, and summarization (Devlin et al., 2019;
Lewis et al., 2019; Yinhan Liu et al., 2020). A key breakthrough behind their flexibility is
in-context learning (ICL) (T. B. Brown et al., 2020; Dong et al., 2022), which enables models
to generalize to new tasks simply by conditioning on a small number of input-output
examples provided in the prompt, without requiring any weight updates or gradient-based
fine-tuning.

Real-world applications highlight the value of ICL. For instance, GitHub Copilot (GitHub
and OpenAl, 2025) leverages previous code snippets as in-context examples to generate
follow-up code in a consistent style. Similarly, in machine translation, multilingual support
bots can benefit from ICL by conditioning on prior translation examples — particularly for
domain-specific or technical terminology - to improve consistency and adequacy across
languages.

While the phenomenon of ICL has been extensively analyzed for classification tasks
(Min et al., 2022a; Yoo et al., 2022; Jerry Wei et al., 2023; Pan et al., 2023), its application to
generative tasks — such as machine translation — has received comparatively less attention.
Translation poses unique challenges for ICL, given its open-ended nature, reliance on
bilingual alighment, and sensitivity to linguistic subtleties.

Recent work has demonstrated that the quality and structure of in-context examples
play a central role in determining translation success (Agrawal et al., 2022; Zhang, Haddow,
and Birch, 2023; Vilar et al., 2023). In some cases, even a single low-quality example can
significantly deteriorate performance (Agrawal et al., 2022). However, much of the current
literature on translation via ICL remains descriptive, lacking controlled experiments to
quantify how different types of noise or imperfections impact performance. This gap is
particularly relevant given the practical realities of many real-world applications: low-
resource languages often lack high-quality parallel corpora, and in-context examples may
contain typos, grammatical inconsistencies, or domain-specific terminology. Moreover,
instruction-tuned generalist models like Llama 3.1 (Grattafiori et al., 2024) are frequently
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preferred in industry and academia due to their flexibility, but their sensitivity to noisy
or misleading prompts for MT tasks remains poorly understood. In contrast, domain-
specialized models such as Tower (Alves et al., 2024) have been explicitly fine-tuned on
machine translation tasks and might behave differently in the presence of noisy in-context
examples. Yet, a direct comparison between generalist and translation-focused LLMs under
noisy prompting conditions has not been systematically studied.

1.2. Research Questions

This thesis aims to fill this gap by conducting a structured, empirical investigation into how
the quality of in-context examples affects translation performance across two contrasting
model types. Specifically, we address the following research questions:

+ RQ1: How does in-context learning performance differ between general-purpose
and translation-optimized language models?

« RQ2: Does using incorrect or random translations as in-context examples hurt the
performance of machine translation tasks?

« RQ3: How do grammatical errors — such as word reordering or spelling mistakes —
in in-context examples affect the translation quality?

1.3. Thesis Structure

To address our research questions, the thesis is structured as follows. Chapter 2 introduces
the technical background on large language models and their application to language tasks
via in-context learning. Chapter 3 reviews relevant literature on in-context learning, partic-
ularly in the context of classification and translation, and examines recent findings on the
underlying mechanisms of ICL. Chapter 4 outlines the experimental design, including the
construction of perturbed prompts featuring grammatical errors, mismatches, and omis-
sions, and details the evaluation methodology used with Llama 3.1 and Tower. Chapter 5
presents the empirical findings, analyzing how different types of in-context degradation
affect translation output across both model types. Finally, Chapter 6 summarizes the
main insights, discusses model-specific sensitivities, and reflects on the implications for
designing robust prompting strategies in practical translation applications.

1.4. Summary of Contributions

Our findings reveal that translation-optimized models like Tower (Alves et al., 2024) are
substantially more robust to noisy in-context examples than general-purpose models like
Llama 3.1 (Grattafiori et al., 2024). Optimized models demonstrate the ability to mitigate
or ignore incorrect or grammatically flawed examples, particularly for language pairs
included in their instruction fine-tuning, whereas general-purpose models tend to be
more sensitive to example quality and degrade under misleading inputs. While moderate
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grammatical errors are generally well-tolerated, errors in target sentences consistently
cause more significant performance degradation than those in source sentences. These
results highlight the critical role of example quality and model specialization in in-context
machine translation.






2. Background

Early machine translation systems relied on rule-based methods using handcrafted linguis-
tic rules and bilingual dictionaries, but these proved rigid and struggled with linguistic
nuance (Wang et al., 2022). Statistical machine translation (SMT) (P. F. Brown et al., 1990)
improved adaptability by learning probabilistic mappings from parallel corpora, yet still
faced limitations in contextual understanding (Och, 2003). Recurrent Neural Networks
(RNNs), particularly LSTMs (Hochreiter and Schmidhuber, 1997) and GRUs (Cho, Merrien-
boer, Gulcehre, et al., 2014), advanced translation by modeling variable-length sequences
and capturing long-range dependencies. Recent advances in large language models (LLMs)
have introduced a powerful alternative — systems that can learn translation patterns
directly from vast textual data, without manual supervision (Vaswani et al., 2023), often
leveraging in-context learning to generalize from limited examples at inference time (T. B.
Brown et al., 2020; Zhang, Haddow, and Birch, 2023).

This chapter provides the technical background necessary to understand such models
and their application to language tasks. Section 2.1 introduces the language modeling
task, the foundation of modern natural language processing (NLP). Section 2.2 outlines
the Transformer architecture that underlies LLMs, with a focus on decoder-only models
(Section 2.2.1). Section 2.2.2 discusses how these models scale into LLMs. Section 2.3
introduces in-context learning, a core capability enabling LLMs to perform translation
and other tasks without fine-tuning.

2.1. Language Modeling Task

Language modeling is a foundational task in NLP, aiming to predict the next word in a
sequence given its preceding context. For instance, in the sentence "This document is about
Natural Language ___ ", the model should predict "Processing" based on prior context. A
language model thus assigns probabilities to sequences of words, learning which word is
most likely to follow a given context. This seemingly simple task captures many linguistic
phenomena — syntactic, semantic, and contextual — as successful prediction requires
nuanced language understanding.

Language modeling has widespread applications. Tasks such as predictive text input,
autocorrect, spell-checking, machine translation, code completion (e.g., GitHub Copilot
(GitHub and OpenAl, 2025)), and conversational agents all rely on language models to
select contextually appropriate words or phrases. In machine translation, for example,
a language model ensures that the generated sentence is both fluent and semantically
plausible in the target language.

Historically, language models enhanced larger NLP systems such as statistical machine
translation (Koehn et al., 2007; Cho, Merrienboer, Giilcehre, et al., 2014) and speech
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recognition (Graves, Mohamed, and Hinton, 2013) by favoring more probable hypotheses.
More recently, they have become central to generative systems — e.g., OpenAl’s GPT series
(T. B. Brown et al., 2020; OpenAl et al., 2024) — which produce responses by generating a
sequence of tokens conditioned on a user’s prompt. Language modeling is particularly
attractive due to its self-supervised nature: models train on raw text by predicting hidden or
subsequent words, without requiring annotated data. The abundance of digital text enables
training at large scales, paving the way for powerful models and advanced architectures
discussed below.

2.2. Transformers

Modern language models are built on the Transformer architecture (Vaswani et al., 2023),
which processes sequences in parallel using self-attention, unlike earlier RNN-based (Sher-
stinsky, 2018) models that processed words sequentially. Self-attention enables the model
to consider all positions in the input simultaneously, identifying which tokens are most
relevant when encoding a given word. This design allows Transformers to capture long-
range dependencies and complex contextual relationships more effectively than RNNs.
They use stacked layers of self-attention and feed-forward networks, along with positional
encodings to model word order.

Transformers are trained via backpropagation and gradient descent, adjusting parame-
ters to minimize loss on language modeling tasks. Their elimination of recurrence makes
training highly parallelizable, leveraging GPUs/TPUs for efficient large-scale learning.
Transformers now underpin state-of-the-art models in NLP (Vaswani et al., 2023). Their
key innovation — multi-head attention — enables the model to attend to information from
multiple representational subspaces, enhancing contextual understanding. Intuitively, the
model determines which input elements are most relevant to each prediction and weights
them accordingly.

The Transformer architecture includes both an encoder and decoder, originally designed
for sequence-to-sequence tasks like machine translation. Variants include encoder-only
models (e.g., BERT, Devlin et al., 2019) for representation tasks, and encoder—decoder and
decoder-only models for generation. This thesis focuses on the decoder-only variant.

2.2.1. Decoder-Only

Decoder-only Transformers omit the encoder and operate purely as generative models.
Given a prompt, they generate text autoregressively, predicting one token at a time. They
use masked self-attention to ensure each prediction depends only on prior context.

These models are trained via causal language modeling, where the objective is next-
token prediction. Once trained, they generate coherent continuations for a wide range of
prompts — from story completion to question answering.

Their generative flexibility supports diverse tasks like summarization, translation, or
instruction following by phrasing the task as a prompt. For example, inputting "Translate
to French: [sentence]" prompts the model to generate the translation, all within the
autoregressive framework.
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Modern systems like ChatGPT (OpenAl, 2025) are based on large decoder-only Trans-
formers, fine-tuned for conversational behavior. These models exemplify the strengths of
this architecture for open-ended generation.

2.2.2. Large Language Models

Transformer-based models have scaled dramatically, giving rise to Large Language Models
(LLMs), typically defined as models with billions of parameters. LLMs are trained on
massive text corpora using self-supervised objectives, acquiring broad linguistic and
factual knowledge through text prediction.

For example, GPT-3 has 175 billion parameters (T. B. Brown et al., 2020) — over 100
times the size of the original Transformer — while Llama 3 reaches 405 billion (Grattafiori
et al., 2024). Larger models exhibit improved performance across tasks, often displaying
emergent abilities not present in smaller models (Jason Wei et al., 2022).

A key emergent property is in-context learning (T. B. Brown et al., 2020), where the
model performs tasks based on examples in the input, without parameter updates. These
capabilities scale with model size, highlighting the benefits of large-scale training.

2.3. In-Context Learning

In-context learning is the ability of LLMs to perform tasks using instructions or examples
provided directly in the prompt, without updating model parameters (T. B. Brown et al.,
2020; Dong et al., 2022). This was notably demonstrated by GPT-3, which performs tasks
such as translation or question answering using only a few prompt examples (few-shot
prompting) (T. B. Brown et al., 2020).

Prior to LLMs, new tasks typically required fine-tuning on labeled datasets. GPT-3
showed that sufficiently large models could generalize from in-prompt examples alone.
For instance, when prompted with: "English: I am happy. French: Je suis heureux.
English: Thank you. French:", the model correctly continues with "Merci" It infers the task
structure purely from the prompt.

In-context learning mimics human learning by example and is computationally efficient
— eliminating the need for costly fine-tuning on large models. This has led to the rise of
prompt engineering, where task success depends on the quality and structure of the input
prompt (White et al., 2023; Yi Liu et al., 2023). Research confirms that this ability emerges
with scale: larger models outperform smaller ones at prompt-based learning (Jason Wei
et al., 2022).
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Recent advances in large language models (LLMs) have demonstrated impressive capa-
bilities across a wide range of natural language processing tasks, including language
understanding, question answering, translation, and summarization (Devlin et al., 2019;
Lewis et al., 2019; Yinhan Liu et al., 2020). In-context learning (ICL) has emerged as an
inherent property of larger models, enabling them to adapt to new tasks using only a
handful of examples provided in the prompt — thereby circumventing the computational
expense of fine-tuning (T. B. Brown et al., 2020; Dong et al., 2022; Jason Wei et al., 2022).
In this chapter, we survey prior work on in-context learning, with a focus on three key
areas: (Section 3.1) the use of contextual demonstrations in classification tasks and the
factors that contribute to robust ICL performance; (Section 3.2) strategies for selecting and
structuring examples in translation tasks, where prompt quality can dramatically affect
outcomes; and (Section 3.3) recent theoretical and empirical insights into the mechanisms
underlying ICL, including task recognition, attention head specialization, and latent task
representations.

3.1. Learning from Contextual Demonstrations

Research on in-context learning (ICL) in classification tasks has established that the pre-
cision of ground-truth demonstrations provided to large language models (LLMs) is not
strictly necessary to achieve effective performance (Min et al., 2022a). Rather, the demon-
strations serve multiple specific purposes: they introduce and define the set of possible
labels, reflect realistic distributions of input texts, and demonstrate the sequential input-
output structure expected by the model (Min et al., 2022a). This aligns with our findings
in translation tasks, where even when we intentionally prefixed in-context examples with
an incorrect language label (e.g., labeling German text as French), the models effectively
disregarded the inaccurate label and successfully leveraged the provided examples to
achieve performance improvements (see Section 5.3).

Yoo et al. (2022) further specify that the robustness of ICL to imprecise or noisy demon-
strations depends significantly on two main factors: prompt verbosity and model size.
Prompt verbosity refers to the extent and richness of contextual detail provided within the
prompt. Increased verbosity generally improves the clarity of the expected task structure
and label definitions, thereby enhancing the model’s tolerance to noise in demonstrations
(Yoo et al., 2022). Conversely, overly terse prompts may fail to sufficiently convey task
requirements, negatively affecting performance (Yoo et al., 2022). Model size, on the other
hand, influences the ability of an LLM to generalize from noisy examples. Larger models
tend to have greater representational capacity, thus better accommodating variability and
noise within demonstrations, leading to improved ICL outcomes (Yoo et al., 2022).
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Instruction tuning further enhances performance by leveraging semantic priors — pre-
existing knowledge encoded within the model about relationships between inputs and
their plausible outputs (Jerry Wei et al., 2023). Semantic priors effectively serve as implicit
guidelines that help models more reliably map new inputs to appropriate labels. Models
with robust semantic priors are better equipped to generalize accurately from fewer
and noisier demonstrations, as these priors compensate for ambiguity or imprecision in
examples provided at inference time (Jerry Wei et al., 2023). This aligns with our findings
that models instruction-tuned specifically for translation tasks exhibit greater robustness to
mismatched translation examples (see Section 5.4.2) compared to general-purpose models
(see Section 5.4.1).

Further insights from Pan et al. (2023) highlight the distinction between task recognition
and task learning in the context of ICL. Task recognition pertains to a model’s ability to
correctly identify the nature of a task from its description alone, independent of the specific
input-output mapping provided. This capability generally plateaus beyond a certain scale
of the model and number of demonstrations, suggesting limited incremental benefit from
further increases in these parameters (Pan et al., 2023). In contrast, task learning — the
capacity to adapt and accurately apply novel input-label mappings — continues to improve
significantly with additional in-context examples, emphasizing the importance of sufficient
and well-chosen demonstrations to maximize performance (Pan et al., 2023).

3.2. In-Context Examples Selection for Translation Tasks

Multiple studies have demonstrated that the effectiveness of ICL in machine translation
heavily relies on both the number (Zhang, Haddow, and Birch, 2023) and the quality
(Agrawal et al., 2022; Vilar et al., 2023) of the prompt examples provided. Specifically,
selecting and composing these examples carefully can significantly enhance translation
outcomes, while poorly chosen examples can substantially degrade performance (Agrawal
et al., 2022; Vilar et al., 2023).

The quality of prompt examples is critical; those with high semantic relevance and n-
gram overlap with the input consistently improve translation performance, outperforming
strong baselines like kKNN-MT, especially in out-of-domain settings (Agrawal et al., 2022).
Conversely, even a single noisy or unrelated example can have a catastrophic impact,
drastically reducing translation accuracy (Agrawal et al., 2022).

Moreover, positional bias in the prompt sequence has been identified as a significant
determinant of performance, with earlier examples in a sequence generally exerting a
stronger influence on the translated output (Zaranis, Guerreiro, and Martins, 2024). This
bias underscores the importance of ordering examples thoughtfully. Additionally, Zaranis,
Guerreiro, and Martins (2024) observed that the source part of few-shot examples appears
to contribute more significantly to the translation than its corresponding target part,
irrespective of the translation direction. This aligns with our findings that omitting the
source text and providing only the target text in few-shot translation examples significantly
degrades translation performance, underscoring the importance of the source segment
(see Section 5.2). However, we observed a somewhat contradictory outcome: grammatical
errors in the target side had a greater negative impact on translation quality than errors in
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the source (see Section 5.5.3). This discrepancy highlights the complexity of source-target
interactions in in-context learning and indicates a need for further investigation.

Additional investigations (Zhang, Haddow, and Birch, 2023; Vilar et al., 2023) reveal
nuanced factors influencing example effectiveness. Zhang, Haddow, and Birch (2023)
identified features such as semantic similarity and example quality as having significant,
though weak, correlations with translation performance, suggesting that relying solely on
semantic similarity metrics is insufficient for optimal prompt selection. Instead, they pro-
pose constructing pseudo-parallel examples through zero-shot prompting of monolingual
data, which can improve translation outcomes, emphasizing the value of example quality
and relevance (Zhang, Haddow, and Birch, 2023).

Vilar et al. (2023) reinforced these findings by systematically assessing various example
selection strategies and concluded that example quality is the most critical factor, sur-
passing both domain alignment and semantic proximity to the input text. Their analyses
using modern MT metrics and human evaluation indicate that carefully selected, high-
quality examples substantially improve translation performance, although state-of-the-art
supervised systems still maintain an overall advantage (Vilar et al., 2023).

Our own findings further reinforce the critical role of example quality, as we observed
substantial performance degradation when deliberately introducing errors into in-context
examples, such as mismatched source-target pairs, translations labeled with incorrect
languages, and grammatical inaccuracies.

3.3. Understanding the Mechanisms of In-Context Learning

The underlying mechanisms enabling large language models (LLMs) to perform in-context
learning (ICL) remain an active area of research. Recent theoretical (Xie et al., 2021) and
empirical (Sia, Mueller, and Duh, 2024; Tao, Chen, and N. F. Liu, 2024; Yin and Steinhardt,
2025) studies have contributed to a clearer understanding of how LLMs effectively leverage
provided examples.

Theoretical explanations (Xie et al., 2021) have proposed that ICL can emerge naturally
through implicit Bayesian inference when pretraining data exhibits long-range coherence.
Xie et al. (2021) showed that in-context learning occurs as LLMs infer a latent, document-
level concept from examples provided in the prompt, even when there is a distribution
mismatch between prompts and pretraining data. They demonstrated this mechanism
formally using a synthetic dataset (GINC (Xie et al., 2021)), highlighting that the quality
of in-context learning improves with model size and the number of examples, despite
maintaining identical pretraining losses (Xie et al., 2021).

Empirical studies by Sia, Mueller, and Duh (2024) have localized a critical "task recog-
nition" point within the model layers, beyond which the specific task (e.g., translation
or code generation) is effectively encoded into internal representations. At this point,
further attention to the input context becomes redundant. Experiments demonstrated that
masking input context from later layers still maintained task performance, suggesting
substantial computational savings and implications for efficient fine-tuning (Sia, Mueller,
and Duh, 2024). Moreover, this research underscored that parameter-efficient fine-tuning
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methods, such as LoRA (Hu et al., 2021), are particularly effective at layers preceding the
task recognition point (Sia, Mueller, and Duh, 2024).

In parallel, Tao, Chen, and N. F. Liu (2024) identified two sequential processes within
LLMs during ICL: an inference function that generates a latent task representation and a
subsequent verbalization function that maps this representation to specific output labels.
Their controlled interventions revealed that the inference function remains invariant to
changes in label spaces, reinforcing the idea of a shared underlying inference mechanism
across different ICL settings. Further analysis localized these two functions within distinct
sets of layers, suggesting that the model’s internal structure differentiates inference and
verbalization explicitly (Tao, Chen, and N. F. Liu, 2024).

Adding to these findings, Yin and Steinhardt (2025) distinguished two specific atten-
tion head mechanisms crucial to ICL: induction heads and function vector (FV) heads.
Induction heads specialize in identifying and replicating relevant token patterns, while FV
heads encode task-specific latent representations. Through detailed ablation studies, they
demonstrated that FV heads are predominantly responsible for improved few-shot ICL
performance, especially in larger models. Many FV heads initially function as induction
heads early in the training process before transitioning to their more sophisticated roles,
indicating a developmental interplay between these two mechanisms (Yin and Steinhardt,
2025).
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To examine the impact of in-context example quality on Large Language Model (LLM)
performance in machine translation (MT), we design controlled experiments that reflect
common issues in real-world data. These experiments are grounded in the systematic
construction and manipulation of prompts containing in-context examples derived from
benchmark datasets (Section 4.1), outlining both the baseline prompt construction process
and specific modifications applied to assess the impact of example quality. This chapter
then explains the technical setup employed for inference (Section 4.2), including the
selection of models, datasets and languages, and computational infrastructure. Finally,
we introduce the metrics used to quantitatively evaluate translation outputs, as well
as describe the language identification method implemented to ensure the validity of
generated translations (Section 4.3). The results of these experimental evaluations are
presented and analyzed in Chapter 5.

4.1. Experiments

To comprehensively investigate the influence of in-context example quality on the trans-
lation capabilities of large language models (LLMs), we designed a series of controlled
experiments. These experiments will systematically evaluate how different aspects of
example quality — such as language resource level, grammatical correctness, and the
presence of incorrect or missing translations — affect translation performance. Each of
these experimental manipulations simulates common issues encountered in real-world
translation datasets — such as missing parallel corpora, incorrect language annotations,
and human-induced noise. Understanding the specific ways in which example quality
impacts performance is crucial for optimizing LLM-based translation systems, particularly
given the variability and noise inherent in real-world translation data.

We begin by establishing baseline performance using standardized prompts containing
correctly aligned in-context examples. These baseline prompts provide a reliable refer-
ence point against which the impact of manipulated example quality can be measured.
Subsequent experiments systematically explore conditions reflecting realistic challenges:
the absence of source sentences (Section 4.1.2), mislabeled or entirely incorrect target
languages (Section 4.1.3), mismatches between source sentences and translations (Sec-
tion 4.1.4), and grammatical inaccuracies such as reordered words and spelling mistakes
(Section 4.1.5).
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4.1.1. Baseline

To establish baseline performance for evaluating the impact of in-context example quality
on machine translation using Large Language Models (LLMs), we construct prompts
following standardized chat templates. Each prompt includes a system instruction that
explicitly defines the translation task, specifying both the source and target languages.
Although the in-context examples are presented in various languages, both the system
instruction and the language labels are written in English, as English templates have been
shown to perform best for machine translation tasks (Zhang, Haddow, and Birch, 2023).
In-context examples are uniformly randomly sampled from parallel sentence datasets (see
Section 4.2.2) relevant to the specified language pair. These examples are then presented
as a chat exchange: the user message contains a source-language sentence! prefixed by its
language, and the assistant message provides the corresponding translation. Four prompt
variants are used, incorporating 0, 2, 4, or 8 in-context examples. We limit the number
of in-context examples to 8, as prior work indicates that increasing beyond a certain
threshold yields only marginal performance gains (Zhang, Haddow, and Birch, 2023).
Additionally, using 8 examples fully saturates our available GPU memory (24 GB). The
final user message presents the sentence to be translated by the LLM. The exact prompt
syntax depends on the specific model and is dynamically generated using the Huggingface
API. Figure 4.1 shows an example prompt with two in-context examples using the Llama
3.1 chat template syntax.

4.1.2. Target-Only Translations

In some cases, instance—translation pairs may not be available — for example, when
translations are collected independently from their source texts or when only monolingual
corpora exist for low-resource languages. Target-only sentences also often reflect the
desired text style or domain of interest, which may guide the model’s generation and
improve translation quality. This experiment investigates whether language models still
benefit when only target-language sentences are provided as in-context examples. The
original prompt is modified by removing the source instances from the in-context examples,
as illustrated in Figure 4.2.

4.1.3. Wrong Target Language

Previous work has examined the importance of correct label mappings for in-context
examples across various classification tasks (Min et al., 2022b; Yoo et al., 2022; Jerry Wei
et al., 2023). However, the impact of incorrect label mappings in machine translation
remains unexplored. This study addresses this gap through two experiments. In the first,
we explicitly set the prefixed language label to French for all translations, as shown in

Although the actual input may consist of multiple sentences, for simplicity we refer to them collectively
as a single sentence.

2h‘ctps://huggingface.co/docs/t ransformers/main/en/chat_templating

3h‘ctps ://www.1llama.com/docs/model-cards-and-prompt-formats/1lama3_1/
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4.1. Experiments

<|begin_of_text|>

<|start_header_id|>system<|end_header_id|>
You are a professional translator.
Translate the German sentence into English.<|eot_id|>

<|start_header_id|>user<|end_header_id|>
German: Alex fing seinen Ball.
English:<|eot_id|>

<|start_header_id|>assistant<|end_header_id|>
Alex caught his ball.<|eot_id|>

<|start_header_id|>user<|end_header_id|>
German: Mia schrieb eine Notiz.
English:<|eot_id|>

<|start_header_id|>assistant<|end_header_id|>
Mia wrote a note.<|eot_id|>

<|start_header_id|>user<|end_header_id|>
German: Sam schwang seinen Schlager.
English:<|eot_id|>

Figure 4.1.: Example prompt for German-to-English translation using the Llama 3.1 chat
template syntax’with two in-context examples. The system instruction has
been simplified compared to the original, and the in-context examples use
manually selected, simplified sentences rather than actual instances from

German:

English: Alex caught his ball.

German:

English: Mia wrote a note.

German:

datasets.

Alex fing seinen Ball. English: Alex caught his ball.

Mia schrieb eine Notiz. -

English: ?
Sam schwang seinen Schlager.

English: ?

English: Mia wrote a note.

German: Sam schwang seinen Schlager.

Figure 4.2.: Prompt example with the Target Only Translations modification. The syntax is

simplified; the exact prompt format is shown in Figure 4.1.
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Figure 4.3. In the second, we use Spanish translations instead of the correct target language,
as illustrated in Figure 4.4.

German: Alex fing seinen Ball. German: Alex fing seinen Ball.
English: Alex caught his ball. French: Alex caught his ball.
German: Mia schrieb eine Notiz. — German: Mia schrieb eine Notiz.
English: Mia wrote a note. French: Mia wrote a note.

German: Sam schwang seinen Schlager. German: Sam schwang seinen Schlager
English: ? English: ?

Figure 4.3.: Prompt example with the Wrong Target Language Label modification.

German: Alex fing seinen Ball. German: Alex fing seinen Ball.

English: Alex caught his ball. Spanish: Alex encontrd su balédn.
German: Mia schrieb eine Notiz. — German: Mia schrieb eine Notiz.
English: Mia wrote a note. Spanish: Mia escribié una nota.

German: Sam schwang seinen Schlager. German: Sam schwang seinen Schlager
English: ? English: ?

Figure 4.4.: Prompt example with the Wrong Target Language modification.

4.1.4. Mismatched Translations

To further investigate which components of in-context examples most influence the
model’s ability to perform in-context learning, we propose an experiment where all in-
context examples contain incorrect translations, as shown in Figure 4.5. Each source
sentence is paired with a randomly selected target-language sentence from the dataset,
resulting in fully mismatched instance-translation pairs. This experiment tests whether
the model relies on semantic alignment between source and target sentences or can still
leverage target-language priors (e.g., exposure to fluent English) or structural patterns
(e.g., consistent punctuation or sentence structure).

4.1.5. Grammatical Errors

Existing translations are often produced by humans and may contain grammatical errors or
spelling mistakes. Ideally, the model should remain robust to such noise in the in-context
examples. However, prior work has not systematically investigated the impact of these
types of disturbances. Since such imperfections are common in real-world data (Dahlmeier,
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German: Alex fing seinen Ball. German: Alex fing seinen Ball.
English: Alex caught his ball. English: Noah found a coin.
German: Mia schrieb eine Notiz. — German: Mia schrieb eine Notiz.
English: Mia wrote a note. English: Sophia took a photo.

German: Sam schwang seinen Schlager. German: Sam schwang seinen Schlager
English: ? English: ?

Figure 4.5.: Prompt example with the Mismatched Translations modification.

Ng, and Wu, 2013; Belinkov and Bisk, 2018; Hagiwara and Mita, 2019), understanding
their effect on in-context learning is essential for practical deployment. To address this
gap, we propose two experiments: (1) randomly reordering words within a sentence
(Section 4.1.5.1), and (2) introducing spelling errors into sentences (Section 4.1.5.2).

4.1.5.1. Reordered Words

We simulate grammatical errors by reordering words within a sentence. This is imple-
mented by iterating over each word and, with a probability of 20% or 40%, removing the
word and reinserting it at a random position within the sentence. Figure 4.6 illustrates this
procedure applied to target-language translations. We apply this method under three con-
ditions: reordering only the source sentence, only the target sentence, or both. Combined
with the two noise levels (20% and 40%), this yields a total of six experimental settings.

German: Alex fing seinen Ball. German: Alex fing seinen Ball.
English: Alex caught his ball. English: Alex <> his ball caught.
German: Mia schrieb eine Notiz. — German: Mia schrieb eine Notiz.
English: Mia wrote a note. English: Mia a wrote <> note.

German: Sam schwang seinen Schlager. German: Sam schwang seinen Schlager
English: ? English: ?

Figure 4.6.: Prompt example with the Reordered Words modification applied to target sen-
tences. Angle brackets <> indicate the original word positions for visualization
purposes only and are not included in the actual prompt.

4.1.5.2. Spelling Mistakes

We simulate spelling errors by introducing character-level noise, following a procedure
similar to that used for word reordering in Section 4.1.5.1. Specifically, we iterate over each
adjacent pair of characters and, with a probability of 20% or 40%, swap the two. Figure 4.7
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demonstrates this applied to target-language translations. As before, we consider three
conditions: modifying only the source sentence, only the target sentence, or both, resulting
in six experimental settings.

German: Alex fing seinen Ball. German: Alex fing seinen Ball.
English: Alex caught his ball. English: Alex cauhgt his ball.
German: Mia schrieb eine Notiz. — German: Mia schrieb eine Notiz.
English: Mia wrote a note. English: Mia wrote a ntoe.

German: Sam schwang seinen Schlager. German: Sam schwang seinen Schléager
English: ? English: ?

Figure 4.7.: Prompt example with the Spelling Mistakes modification applied to target
sentences. Spelling errors are indicated by italicized character pairs.

4.2. Technical Setup

The prompts generated in Section 4.1 are used as input to the Large Language Mod-
els (LLMs) to produce output translations. Inference is executed via the HuggingFace
Transformers API, which downloads the models given their identifiers. The prompts
are tokenized before inference. LLMs are run using greedy decoding, and generation is
performed in batches. To save time and avoid repeated failures due to variable memory
demands across batches, a dynamic batching algorithm monitors VRAM usage and adjusts
the batch size accordingly: it increases the batch size if sufficient VRAM is available
and decreases it when out-of-memory errors occur. All experiments are conducted on a
university server equipped with an NVIDIA Titan RTX GPU with 24 GB of VRAM.

4.2.1. Large Language Models

We aim to assess the translation capabilities of both general-purpose instruction-tuned
models and models specifically fine-tuned for machine translation, to understand when it
is beneficial to switch to a more specialized model. General-purpose models are more com-
monly used in real-world applications (e.g., GPT, Gemini, Llama), making their evaluation
critical for practical relevance. For this role, we select Llama 3.1 8B Instruct (Grattafiori et
al., 2024), an open-source, state-of-the-art model frequently used in scientific benchmarks.
To compare, we include TowerlInstruct 7B v0.2 (Alves et al., 2024), which is specifically
fine-tuned for machine translation instructions and has demonstrated strong zero-shot per-
formance across multiple languages. The "Instruct"” designation indicates that these models
are fine-tuned for instruction-following tasks. For brevity, we refer to them as Llama 3.1
and Tower. Both models follow a decoder-only transformer architecture (Vaswani et al.,
2023) and are pretrained using next-token prediction on unlabeled multilingual text. They
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Model | Parameters HuggingFace-ID
Llama 3.1 8B meta-llama/Meta-Llama-3.1-8B-Instruct
Tower v0.2 7B Unbabel/TowerInstruct-7B-v0.2
Llama 2 7B meta-llama/Llama-2-7b-chat-hf

Table 4.1.: Large Language Models used for inference, along with their parameter sizes
and corresponding HuggingFace identifiers.

are subsequently fine-tuned on a selected set of languages, including English and German.
Czech, Ukrainian, and Nepali are not part of the fine-tuning set.

4.2.1.1. Llama 3.1

Llama 3.1 adopts a slightly modified architecture compared to Llama 2 (Touvron et al.,
2023). However its main advancements lie in improved training data quality and fine-
tuning procedures. The model is pretrained on 15T multilingual tokens. Although Llama
supports multiple languages, in contrast to Tower, Llama is not specifically fine-tuned for
machine translation tasks. Instead, it serves a more general-purpose role, with capabilities
in code generation, mathematical reasoning, and tool use such as interacting with search
engines or code interpreters (Grattafiori et al., 2024).

4.2.1.2. Tower

Tower builds on the pretrained Llama 2 (Touvron et al., 2023) model and applies additional
fine-tuning strategies with a primary focus on machine translation tasks. It is initially
pretrained on 1.8T tokens (Touvron et al., 2023), followed by further pretraining on
20B cross-lingual tokens. Unlike Llama 3.1, Tower incorporates post-training data that
includes few-shot translation prompts. While translation is the main focus, 43% of the post-
training data consists of general-purpose tasks such as code generation and conversational
interactions (Alves et al., 2024).

4.2.1.3. Llama 2

We include Llama 2 (Touvron et al., 2023) to assess the effectiveness of Tower’s additional
pretraining and fine-tuning strategies. To ensure comparability and reduce computa-
tional cost, we evaluate Llama 2 only on unperturbed in-context examples, aligning with
the Tower baseline configuration. Llama 2 is primarily pretrained (on 1.8T tokens) and
instruction fine-tuned on English data. Unlike Tower, no specific fine-tuning targeting
multilinguality or translation tasks is applied (Touvron et al., 2023). This setup allows us
to isolate the impact of Tower’s translation-oriented fine-tuning relative to its base model.

4.2.2. Datasets

We require high-quality parallel texts across multiple languages with varying resource
levels to systematically evaluate translation performance under controlled conditions. For
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Table 4.2.: Summary of dataset statistics, including the number of instances per language
and average instance length in characters. Flores contains parallel instances
shared across all listed languages. WMT provides distinct instances for each
language pair. Flores+ devtest and WMT 2023 are used to sample in-context
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Dataset Languages Instances | Avg. Instance Length
Flores+ devtest English 1012 131.40
Flores+ devtest German 1012 152.99
Flores+ devtest Czech 1012 126.75
Flores+ devtest Ukrainian 1012 133.91
Flores+ devtest Nepali 1012 126.40

Flores+ dev English 997 126.57
Flores+ dev German 997 148.00
Flores+ dev Czech 997 123.18
Flores+ dev Ukrainian 997 130.28
Flores+ dev Nepali 997 122.15

WMT 2023 English-German 557 EN: 354.78, DE: 413.42
WMT 2023 English-Czech 2074 EN: 96.45, CS: 95.22
WMT 2023 English-Ukrainian 2074 EN: 96.45, UK: 99.14
WMT 2023 Czech-Ukrainian 2017 CS: 81.94, UK: 87.82
WMT 2024 English-German 998 EN: 185.64, DE: 216.03
WMT 2024 English—CzeCh 998 EN: 185.64, CS: 181.66
WMT 2024 English-Ukrainian 998 EN: 185.64, UK: 191.45
WMT 2024 Czech-Ukrainian 2317 CS: 79.74, UK: 85.18

examples; Flores+ dev and WMT 2024 serve as translation targets.
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this purpose, we use the Flores+ (NLLB Team et al., 2024) and WMT 2023/2024 (Kocmi,
Avramidis, Bawden, Bojar, Dvorkovich, Federmann, Fishel, Freitag, Gowda, Grundkiewicz,
Haddow, Koehn, et al., 2023; Kocmi, Avramidis, Bawden, Bojar, Dvorkovich, Federmann,
Fishel, Freitag, Gowda, Grundkiewicz, Haddow, Karpinska, et al., 2024) datasets. These
publicly available, widely adopted resources are specifically designed for machine trans-
lation tasks and provide parallel sentence pairs in a broad range of languages. These
publicly available and widely used resources are designed for machine translation tasks,
providing parallel sentences in multiple languages. A detailed overview of the datasets
is provided in Table 4.2. To avoid any overlap between in-context (IC) examples and
instances to be translated, we use separate sub-datasets. Flores+* provides two subsets:
"dev" and "devtest." We use "dev" for IC examples and "devtest" for translation targets.
WMT provides a single test set per domain; therefore, we use different years to ensure
separation. Specifically, WMT 2023° for IC examples, and WMT 2024° for instances to
translate. The models mentioned in Section 4.2.1 do not include these datasets in their
training data.

4.2.3. Languages

We aim to evaluate translation performance across both high- and low-resource languages,
and to examine how language model behavior varies depending on whether a language
was seen during instruction fine-tuning. For this reason, we select language pairs that
span a range of resource levels and training exposure. Czech and Ukrainian are included
due to their presence in both WMT and Flores+, providing a large and diverse set of
examples. Nepali, available only in Flores+, is chosen to represent an additional low-
resource language. Given that Ukrainian shares significant linguistic features with Russian
and Nepali with Hindi, these pairs provide an opportunity to test whether the models can
accurately translate into the intended target language or if they inadvertently conflate them
with their closely related counterparts. German, a high-resource language, is included for
reference but limited to combinations with English to reduce inference cost. Figure 4.3
lists the languages used for prompt generation. In total, 14 directed language pairs are
employed:

DE — EN, EN — DE, CS — EN, EN — CS
UK — EN, EN — UK, NE — EN, EN — NE
CS — UK, UK — CS, NE — UK, UK — NE
NE — CS, CS — NE

The selection of Czech and Ukrainian is further constrained by WMT coverage: only
language pairs present in both WMT 2023 and WMT 2024 are considered.

4At the time of development, Flores+ was available at https://github.com/openlanguagedata/flores.
At the time of writing, it has been migrated to https://huggingface.co/datasets/openlanguagedata/
flores_plus

5h‘ctps ://github.com/wmt-conference/wmt23-news-systems

6ht‘cps ://github.com/wmt- conference/wmt24-news-systems

"https://en .wikipedia.org/wiki/List_of_IS0_639_language_codes
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Language | Code | Resource Level | Included in Original Fine-Tuning
English EN high yes
German DE high yes
Czech CS medium no
Ukrainian | UK low no
Nepali NE low no

Table 4.3.: Languages used for prompt generation, including ISO 639 codes’, resource
levels, and whether the models (Llama 3.1 and Tower) were fine-tuned on them.

4.3. Evaluation

To extract meaningful insights from raw LLM-generated translations, we require quan-
titative measures that allow for systematic comparison. In Section 4.3.1, we introduce
automatic metrics that assign scores reflecting semantic adequacy, fluency, and overall
translation quality — crucial for assessing how well the models convey intended meaning.
In Section 4.3.2, we also apply automatic language identification to verify whether models
adhere to target language instructions, as incorrect language usage undermines validity.
The results of these evaluations are examined further in Chapter 5.

4.3.1. Metrics

To estimate how well each LLM-generated translation conveys the intended meaning, we
compute three complementary evaluation scores. The first is COMET-22 (Rei et al., 2022),
a neural metric trained on human judgments that uses both the source and a reference
translation to evaluate semantic adequacy and fluency with respect to the intended output.
We also include COMET-Kiwi (Rei et al., 2022), a reference-free variant that relies solely
on the source input. While it offers insight into the general quality of the output sentence,
it may fail to detect translation errors as it lacks access to the intended target language.
Finally, we use SacreBLEU® (Post, 2018), a fast n-gram-based metric comparing the output
to a reference. Despite its limitations in handling synonymous or semantically equivalent
phrasing, SacreBLEU provides a useful complementary signal and can be more robust
when COMET struggles with language recognition.

4.3.2. Output Language Identification

During experimentation, we observed that LLMs occasionally fail to translate into the
intended target language, instead producing output in an unintended language. This
phenomenon has also been reported in prior work (Bawden and Yvon, 2023). To better
analyze this behavior, we perform language identification on each LLM output to verify
correct language usage. For this, we use the fastText model 1id.179.ftz’ from Meta
(Joulin, Grave, Bojanowski, Douze, et al., 2016; Joulin, Grave, Bojanowski, and Mikolov,

8BLEU|nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.0.0
‘nttps://fasttext. cc/docs/en/language-identification.html
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2016), which supports 176 languages, including all those considered in this thesis (see
Section 4.2.3).

23






5. Results and Analysis

This chapter presents the experimental results gathered through the process described in
chapter 4 and accompanying analyses, aiming to answer the research questions regarding
the influence of in-context example quality on machine translation performance. The
findings are derived from a series of controlled experiments that systematically vary the
in-context examples—ranging from the number of examples provided to specific manipu-
lations such as target-only translations, language mismatches, and induced grammatical
errors. The models used are Llama 3.1 and Tower. We evaluate outputs using SacreBLEU,
COMET-22, and COMET-Kiwi, and also perform language identification to verify adher-
ence to target language specifications. For simplicity, we only report COMET-22 scores
unless other metrics exhibit divergent trends.

First, in Baseline (Section 5.1), we establish reference performance using unmodified
prompts and examine how language selection and the number of few-shot examples
influence model outputs. Subsequent sections explore specific experimental conditions
designed to test the robustness and adaptability of the models. Specifically, we examine the
efficacy of target-only in-context examples in scenarios with limited or monolingual data
(Section 5.2), investigate the consequences of incorrect language information through mis-
labeled or entirely incorrect translations (Section 5.3), analyze the importance of semantic
alignment via mismatched source-target pairs (Section 5.4), and assess the resilience of
models to input noise caused by controlled grammatical disruptions (Section 5.5).

An overall discussion of the findings is provided in Chapter 6.

5.1. Baseline

In this section, we establish baseline performance to serve as a reference point for subse-
quent analyses. We examine how the choice of language pairs and the number of few-shot
examples provided influence translation quality, focusing primarily on assessing the extent
to which the models—Llama 3.1 and Tower—exhibit in-context learning capabilities. By
evaluating these baseline conditions, we provide a foundation for interpreting the effects
of the experimental manipulations detailed in later sections.

5.1.1. Llama Exhibits In-Context Learning

Across all evaluated language pairs, Llama 3.1 demonstrates improved translation quality
as the number of in-context examples increases, as shown in Figures 5.1 and 5.3. This
aligns with the general expectation that more examples enhance translation performance,
as previously demonstrated by T. B. Brown et al. (2020). This suggests that fine-tuning
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strategies can further improve performance until few-shot prompting becomes redundant,
with zero-shot performance approaching optimality.

5.1.2. Tower Shows Limited In-Context Learning on Fine-Tuned Languages

Tower outperforms Llama 3.1 only on the English-German and German-English language
pairs. In both directions, Tower’s zero-shot performance exceeds Llama’s 8-shot results (see
Figure 5.1). These are the only pairs for which Tower was fine-tuned on both source and
target languages, indicating that Tower performs competitively only when both languages
were seen during fine-tuning. This is further supported by the results in Figure 5.3, which
show that Tower underperforms compared to Llama 3.1 on language pairs not included in
its fine-tuning set.

Notably, Tower’s performance does not improve with additional in-context examples
for German-English, suggesting it fails to leverage in-context learning. In fact, for both
German-English and English—-German, performance degrades beyond 4-shot prompts,
even falling below zero-shot levels. Tower is fine-tuned with up to 5-shot instruction
prompts (Alves et al., 2024), which may explain its limited robustness to longer prompts.
Architectural constraints also play a role: Llama 3.1 supports a 128K-token context win-
dow (Grattafiori et al., 2024), while Tower is limited to 4K tokens (Alves et al., 2024).
Empirical analysis shows that 8-shot prompts can occupy half of Tower’s context window,
likely reducing attention to earlier tokens containing translation instructions.

Since Tower is based on Llama 2 (Touvron et al., 2023) - only further pretrained and
instruction fine-tuned for translation tasks (Alves et al., 2024) — we report Llama 2 scores in
Figure 5.2 for direct comparison. Tower clearly outperforms Llama 2 by a wider margin than
it does Llama 3.1 (cf. Figure 5.1). In all settings, Llama 2 demonstrates in-context learning,
with few-shot scores exceeding zero-shot performance. This gain is more pronounced for
German—ZEnglish, but even for English—German, the improvement from zero-shot to
4-shot is higher for Llama 2 (1.8 percentage points) than for Tower (0.4 percentage points),
which represents the maximum gain observed in that direction. These results highlight the
effectiveness of Tower’s translation-optimized fine-tuning strategies, even in the absence
of strong in-context learning behavior.

5.1.3. Tower’s Language Output Improves with In-Context Examples

While Llama 3.1 handles a wide range of target languages reliably, Tower struggles with
low-resource languages, especially when English is not the source language. In several
cases, Tower fails to generate output in the correct target language. We observe three
distinct error modes:

« Translating into English instead of the target language, particularly in zero-shot
settings. When English is also the source language, Tower either copies the input or
paraphrases it in approximately half of the tested cases.

« Translating into the source language instead of the target.
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Figure 5.1.: Tower outperforms Llama 3.1 in average baseline COMET-22 scores when all
translation directions involve languages seen during fine-tuning. Left: German-
to-English translations. Right: English-to-German translations. Scores are

shown for Tower (blue) and Llama 3.1 (orange).

English = German

German - English
0.875
-——— e
0.80
n 0.850 0
g IS
o o
8 0.825 8 0.75
N N —— Tower
Y 0.800 ) Llama 2
= 5 0.70
20.775 2
O —— Tower ©0.65
0.750 Llama 2
0 2 4 8 0 2 4 8

Number of IC-Examples Number of IC-Examples

Figure 5.2.: Tower achieves higher average baseline COMET-22 scores than Llama 2. Llama
2 demonstrates in-context learning for German—English, whereas Tower
does not. Left: German-to-English translations. Right: English-to-German
translations. Scores are shown for Tower (blue) and Llama 2 (orange).
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Figure 5.3.: Llama 3.1 outperforms Tower in average baseline COMET-22 scores when
at least one language in the translation direction was not seen during fine-
tuning. Left: English to untrained language translations. Middle: Untrained
language to English translations. Right: Untrained language to untrained
language translations. Untrained languages are Czech, Ukrainian, and Nepali —
languages on which neither model was fine-tuned. Scores are shown for Tower

(blue) and Llama 3.1 (orange).
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« Translating into a linguistically related but incorrect language, such as Russian
instead of Ukrainian or Hindi instead of Nepali.

These behaviors are illustrated in Figure 5.4. Despite these issues, increasing the number
of in-context examples improves Tower’s ability to generate outputs in the correct target
language. Similar improvements with few-shot prompting have been observed in prior
work (Bawden and Yvon, 2023), where incorrect language generation is greatly reduced
in the few-shot setting. In Figure 5.5 We also report SacreBLEU scores for translations
into non-fine-tuned languages. As the output language quality improves, BLEU scores
increase accordingly — an expected outcome, given BLEU’s reliance on n-gram overlap.
However, contradicting results emerge when comparing SacreBLEU with COMET-22
scores for English — Untrained (Compare Figures 5.3 and 5.5). While SacreBLEU scores
rise, COMET-22 scores decrease. An increase in BLEU may suggest better surface-level
alignment with references, but this can come at the cost of semantic adequacy and fluency.
COMET, which better correlates with human judgments, may penalize overly literal
translations that miss contextual nuances. With additional in-context examples, the model
may overfit to specific structures or phrasings, increasing BLEU due to more n-gram
matches, yet decreasing COMET as output flexibility and meaning preservation decline.
Ultimately, this phenomenon requires further investigation.
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Figure 5.4.: Tower translation outputs for the Czech-to-Ukrainian direction. In the zero-
shot setting, some outputs are incorrectly translated into English. Across
all few-shot settings, two persistent error types appear: translations into
the source language (Czech) and into a related language (Russian instead of
Ukrainian).

5.2. Target-Only Translations

In this section, as described in Section 4.1.2, we investigate how translation performance
is affected when in-context examples contain only target-side translations, simulating
conditions of limited or monolingual data. We analyze whether exposure solely to target
language sentences, without corresponding source-target alignments, can still enhance
translation quality. This evaluation provides insights into the extent to which the models
rely on explicit source-target mappings versus general target language patterns.
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Figure 5.5.: According to SacreBLEU scores, Tower improves translation quality for lan-
guages outside the fine-tuned set. Left: English to untrained language transla-
tions. Right: Untrained language to untrained language translations. Untrained
languages are Czech, Ukrainian, and Nepali—languages on which neither model
was fine-tuned. Y-axis scales are consistent across models (offsets may differ)
for comparability.

5.2.1. Baseline Outperforms Target-Only Prompts

As Figures 5.6 and 5.7 show, both Llama 3.1 and Tower consistently achieve better trans-
lation quality in baseline settings compared to target-only prompts across all language
pairs. This demonstrates that both models significantly leverage source-to-target mappings
provided by full in-context examples, rather than simply relying on exposure to target
language patterns. This finding aligns with prior work by Zhang, Haddow, and Birch
(2023), which shows that using monolingual examples for prompting degrades translation
quality. Specifically, for Llama, zero-shot baseline performance surpasses few-shot target-
only results in English—German and German—English translations, suggesting minimal
utility from target-only prompts in settings involving fine-tuned languages, as illustrated
in Figure 5.6. Tower exhibits similar behavior, generally showing little to no improvement
from target-only prompts compared to baseline performance.

5.2.2. Translation Improvements Limited to Non-Fine-Tuned Languages

As shown in Figure 5.7 for both models, improvements from target-only prompts are
primarily observed when translating into languages not included during fine-tuning.
Llama achieves slightly better performance in these scenarios with target-only prompts
compared to zero-shot translations, indicating that exposure to target language structures
alone can marginally boost translation quality. Tower also benefits in settings involving
translations between languages not seen during fine-tuning, with modest improvements
evident in few-shot target-only scenarios. This suggests that when source-target mappings
are unavailable, any exposure to target translations can partially assist in generating more
accurate outputs.
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Figure 5.6.: Average COMET-22 scores for German-English translations in the Target-Only
setting. In-context examples include only the target translation. Left: Llama
3.1; Right: Tower. Y-axis scales are consistent across models (offsets may differ)
for comparability.
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Figure 5.7.: Average COMET-22 scores for translations involving non-fine-tuned languages
in the Target-Only setting. In-context examples include only the target trans-
lation. Left: Llama 3.1; Right: Tower. Untrained refers to languages neither
model was fine-tuned on (Czech, Ukrainian, Nepali). Y-axis scales are consis-
tent across models (offsets may differ) for comparability.
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5.2.3. Target-Only Prompts Reduce Language Output Accuracy

Introducing target-only in-context examples negatively impacts language accuracy, par-
ticularly evident in Llama’s performance when translating into English (see Figure 5.6a
and 5.7a). For instance, transitioning from zero-shot to two-shot target-only prompts
triggers a significant drop in performance due to the model incorrectly generating outputs
in the source language or an entirely different language. Specifically, in German—English
translations (Figure 5.8a), German outputs begin to appear at the two-shot level. Similarly,
for Nepali—English translations (Figure 5.8b), both Nepali and Hindi outputs emerge
starting from two-shot prompts. However, accuracy partially recovers with four-shot and
eight-shot prompts, indicating that increased exposure eventually aids language stabiliza-
tion. Tower exhibits increased difficulty in maintaining correct target language outputs
when using target-only examples, as shown in Figure 5.9 for English—Ukrainian transla-
tions. The distribution reveals that target-only prompting leads to less accurate language
outputs compared to the baseline, highlighting Tower’s reliance on explicit source-target
mappings.
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Figure 5.8.: Language distributions in Target-Only translations using Llama 3.1. Additional
outputs in languages other than English emerge due to the absence of source
sentences and are not observed in the baseline.
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Figure 5.9.: Language distributions for English—Ukrainian Target-Only translations using
Tower. Darker shades indicate Target-Only outputs; lighter shades represent
corresponding baseline outputs. The results show that Target-Only translations
yield less accurate language outputs compared to the baseline.

5.2.4. Importance of Source-Target Mappings

The observed results strongly suggest that explicit mappings between source sentences
and their translations significantly influence translation performance. Both models clearly
struggle more with correct language identification and generate lower-quality translations
in target-only settings compared to their baseline counterparts. Hence, the presence of
aligned source-target examples is essential for robust translation quality, particularly
when dealing with languages outside the models’ fine-tuned repertoire. While this study
only examined the absence of source sentences in in-context examples, future work could
investigate the impact of omitting target translations. Notably, prior evidence indicates
that source sentences contribute more substantially to performance (Zaranis, Guerreiro,
and Martins, 2024).

5.3. Wrong Target Language

In this section, as described in Section 4.1.3, we explore how translation performance
is influenced when in-context examples contain incorrect target language information.
Specifically, we evaluate scenarios where either language labels or entire translations
provided in the examples do not match the intended target language. These experiments
reveal contrasting behaviors between the Llama and Tower models, shedding light on the
robustness of their in-context learning strategies and their reliance on explicit language
identification cues versus semantic and contextual information.

5.3.1. Models Ignore Wrong Language Labels

We first investigate the influence of incorrect language labels by setting the target language
labels in the in-context examples to French, regardless of their actual target language. For
instance, an English-to-German example would be labeled as "English: <English sentence>
French: <German translation>". Both models demonstrate only negligible performance
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variations compared to the baseline, which are likely due to random sampling of the
few-shot examples. This behavior is consistent across fine-tuned and non-fine-tuned
languages (see Figures 5.10 and 5.11). This strongly suggests that neither Llama nor Tower
rely significantly on the explicit language labels within the prompts. Instead, both models
prioritize meaningful cues from the translation pairs themselves, effectively ignoring
superficial language labeling inaccuracies. These findings align with existing literature
on label mapping robustness in classification tasks, where large language models have
demonstrated adaptability to incorrect label mappings (Min et al., 2022b; Yoo et al., 2022;
Jerry Wei et al.,, 2023). Further experimentation might explore scenarios where each
example’s language label is individually randomized rather than uniformly incorrect.
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Figure 5.10.: Average COMET-22 scores for translations involving fine-tuned languages in
the Wrong-Target-Language-Label setting. In-context translations are incor-
rectly prefixed with French instead of the actual target language. Left: Llama
3.1; Right: Tower. Y-axis scales are consistent across models (offsets may
differ) for comparability. Performance differences relative to the baseline are
negligible, suggesting that the models are robust to incorrect target language
labels.

5.3.2. No In-Context Learning When Translating Into English for Tower

In the second experiment, we consistently used Spanish translations in all in-context
examples, irrespective of the task’s actual (non-Spanish) target language. When translating
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Figure 5.11.: Average COMET-22 scores for translations involving non-fine-tuned lan-
guages in the Wrong-Target-Language-Label setting. In-context translations
are incorrectly prefixed with French instead of the actual target language.
Left: Llama 3.1; Right: Tower. Untrained refers to languages neither model
was fine-tuned on (Czech, Ukrainian, Nepali). Y-axis scales are consistent
across models (offsets may differ) for comparability. Performance differences
relative to the baseline are negligible, suggesting that the models are robust

to incorrect target language labels.
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from any language into English, Tower’s performance remains nearly unchanged compared
to its baseline (see Figures 5.12a and 5.13a). Tower appears not to leverage the provided
in-context examples at all in this setting. Given Tower’s optimization specifically for
translations into English and its fine-tuning on few-shot scenarios, this suggests that
Tower may have learned to selectively disregard in-context examples when they provide
no additional benefit, relying solely on its learned prior knowledge.

Llama 3.1: German - English Tower: German - English
M .
—— Baseline
0.8 p 0-92 Wrong Target Language
S S
0w . n
N 0.86 —— Baseline N 0.90
u*_l_: Wrong Target Language E
= =
0 0.84 (e} 0.88
O O
0.82 0.86
' 0 2 a 8 0 2 4 8
Number of IC-Examples Number of IC-Examples
(a) German — English
0.870 Llama 3.1: English - German Tower: English - German
' 0.878
»n 0.869 0
o 0 0.877
$0.868 S T
~ —— Baseline ~ 0-876
o 0.867 Wrong Target Language | &
E E 0.875
0.866
o o]
O 0 08741 —— Baseline
0.865 0.873 Wrong Target Language
0 2 4 8 0 2 4 8
Number of IC-Examples Number of IC-Examples

(b) English — German

Figure 5.12.: Average COMET-22 scores for translations involving fine-tuned languages in
the Wrong-Target-Language setting. In-context translations are incorrectly
prefixed with French instead of the actual target language. Left: Llama 3.1;
Right: Tower. Y-axis scales are consistent across models (offsets may differ)
for comparability. Llama and Tower exhibit contrasting behaviors, reflecting
differences in fine-tuning strategies.

Note: At first glance, English — German appears to show a significant
performance drop. However, closer inspection of the COMET-22 y-axis reveals
only minor deviations from baseline, indicating that both models handle this
condition relatively well.

5.3.3. Tower Relies on In-Context Examples for Non-Fine-Tuned Languages

For translation tasks involving target languages Tower was not fine-tuned on (Czech,
Ukrainian, Nepali), the presence of incorrect Spanish translations in the in-context ex-
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Figure 5.13.: Average COMET-22 scores for translations involving non-fine-tuned lan-
guages in the Wrong-Target-Language setting. In-context translations are
incorrectly prefixed with French instead of the actual target language. Left:
Llama 3.1; Right: Tower. Untrained refers to languages neither model was
fine-tuned on (Czech, Ukrainian, Nepali). Y-axis scales are consistent across
models (offsets may differ) for comparability. Llama and Tower exhibit con-
trasting behaviors, reflecting differences in fine-tuning strategies.
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amples significantly influences Tower’s outputs (see Figures 5.13b and 5.13c). The model
progressively shifts toward translating into Spanish as the number of few-shot examples
increases — an effect clearly illustrated in Figure 5.14 — despite instructions explicitly
specifying other target languages. This reveals Tower’s heavy reliance on in-context
examples for languages not encountered during fine-tuning, presumably due to a lack of
prior learned linguistic knowledge. Thus, Tower’s behavior sharply contrasts with scenar-
ios translating into English, highlighting its differential reliance on in-context examples
conditioned on prior linguistic familiarity.
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Figure 5.14.: Language distributions for Wrong-Target-Language translations with Tower.
In-context examples contain Spanish translations instead of the actual target
language. Tower increasingly defaults to Spanish as the number of few-shot
examples grows, despite explicit target language instructions.

5.3.4. In-Context Examples Override Llama’s Knowledge

Llama demonstrates a different vulnerability to incorrect in-context examples. Specifically,
when tasked with translations into English (a language on which Llama possesses sub-
stantial prior knowledge), Llama incorrectly starts translating into Spanish as prompted
by the misleading in-context examples. This trend is illustrated in Figure 5.15. Such
behavior contradicts both the task instructions and pre-existing knowledge, suggesting
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that Llama’s translation process may prioritize pattern completion over semantic or task-
specific comprehension. Consequently, Llama’s prior knowledge can be unintentionally
overwritten or misled through contradictory cues provided by misleading in-context
examples, particularly for language pairs involving well-trained target languages.
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Figure 5.15.: Language distributions for Wrong-Target-Language translations with Llama
3.1. In-context examples contain Spanish translations instead of the actual
target language. Llama 3.1 increasingly defaults to Spanish as the number of
few-shot examples grows, despite explicit target language instructions.

5.3.5. Llama Does In-Context Learning When Translating Into Non-Fine-Tuned
Languages

Contrary to Tower, Llama manages to leverage incorrect Spanish translations moder-
ately well when translating into languages it was not fine-tuned on (see Figures 5.13b
and 5.13c). From English to these languages, performance remains comparable to the
zero-shot baseline, indicating limited reliance on the provided examples (see Figure 5.13b).
More notably, translations from languages the model was not fine-tuned on (Untrained —
Untrained) consistently benefit, with all few-shot prompts yielding higher performance
than the zero-shot baseline (see Figure 5.13c). This suggests that Llama effectively exploits
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semantic priors contained within in-context examples, despite incorrect language labeling.
Unlike translations into English (as presented in Section 5.3.4), in these settings Llama’s
prior knowledge is not overridden, likely due to the absence of fine-tuning in the targeted
languages. Instead, the model successfully extracts useful semantic information from
translations provided in the wrong target language to enhance performance. This ability is
likely enabled by the fact that the incorrect target language — Spanish — is one Llama was
fine-tuned on. It may therefore be of interest for further research to explore similar setups
with incorrect target languages the model was not fine-tuned on, to examine whether it
can still leverage semantic cues without prior exposure.

These experiments highlight markedly contrasting behaviors between Llama and Tower
regarding their reliance on and sensitivity to provided in-context examples.

5.4. Mismatched Translations

Previous findings suggest that the presence of a source-target mapping (see Section 5.2),
even if the target is in another language (see Section 5.3), can improve translation qual-
ity. The latter suggests that contextual cues provided by these mappings may play an
important role. To further investigate this, in this section, as described in Section 4.1.4,
we analyze an experiment in which we purposefully mismatch the instances and trans-
lations in the in-context examples. Specifically, each source sentence is paired with a
randomly selected target-language sentence from the dataset, resulting in fully mismatched
instance—-translation pairs.

5.4.1. Llama’s Misaligned In-Context Learning Negatively Affects Performance

Across all tested language pairs, Llama’s translation performance deteriorates rapidly
when provided with mismatched source-target pairs (see Figures 5.16 and 5.17). This
degradation intensifies as the number of provided mismatched in-context examples in-
creases. Notably, this trend occurs even for language pairs that Llama was explicitly
fine-tuned on, indicating that mismatched translations can significantly override or distort
Llama’s pre-existing linguistic knowledge. This observation aligns with previous findings
(Section 5.3.4), confirming that Llama prioritizes pattern completion based on provided
contextual cues, potentially at the expense of task comprehension.

5.4.2. Tower is More Robust to Mismatched Translations

Although Tower’s translation quality also declines when given mismatched source-target
examples, the deterioration is notably slower compared to Llama (see Figures 5.16 and 5.17).
While Tower’s performance still falls below the zero-shot baseline, the impact of mis-
alignment remains comparatively limited, particularly in language pairs included during
fine-tuning. This robustness likely arises from Tower’s specialized fine-tuning on trans-
lation tasks with structured instruction prompts, potentially enabling it to detect and
disregard incoherent contextual mappings more effectively.
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Figure 5.16.: Average COMET-22 scores for translations involving fine-tuned languages in
the Mismatched-Translations setting. Each source sentence is paired with a
randomly selected target translation. Left: Llama 3.1; Right: Tower. Y-axis
scales are consistent across models (offsets may differ) for comparability. Both
models exhibit degraded performance, indicating that semantic alignment in
in-context examples is crucial for effective translation.
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paired with a randomly selected target translation. Left: Llama 3.1; Right:

Tower. Untrained refers to languages neither model was fine-tuned on (Czech,
Ukrainian, Nepali). Y-axis scales are consistent across models (offsets may
differ) for comparability. Both models exhibit degraded performance, indi-
cating that semantic alignment in in-context examples is crucial for effective

translation.
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5.4.3. Llama and Tower Do Not Leverage Target Language Priors

Both models show no benefit from exposure to correctly formed but misaligned source and
target sentences. They also fail to exploit structural patterns such as fluency, consistent
punctuation, or syntactic regularity (see Figure 5.17). These observations hold even for
languages not included in fine-tuning (see Figure 5.16). Translation quality consistently
falls below zero-shot levels, indicating that the essential value of in-context examples
resides primarily in their semantic and contextual alignment between source and target
sentences. This underscores the critical role of coherent source-target mappings for
effective in-context learning in machine translation.

5.5. Grammatical Errors

Existing translations used in practice often originate from human translators and may
contain grammatical or spelling errors. Ideally, machine translation models should demon-
strate robustness to such noise and maintain effective in-context learning capabilities. This
section, as described in Section 4.1.5, evaluates the robustness of Llama 3.1 and Tower
models against two types of introduced grammatical errors: randomized word order and
typos. We investigate the models’ sensitivity to these errors at varying noise levels (20%
and 40%) as described in Sections 4.1.5.1 and 4.1.5.2. More extensive results are provided
in Appendix A.1.

5.5.1. Both Models are Reasonably Robust to Grammar Errors

Both Llama 3.1 and Tower exhibit a reasonable degree of robustness to grammatical errors
introduced through randomized word order. Across all language pairs tested, the impact on
translation performance was negligible. Interestingly, both models demonstrated particular
robustness when translating into English, suggesting that English’s prevalence in training
data and fine-tuning contributes to resilience against such perturbations. Increasing the
noise level from 20% to 40% slightly amplified performance differences, but overall effects
remained minimal, emphasizing the models’ ability to extract semantic meaning despite
significant syntactic disruptions.

5.5.2. Llama is More Sensitive to Grammar Errors than Tower

When comparing the robustness of the two models, Llama 3.1 showed greater sensitivity
to grammatical disruptions than Tower, particularly regarding spelling errors (typos) (see
Figure 5.18). While Tower maintained near-baseline performance even at higher typo
levels, Llama exhibited larger deviations from its baseline performance. This behavior
aligns with previous observations (see Sections 5.3.4 and 5.4.1), suggesting that Llama
prioritizes in-context examples — even when faulty — potentially overriding its prior
knowledge. Conversely, Tower appears to be better equipped to disregard erroneous
in-context information, thus maintaining stable performance similar to previous findings
(see Sections 5.3.2 and 5.4.2).
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Figure 5.18.: Average COMET-22 scores for Untrained — Untrained translations with typos
in the in-context examples. Typos are simulated by swapping 40% of character
pairs in each sentence. Left: Llama 3.1; Right: Tower. Untrained refers to
languages neither model was fine-tuned on (Czech, Ukrainian, Nepali). Y-
axis scales are consistent across models (offsets may differ) for comparability.
Tower shows greater robustness to typos than Llama 3.1.

5.5.3. Target Errors Hurt Performance More Than Source Errors

Consistently across both experiments (randomized word order and typos), errors intro-
duced in target sentences of in-context examples had a more significant negative impact
than errors in source sentences (see Figure 5.18). This pattern held true for both models
and across varying noise levels, highlighting the importance both models place on the
quality of target translations provided in in-context examples. It underscores that the
semantic coherence and correctness of target-language examples are especially critical for
effective translation performance.

For Llama, another pattern emerges: errors in both source and target sentences degrade
performance less than errors in the target alone, as shown in Figure 5.18. This is not the
case for Tower, as demonstrated in Figure 5.19. The uniformity of the error patterns may
prevent the introduction of asymmetries between input and output, leading the model to
prioritize semantic understanding over surface-level grammatical correctness. Ultimately,
this behavior warrants further research.

5.5.4. Typos Significantly Impact Tower’s Performance on Fine-Tuned
Languages

An important exception to Tower’s overall robustness emerged specifically when translat-
ing between fine-tuned languages (English and German). Here, the simultaneous presence
of typos in both source and target sentences caused a notable performance degradation
(see Figure 5.19). Tower handles isolated source or target errors effectively, indicating a
cumulative negative effect only when errors were present on both sides simultaneously.
Furthermore, this vulnerability was exclusive to translations involving fine-tuned lan-
guage pairs; when at least one language was not included during fine-tuning, Tower’s
performance differences remained negligible. This finding highlights a nuanced limitation
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in Tower’s ability to maintain in-context learning robustness under compounded errors in
familiar linguistic contexts.
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Figure 5.19.: Average COMET-22 scores for German — English translations with typos in
the in-context examples. Typos are simulated by swapping 40% of character
pairs in each sentence. Tower’s performance degrades substantially when
typos are present in both the source and target, compared to when they
appear in only one.
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6. Conclusion

6.1. How Does In-Context Learning Performance Differ
Between General-Purpose and Translation-Optimized
Language Models?

To explore this question, we conducted comparative experiments using two state-of-the-art
models with contrasting design philosophies: Llama 3.1, a general-purpose instruction-
tuned model, and Tower, a model specifically fine-tuned for machine translation tasks.

« Llama 3.1 demonstrates significant susceptibility to the quality of in-context exam-
ples, with its prior knowledge frequently overridden by incorrect or mismatched
examples. This suggests that Llama heavily relies on contextual cues and semantic
mappings provided within the examples, sometimes at the expense of accurate task
comprehension.

« Tower, conversely, exhibits a higher capacity to ignore or disregard misleading
in-context examples, particularly in language pairs it has been fine-tuned on. This
robustness appears to stem from its specialized fine-tuning on structured, translation-
specific instruction prompts.

6.2. Does Using Incorrect or Random Translations as
In-Context Examples Hurt the Performance of Machine
Translation Tasks?

Yes, incorrect or randomly mismatched translations significantly degrade the performance
of machine translation tasks, especially for Llama 3.1, which heavily prioritizes pattern
matching from in-context examples. Llama often overrides its prior knowledge, even when
the examples are clearly faulty, resulting in compromised translation quality. Tower, while
more robust, still suffers performance drops when translations are completely misaligned.
However, for language pairs it was explicitly fine-tuned on, Tower relies more on its prior
knowledge and effectively ignores misleading examples. This indicates that semantic
and contextual coherence in in-context examples remains crucial, but model-specific
fine-tuning can mitigate some negative effects.
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6.3. How Do Grammatical Errors in In-Context Examples Affect
the Translation Quality?

Both models demonstrated reasonable robustness against grammatical errors, such as
randomized word order and spelling mistakes. However, Llama is notably more sensi-
tive, especially to spelling errors, which can substantially impact its translation quality.
Tower maintains stronger resilience to grammatical disruptions, particularly for fine-tuned
languages, unless errors are simultaneously present in both source and target examples,
indicating a nuanced limitation. Importantly, for both models, errors introduced in target
sentences consistently hurt performance more significantly than errors in source sen-
tences, underscoring the greater importance of accurate target translations in in-context
examples.

6.4. Model Selection Recommendations for In-Context
Machine Translation

Our findings underline that the effectiveness of in-context learning strongly influences
translation performance, albeit in different ways depending on the model’s fine-tuning
strategy. With this focus, we provide the following recommendations:

« Fine-Tuned Language Pairs: For translations involving languages that have been
extensively featured during a model’s fine-tuning — where structured, translation-
specific prompts were used — the role of in-context examples is relatively diminished.
In these scenarios, translation-optimized models are recommended since their
specialized fine-tuning reinforces robust translation performance even when the
in-context examples are limited or when their quality might not be ideal. Their
design allow them to effectively disregard misleading in-context cues.

+ Unseen and Low-Resource Languages: For language pairs outside the explicit
scope of fine-tuning, the model must rely more heavily on in-context learning. In
such cases, general-purpose models are preferred, provided that high-quality
and semantically coherent examples are available. Their translation performance
improves significantly when supported by carefully curated examples that help
reconstruct accurate semantic mappings and reduce susceptibility to poor-quality
contextual information.

+ Quality of Contextual Examples: Across both settings, the intrinsic performance
of a model is closely tied to the quality of the in-context examples. When the
examples are aligned with the task’s semantics and free from errors - especially in the
target language —even general-purpose models can achieve substantial performance
gains. Conversely, in cases with noisy or mismatched examples, the robust fine-
tuning of translation-optimized models can provide a critical safeguard by reducing
the negative influence of erroneous contextual cues.
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Ultimately, the choice between these models should reflect the balance between the
availability of high-quality in-context examples and the degree of fine-tuning available
for the target language pair. Fine-tuning strategies that are translation-specific diminish
reliance on in-context cues, whereas models optimized for general-purpose use can be
effectively boosted by leveraging meticulously curated contextual prompts.

6.5. Suggestions for Further Research
Future studies should explore:

« How different fine-tuning strategies specifically tailored to MT tasks can further
enhance the robustness and adaptability of models like Llama 3.1.

+ The impact of varying levels of semantic coherence in in-context examples, beyond
the binary mismatched or correct scenario.

« Further investigation into the robustness of these models against grammatical and
semantic noise in real-world translation scenarios.
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A. Appendix

A.1. Grammar Error Reports

A.1.1. Reordered Words with 20% noise level
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Figure A.1.: Average COMET-22 scores for translations involving fine-tuned languages in
the Reordered-Words setting with 20% noise level. 20% of the words in each
sentence are randomly repositioned within the same sentence. Results are
shown for three conditions: reordering applied to the source sentences, the
target translations, or both. Left: Llama 3.1; Right: Tower. Y-axis scales are
consistent across models (offsets may differ) for comparability.
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Figure A.2.: Average COMET-22 scores for translations involving non-fine-tuned lan-
guages in the Reordered-Words setting with 20% noise level. 20% of the words
in each sentence are randomly repositioned within the same sentence. Results
are shown for three conditions: reordering applied to the source sentences, the
target translations, or both. Left: Llama 3.1; Right: Tower. Untrained refers to
languages neither model was fine-tuned on (Czech, Ukrainian, Nepali). Y-axis
scales are consistent across models (offsets may differ) for comparability.
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A.1.2. Reordered Words with 40% noise level

0.840 Llama 3.1: German - English 0.855 Tower: German - English
¢ 0.835 ¢ 0.850
o o
@ @
~ 0-830 ~ 0.845
a . . .
E Baseline ui—_l —e— Baseline ¢
% 0.825 —+— Reorderness in Source (40%) g 0.8401 . Reorderness in Source (40%)
(o] —— Reorderness in Target (40%) ] —— Reorderness in Target (40%)

0.820 —— Reorderness in Both (40%) 0.835] —— Reorderness in Both (40%)

0 2 4 8 0 2 4 8
Number of IC-Examples Number of IC-Examples
(a) German — English
Llama 3.1: English -» German Tower: English - German

0.805 0.820
¢ 0.800 0 0.815
o o
& &
~ 0.795 ~ 0.810 —
o : o — -
5 Baseline 5 —e— Baseline
% 0.790 —+— Reorderness in Source (40%) % 0.8051 . Reorderness in Source (40%)
O —e— Reorderness in Target (40%) O —— Reorderness in Target (40%)

0.785 —— Reorderness in Both (40%) 0.8001 —— Reorderness in Both (40%)

0 2 4 8 0 2 4 8
Number of IC-Examples Number of IC-Examples

(b) English — German

Figure A.3.: Average COMET-22 scores for translations involving fine-tuned languages in
the Reordered-Words setting with 40% noise level. 40% of the words in each
sentence are randomly repositioned within the same sentence. Results are
shown for three conditions: reordering applied to the source sentences, the
target translations, or both. Left: Llama 3.1; Right: Tower. Y-axis scales are
consistent across models (offsets may differ) for comparability.
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Figure A.4.: Average COMET-22 scores for translations involving non-fine-tuned lan-
guages in the Reordered-Words setting with 40% noise level. 40% of the words
in each sentence are randomly repositioned within the same sentence. Results
are shown for three conditions: reordering applied to the source sentences, the
target translations, or both. Left: Llama 3.1; Right: Tower. Untrained refers to
languages neither model was fine-tuned on (Czech, Ukrainian, Nepali). Y-axis
scales are consistent across models (offsets may differ) for comparability.

58




A.1. Grammar Error Reports

A.1.3. Typos with 20% noise level
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Figure A.5.: Average COMET-22 scores for translations involving fine-tuned languages in
the Typos setting with 20% noise level. 20% of character pairs are switched in
each sentence. Results are shown for three conditions: typos applied to the
source sentences, the target translations, or both. Left: Llama 3.1; Right: Tower.
Y-axis scales are consistent across models (offsets may differ) for comparability.
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Figure A.6.: Average COMET-22 scores for translations involving non-fine-tuned lan-
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guages in the Reordered-Words setting with 20% noise level. 20% of character
pairs are switched in each sentence. Results are shown for three conditions:
typos applied to the source sentences, the target translations, or both. Left:
Llama 3.1; Right: Tower. Untrained refers to languages neither model was
fine-tuned on (Czech, Ukrainian, Nepali). Y-axis scales are consistent across
models (offsets may differ) for comparability.
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A.1.4. Typos with 40% noise level

Llama 3.1: German - English

COMET-22 Scores

Tower: German - English

0.86
084 e
0.827 . Baseline
0.80 Typos in Source (40%)
' —— Typos in Target (40%)
0.78{ —— Typos in Both (40%)
0 2 2 5

Number of IC-Examples

(a) German — English

0.84
§ 0.82
o
O
n 0.80
N
- 0.78| —— Baseline
% Typos in Source (40%)
O 0.767 —— Typos in Target (40%)

—e— Typos in Both (40%)
0.74
0 2 4 8
Number of IC-Examples
Llama 3.1: English - German

0.80 —
o
5 0.79 )
O £
0
207 <\\‘\
ui—'J —— Baseline
% 0.771 —=— Typos in Source (40%)
O —— Typos in Target (40%)

0.767 —— Typos in Both (40%)

0 2 4
Number of IC-Examples

8

COMET-22 Scores

Tower: English - German

(=
e}
=

o
©
o

e
~
©

e
~
©

o
<
<

‘\

Baseline

Typos in Source (40%)
—— Typos in Target (40%)
—e— Typos in Both (40%)

——

4 8
Number of IC-Examples

0 2

(b) English — German

Figure A.7.: Average COMET-22 scores for translations involving fine-tuned languages in
the Typos setting with 40% noise level. 40% of character pairs are switched in
each sentence. Results are shown for three conditions: typos applied to the
source sentences, the target translations, or both. Left: Llama 3.1; Right: Tower.
Y-axis scales are consistent across models (offsets may differ) for comparability.
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Figure A.8.: Average COMET-22 scores for translations involving non-fine-tuned lan-
guages in the Reordered-Words setting with 40% noise level. 40% of character
pairs are switched in each sentence. Results are shown for three conditions:
typos applied to the source sentences, the target translations, or both. Left:
Llama 3.1; Right: Tower. Untrained refers to languages neither model was
fine-tuned on (Czech, Ukrainian, Nepali). Y-axis scales are consistent across
models (offsets may differ) for comparability.
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