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Abstract

Multimodal Language Models (MLMs) are designed to process input from different modal-

ities. Unlike unimodal Large Language Models (LLMs), multimodality adds complexity

to the models and introduces a unique set of tasks per modality that the MLM must

learn in parallel. Therefore, it is crucial to understand their behavior and how they learn

multimodal features. Since hidden representations capture the internal states of MLMs,

this work focuses on analyzing how different or similar the representations of different

modalities are. We analyze the cross-modal and cross-lingual similarities of represen-

tations based on inputs of the same semantic meaning, and additionally visualize these

representations to examine the distribution of modalities. We performed our analysis

on the MLMs SeamlessM4T, SONAR and SALMONN. Our results show that the similar-

ities are influenced by a wide range of factors, from the architecture of the models to

their training strategies and the resource levels of the languages analyzed. The tasks on

which the MLMs were trained also strongly influence the similarity between speech and

text representations. Translation models and embedders achieve high similarity between

multimodal representations, while instruction-following models do not prioritize high

cross-modal similarity. The cross-modal similarity of each model is quite high, which

means that efforts are made to close the modality gap. The cross-lingual similarity within

the text modality is generally higher than within the speech modality for each model, but

it differs from model to model which gap - either modality or language - is more closed.

Additionally, both cross-modal and cross-lingual similarity can be further increased only

for high resource languages. Finally, the distributions of the multimodal representations

indicate that the modality features are evident in all hidden representations of each model,

which is consistent with our previous results.
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Zusammenfassung

Multimodale Sprachmodelle (Multimodal Language Models, MLMs) werden entwickelt,

um Eingaben aus verschiedenen Modalitäten zu verarbeiten. Im Gegensatz zu unimodalen

Large Language Models (LLMs) erhöht die Multimodalität die Komplexität der Modelle

und führt neue Aufgaben für jede Modalität ein, die das MLM parallel erlernen muss.

Daher ist es von großer Bedeutung, ihr Verhalten zu verstehen und wie sie multimodale

Merkmale erlernen. Da verborgene Repräsentationen die internen Zustände von MLMs

erfassen, konzentriert sich diese Arbeit auf die Analyse, wie unterschiedlich oder ähnlich

die Repräsentationen der verschiedenen Modalitäten sind. Wir analysieren die intermodale

und interlinguale Ähnlichkeiten von Repräsentationen, die auf derselben semantischen

Bedeutung basieren. Zusätzlich werden Repräsentationen visualisiert, um die Verteilung

der Modalitäten zu untersuchen. Wir haben unsere Analyse mit den MLMs SeamlessM4T,

SONAR und SALMONN durchgeführt. Unsere Ergebnisse zeigen, dass die Ähnlichkeiten

von einer Vielzahl von Faktoren beeinflusst werden: von der Architektur der Modelle

über ihre Trainingsstrategien bis hin zu den Ressourcenniveaus der analysierten Sprachen.

Die Aufgaben, für die die MLMs trainiert wurden, haben ebenfalls einen starken Einfluss

auf die Ähnlichkeit zwischen Sprach- und Textrepräsentationen. Die Übersetzungs- und

Embedding-Modelle erreichen eine hohe intermodale Ähnlichkeit, während Modelle, die

Anweisungen befolgen, keine hohe Ähnlichkeit anstreben. Die multimodale Ähnlichkeit

jedes Modells ist jedoch recht hoch, was bedeutet, dass die Modelle versuchen, die Mo-

dalitätslücke zu schließen. Die interlinguale Ähnlichkeit innerhalb der Textmodalität ist

im Allgemeinen bei jedem Modell höher als innerhalb der Sprachmodalität, aber es ist

von Modell zu Modell unterschiedlich, welche Lücke - entweder Modalität oder Sprache

- stärker geschlossen wird. Darüber hinaus kann sowohl die intermodale als auch die

interlinguale Ähnlichkeit nur für Sprachen mit hohem Ressourcenniveau weiter erhöht

werden. Schließlich deuten die Verteilungen der multimodalen Repräsentationen darauf

hin, dass die Modalität in allen verborgenen Repräsentationen jedes Modells erhalten

bleibt, was mit unseren früheren Ergebnissen übereinstimmt.
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1. Introduction

1.1. Motivation

In recent years, Large Language Models (LLMs) have emerged as powerful general-purpose

tools, significantly reshaping how we approach various tasks and perceive the world. The

main reason for this phenomenon is the accessibility and convenience of these language

models over traditional alternatives. LLMs can also specialize in a wide variety of tasks,

from simple ones such as automatic speech recognition, translation, and question answer-

ing to more challenging tasks such as text generation and programming assistance.

Although LLMs are very present in our world today, it is important to mention that

language models, like any other Artificial Intelligence (AI) model, are limited to the modal-

ity they have been developed for. Since LLMs have mostly been developed for text-based

tasks, several successful unimodal text-based language models have emerged, such as GPT

(Brown et al., 2020) and Llama (Touvron et al., 2023). Additionally, extensive research

has focused on improving the quality and performance of these unimodal models (Kad-

dour et al., 2023; W. X. Zhao et al., 2023), leading to significant advances in their capabilities.

On the other hand, Multimodal Language Models (MLMs) aim to integrate several

modalities, such as text, speech, and images, into one single model, thereby expanding the

accessibility and flexibility of LLMs. By overcoming the limitations of unimodal language

models in understanding and processing different modalities, MLMs open up a new field

of research in Natural Language Processing (NLP) and new possibilities for handling and

combining diverse modalities.

Despite the high potential of MLMs, a key challenge to understand how these models

work internally. Since MLMs differ in terms of the modalities they support and the tasks

for which they are designed, understanding their internal mechanisms becomes essential.

Additionally, the ability of MLMs to process multimodal inputs can be viewed as perform-

ing multi-task learning, where each modality introduces a unique set of tasks that must be

learned simultaneously. Thus, understanding how different tasks and modalities interact

within the model is crucial to expanding our knowledge in MLMs.

MLMs encode the learned features and the complex relationship between different inputs

and tasks in their hidden representations, which are then used to generate predictions

and outputs. Therefore, understanding the internal states of MLMs and how they handle

multimodality lies in analyzing their hidden representations. By analyzing the similarities

between representations across modalities we gain further insights on the behaviour of

1



1. Introduction

MLMs and how they manage the interaction between tasks and modalities, highlighting

their strengths, limitations, and biases.

1.2. Research Questions

This work aims to answer the main question of how similar - or different - the hidden

speech and text representations of MLMs truly are. Analysis in this field is crucial for

our knowledge of MLMs and could tell us how MLMs learn and process their multimodal

input. The main objective can be broken down into the following sub-questions:

• Research Question 1: How does the similarity of representations change
with the depth of the model’s layers?
To fully understand how MLMs handle multimodality, the relationship between

the inputs and the layers of the model’s architecture is analyzed. As each layer

processes modality-specific features differently, diving deeper into this relationship

will give us further insights on how the MLMs capture different features in their

hidden representations ranging from language, modality and semantic meaning.

• Research Question 2: How does the similarity of representations change
with varying language resource levels?
Since there are more languages spoken than all the countries in the world combined,

some are less represented than others. This distribution is also evident in the

available data used to train MLMs, with low resource languages especially lacking

in high-quality speech data. With this research question, it is analyzed how MLMs

perform under the limitations of language resource levels and how they affect the

similarity between multimodal representations.

• Research Question 3: How do the similarities of representations differ in a
cross-modal and cross-lingual setting?
The complexity of multilingual MLMs is higher than that of unimodal LLMs, since

they must be able to handle input data that differs across languages and modalities.

By answering this research question, we can examine to what extent MLMs capture

modality and language features and how they influence the similarities between

representations.

• Research Question 4: How does the architecture of the model affect the
similarity of representations?
MLMs typically have special components focused on each modality in their architec-

ture, as modalities are very different in their structures. Achieving a high similarity

between multimodal representations with the same semantic value is crucial for

the performance and robustness of MLMs. By analyzing how each component con-

tributes to the similarity, and whether these components truly achieve what they

aim for, we gain a better understanding of how MLMs handle multimodality.

2



2. Fundamentals and Related Work

2.1. Sequence-to-Sequence Models: Early Approaches

Sequence-to-Sequence (Seq2Seq) models are widely used in the field of Natural Language

Processing (NLP) as they are designed to transform data sequences of a domain into

another sequence of a different domain. First introduced by Sutskever, Vinyals, and Le

(2014), Seq2Seq models are able to process inputs and outputs of varying lengths and are

therefore often used for complex language problems such as machine translation, question

answering and creating chatbots.

The architecture of early Seq2Seq models most commonly consists of two subsequent

Recurrent Neural Networks (RNNs): an encoder and a decoder. In the context of NLP tasks,

input data is first broken down into smaller single units of meaning, called tokens, which

are sequentially processed by the encoder. With each token the encoder produces hidden

states, which captures the relevant information from the input sequence seen up to that

hidden layer. The encoder eventually creates a fixed-size context vector, which is used as

the input for the decoder to generate the output sequence token by token, predicting the

next sequence token based on the context vector and the previously generated tokens.

To improve the performance of the decoder in Seq2Seq models, the attention mechanism

(Bahdanau, Cho, and Bengio, 2016) is applied. Attention acts as a dynamic weighting

mechanism, allowing the decoder to focus on the relevant parts of the input sequence

at each generation step, rather than relying only on a fixed-size context vector. This en-

ables the decoder to gain more information from the encoder’s hidden states, helping it to

better capture dependencies across the input sequence and generate more accurate outputs.

However LLMs based on the Seq2Seq approach also have their downsides, as they

struggle to handle long sequences due to the vanishing gradient problem, limiting the

model to learn input data across a broader range of length. Additionally, due to its token-

by-token procedure, Seq2Seq models are difficult to parallelize.

2.2. Transformers in Natural Language Processing

As Seq2Seq models have been extensively used in the field of NLP, improvements have also

come along and a new variation of the Seq2Seq model has been introduced by Vaswani

et al. (2017): Transformers. They also consist of a encoder and a decoder, however instead

of using RNNs, transformers rely entirely on the self-attention mechanism to produce

3



2. Fundamentals and Related Work

representations of the inputs.

Self-attention allows each token to attend to the other tokens in the same sequence, in

both encoder and decoder of the transformer. This mechanism enables transformers on

the one hand to attend to any token regardless of its distance from the current token and

on the other to produce more context-aware representations, capturing dependencies and

relationships across the entire length of the same sequence. Transformers are as a result

more robust to long sequences and are parallizable, contrary to the early approaches of

Seq2Seq models.

Additionally to the self-attention mechanism in each transformers layer, a feed-forward

neural network (FFNN) and a layer normalization is followed afterwards. Both compo-

nents increase the quality of the transformers outputs, since FFNNs add non-linearity

to each token representation and the normalization stabilizes the training procedure by

normalizing activations across each layer.

2.3. Large Language Models

Due to its many benefits, transformers have paved the way for the development of Large

Language Models (LLMs) and have become the state-of-the-art NLP models. Due to the

scalability of LLMs, they can be developed for a wide range of tasks with high capabilities

by training on a large amount of data and an appropriate training strategy.

Transformer-based LLMs, such as BERT (Devlin et al., 2019), GPT (Brown et al., 2020) and

Llama (Touvron et al., 2023), have been transformative in how NLP tasks are approached.

The BERT (Bidirectional Encoder Representations from Transformers) model is used to

represent text as a sequence of vectors and can be applied in a wide range of use cases.

Thus, many LLMs and MLMs models use BERT as their foundation. Additionally, the

decoder-only GPT (Generative Pretrained Transformer) models and the Llama models

have proven to be excelling at text generation tasks.

2.4. Multimodal Language Models

The ability of Multimodal Language Models (MLMs) to accept and process inputs of dif-

ferent modalities is an additional advantage over unimodal LLMs and makes them more

attractive in certain applications. MLMs are often sought after for their flexibility and

recent works (X. Wang et al., 2023; Yin et al., 2024; Zhang et al., 2024) summarize advances

in the research of MLMs while outlining the architecture, training strategies and perfor-

mance evaluation methods of these models.

The most frequently supported input modalities of MLMs are text, audio (e.g. speech,

music, and ambient noise) and images. The simplest MLMs have only two input modalities.

For example, GPT-4 (OpenAI et al., 2024) accepts image and text inputs and can produce

4



2.5. Analysis of Hidden Representations

text outputs, while SpiRit-LM (Nguyen et al., 2024) has speech and text as both input and

output modalities. Other MLMs such as Gemini (G. Team et al., 2024) can handle more

than two input modalities: image, audio, video, and text. ImageBind (Girdhar et al., 2023)

and OneLLM (Han et al., 2024) further extend the traditional definition of MLMs more by

additionally accepting uncommon modalities such as depth and inertial measurement unit

(IMU) data as input.

To integrate these non-text input modalities drastically differing in structure and in-

formation, MLMs often have separate components, aside from isolated encoders for each

input modality, dedicated to transform inputs varying in modality to the shared space

of an MLM. For example, Querying Transformers (Q-Formers) are used to align audio

features to a text-based LLM (Tang et al., 2024).

2.5. Analysis of Hidden Representations

Similar work in analyzing the hidden representations of language models has been done in

G. Wang et al. (2023), where the text and speech representations of models with separate

speech and text encoders followed by an additional shared encoder were analyzed. The

t-Distributed Stochastic Neighbor Embedding (t-SNE) (Maaten and G. Hinton, 2008) and

a probing method were used to compare the speech and text representations before and

after the joint space. It was shown that the joint representations after the shared encoder

were more unified in modality and domain than before the shared encoder.

In Sun et al. (2023), the hidden multilingual representations of end-to-end speech trans-

lation models, trained on three separate translation directions (Eng→ X, X→ X and X→
Eng) were compared using the Singular Vector Canonical Correlation Analysis (SVCCA)

(Raghu et al., 2017) and the Linear Discriminant Analysis (LDA) (Tharwat et al., 2017). It

is highlighted that the SVCCA similarities between representations of similar languages

increase with the depth of the encoder. Unique languages, such as the Indo-European

language Persian, create their own subspace in LDA, resulting in low SVCCA scores com-

pared to other languages in the same family.

Conversely, Seyssel et al. (2022) analyzes the phonetic class, gender, and language in-

formation encoded in the Contrastive Predictive Coding (CPC) (Oord, Li, and Vinyals,

2019) representations of self-supervised speech models - two monolingual models (English,

French) and one multilingual model (English and French). These representations were

visualized with t-SNE, and a probing method with a logistic regression classifier was

trained to evaluate the error scores on phonetic class, gender and language across the

three models. This work concludes that information about phonetic class and gender are

similarly represented in all three models. However, the distinction between English and

French was only visible in the multilingual model, while in the monolingual models, the

language information is diffused across multiple dimensions.
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2. Fundamentals and Related Work

The V-Measure was used in Sicherman and Adi (2023) to determine the phoneme, gender,

and speaker ID information between discrete self-supervised speech representations of

a CPC model, HuBERT (Hsu et al., 2021) and a Mel-Frequency Cepstrum Coefficients

(MFCC) model, while also considering the total number of discrete speech units. The

findings indicate that the representations show a strong relationship with phonemes, as

well as with gender and speaker ID. To visualize the phoneme information, t-SNE was also

used, demonstrating that units of the same phoneme and phoneme family are more closer

to one another in all three models.
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3. Methodology

Given a pre-trained MLM, a pre-selected set of model architecture layers and a pre-selected

set of model-supported languages, the hidden speech and text representations are extracted

for further analysis. In this work, only the hidden representations produced directly from

the speech and text inputs of the same semantic meaning are extracted, before any output

generation takes place. For each layer, the extracted hidden representation of a speech or

text input is of size (input length, feature size), where both values vary depending on the

input and the model. This hidden representation matrix is then averaged over the input

length dimension, resulting in a feature size vector for each layer.

Figure 3.1.: Extraction of Representation Sets. With 𝑓 = feature size, 𝑇 = input data

length and 𝐷𝑙 = number of input data of language 𝑙 .

As shown in Figure 3.1, this averaging process is repeated for all speech and text

representations of each pre-selected language and it returns two sets of representations of

size (number of input data, feature size) per language and layer, one for the speech inputs

and one for the text inputs. In each row of both representation sets, the averaged hidden

representation from the input sentence with the same semantic meaning is found. Formally,

there are 𝐷𝑙 many speech and text representations 𝑥𝑖 = [𝑥𝑖,1, 𝑥𝑖,2, ..., 𝑥𝑖,𝑓 −1, 𝑥𝑖,𝑓 ] with 𝐷𝑙 =

number of input data of language 𝑙 , 𝑓 = feature size, 𝑥𝑖 = averaged representation of

input 𝑖 and 𝑥𝑖, 𝑗 = averaged representation of input 𝑖 and feature 𝑗 . These representation

sets are then used for further analysis, as listed in the sections below.
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3. Methodology

3.1. Cross-Modal Similarity Analysis

The Singular Vector Canonical Correlation Analysis (SVCCA) (Raghu et al., 2017) is used

to evaluate the similarly of the extracted speech and text representations. Two sets of

representations 𝑋 ∈ (𝐹𝑥 , 𝑀) and 𝑌 ∈ (𝐹𝑦, 𝑁 ), with 𝐹𝑥 and 𝐹𝑦 being the feature sizes and

𝑀 and 𝑁 being the number of data points, can be given to calculate the SVCCA similarity.

The representation sets may differ in feature sizes (𝐹𝑥 ≠ 𝐹𝑦), however the number of data

points have to be the same (𝑀 = 𝑁 ). SVCCA first performs a singular value decomposition

on both 𝑋 and 𝑌 , resulting in two sets of singular vectors and singular values. After that,

Canonical Correlation Analysis (CCA) is applied on only the top𝑚 ≤ 𝑀 and top 𝑛 ≤ 𝑁

singular vectors that explain 90% variance of 𝑋 and 𝑌 with the top𝑚 and 𝑛 singular values.

CCA will then find linear transformations that maximize the correlation between two

vector sets, returning CCA correlation coefficients. The averaged value of all coefficients is

the SVCCA similarity value ∈ [0, 1], depending on how similar (= 1) or different (= 0) the

two sets of representations are. The goal of this analysis is to have one SVCCA cross-modal

similarity score for each layer of one model to see how the similarity changes with the

depth of the model architecture. To achieve this, the following steps are carried out.

1. Firstly, all speech and text representation sets of each layer are reduced to match

the size of the smallest representation set, which is from the language with the

smallest total number of input data. For example, if English has a total of𝑀 input

data and Dutch has a the least with a total of 𝑁 , with 𝑀 > 𝑁 , the English speech

and text representation sets for each layer would be reduced from (𝑀, feature size)
to (𝑁, feature size) only leaving the first 𝑁 input data behind. This step ensures

consistency by performing all SVCCA comparisons on sets with the same number

of representations.

2. Since the feature sizes of MLMs are much greater than the total number of rep-

resentations of one modality, the feature dimension must first be reduced before

any SVCCA calculations are performed. To achieve this, the representation sets

are reduced once more to the dimension explaining 90% of the total variance. The

resulting smaller dimension is different for each modality, language and layer. For

instance, the reduced English speech and text representation sets for each layer from

step 1 would be now of size (𝑁,𝑑𝑠) and (𝑁,𝑑𝑡 ) respectively, if the dimensions 𝑑𝑠
and 𝑑𝑡 explain 90% of the total speech and text variance.

3. With all representation sets reduced twice to the desired size, pairs consisting of the

speech and text representation set of the same language and layer are given to the

SVCCA algorithm to compute the modality similarity value between 0 and 1.

4. At this point, there are a total of (number of languages) × (number of layers) SVCCA
scores to analyze. For each layer, the similarity scores of all pre-selected languages

are averaged together, now resulting in (number of layers) SVCCA scores.
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3.2. Cross-Lingual Similarity Analysis

3.2. Cross-Lingual Similarity Analysis

A similar analysis as in Section 3.1 was also implemented for the cross-lingual similarity

analysis, in order to get the SVCCA similarity scores for each possible language pair in

the pre-selected language set. The same procedure was followed as described in Section

3.1 with a few changes:

• Before reducing each representation set of each layer to the size of the smallest

set, as in the first step of Section 3.1, the intersection of the input data of each

language pair is first determined. Each intersection is then reduced to the size of

the smallest intersection, which is subsequently used to assemble new speech and

text representation sets for the cross-lingual SVCCA calculations by accumulating

all the representations that are produced from the input data in the intersection.

For example, if the number of intersecting input data of English and German is𝑀

and there are only 𝑁 intersecting inputs for English and Dutch, with 𝑀 > 𝑁 , the

English-German intersection is reduced to the first 𝑁 intersecting input data, so

that all speech and text representation intersections have the size (𝑁, feature size).
Thus, all intersecting representation sets are of the same size and the sets of each

language pair comparison are based on the same input sentences.

• For cross-lingual similarity comparisons, each representation set is also reduced

once more to a smaller feature dimension. The reduced sets explain at least 90% of

the total variance.

• For each layer, there are 4 different modality comparisons to consider: (1) speech-

speech, (2) text-text, (3) speech-text and (4) text-speech. (4) is left out in this work,

because the comparison results are the transposed of those of (3).

• Due to the symmetry of the cross-lingual comparisons, this procedure results in

((number of languages)2 ÷ 2) SVCCA similarity scores for each layer of the same

modality comparisons (text-text and speech-speech). For speech-text similarity

comparisons, there are in total of (number of languages)2 similarity scores for each

layer.

3.3. Visualisation of Hidden Representations

Apart from explicit similarity values, this work also analyzes the hidden representations

with t-Distributed Stochastic Neighbor Embedding (t-SNE) (Maaten and G. Hinton, 2008).

For each layer, the speech and text representations are concatenated as one and given to

the t-SNE algorithm with representation labels according to modality, language and input

data to visualize the distribution of the hidden representations on a two-dimensional map.

T-SNE is a non-linear dimensionality reduction method to visualize high-dimensional

data into a more interpretable lower dimensionality space. It is a modified version of

Stochastic Neighbour Embedding (SNE) developed by G. E. Hinton and Roweis (2002),
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3. Methodology

using a different cost function with simpler gradients, which is easier to optimize. Addi-

tionally, t-SNE solves the problem of crowding points in the center of the visualization

map which was evident in SNE, creating visualization results of higher quality.

The t-SNE algorithm starts just as the SNE algorithm, by calculating the probability 𝑝𝑖 𝑗
for each possible pair (𝑥𝑖, 𝑥 𝑗 ) in the dataset𝑋 = 𝑥1, ..., 𝑥𝑛 (𝑖 ≠ 𝑗and𝑖, 𝑗 ∈ [1, 𝑛]), with higher

probabilities indicating a higher similarity of a pair. Then for 𝑇 iterations, the positions of

the data points 𝑌 = 𝑦1, ..., 𝑦𝑛 in the low-dimensional space is computed using its Student

t-distributed similarity probability 𝑞𝑖 𝑗 of two points 𝑦𝑖 and 𝑦 𝑗 and the probabilities 𝑝𝑖 𝑗
of the higher dimension with minimizing the Kullback-Leibler divergence of the two

distributions. After the last iteration, the elements in 𝑌 show the distribution of the high

dimensional data in a low-dimensional space.
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4. Experimental Setup

4.1. Models

This work applies the aforementioned methods in Chapter 3 on three separate MLMs:

SeamlessM4T, SONAR and SALMONN. In the following sections, the architecture of the

analyzed MLM are illustrated and it is explained of which part of the architecture layers

the speech and text hidden representations are extracted.

4.1.1. Encoder-Decoder Model: SeamlessM4T

SeamlessMassivelyMultilingual &MultimodalMachine Translation (SeamlessM4T) is

a MLM for tasks such as Automatic Speech Recognition (ASR) and translation in all for

possible directions (speech-to-speech, speech-to-text, text-to-speech and text-to-text)

(Communication, Barrault, Chung, Mariano Coria Meglioli, et al., 2023). SeamlessM4T

supports over 100 languages varying in resource levels and is a new advancement in the

field of multimodal machine translation. Its goal is to bride the modality gap between

speech and text of recent direct and cascaded models by combining a multilingual text-to-

text translation model with a speech representation model.

Figure 4.1.: Model Architecture of SeamlessM4T. (Communication, Barrault, Chung,

Mariano Coria Meglioli, et al., 2023)

The SeamlessM4T architecture, as shown in Figure 4.1, can be split into two parts, the

text and the speech generation. The text generation part consists of the components before

and including the transformer text decoder, while the components after the text decoder

are used to generate speech out of the text decoder output. This work focuses on the hidden

representations before the transformer text decoder, which are those of the conformer
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4. Experimental Setup

speech and transformer text encoder, additionally analysing the input embeddings and

the representations after the length adaptor for speech inputs.

Text inputs go through the SeamlessM4T’s transformer text encoder and decoder, which

are initialized with SeamlessM4T-NLLB (Communication, Barrault, Chung, Mariano Coria

Meglioli, et al., 2023) - a multilingual text-to-text translation model supporting 200 lan-

guages. Meanwhile, speech inputs first pass through the mel filterbank feature extraction,

where the outputs are given to the conformer speech encoder, initialized with the speech

representation learning model W2v-BERT 2.0 (Chung et al., 2021) and is post-fixed with a

length adaptor. The length adaptor of SeamlessM4T is a modified version of the M-Adaptor

of J. Zhao et al. (2022), used to adapt speech representations to text by downsizing the

speech sequence and building features for speech-to-text translation.

For the analysis, the pre-trained transformer SeamlessM4T model facebook/seamless-

m4t-v2-large from Hugging Face
1
is used. Both speech and text encoders have 24 layers

with a feature size of 1024. Aside from the speech and text representations of the layers

{1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 23, 24}, both speech and text input embeddings and the

speech representations after the length adaptor were also analyzed. All representation

sets of SeamlessM4T are of size (𝐷𝑙 , 1024) for each language and layer, since the input

embeddings and the speech representations after the length adaptor also have the feature

size of 1024. The components including and after the shared text decoder was not analyzed

in this work, as we focus on the multimodality of the representations. SeamlessM4T

generates speech outputs with the text outputs of the shared text decoder through a

cascaded system, making the analysis of the decoder side of SeamlessM4T difficult and

beyond the scope of this work.

4.1.2. Sentence Embedder: SONAR

Sentence-level multimOdal and laNguage-Agnostic Representations (SONAR) is a multi-

modal and multilingual sentence embedding space. Apart from its functionality to embed

sentences of 200 languages, SONAR can also be used for translating speech and text inputs

to text outputs (Duquenne, Schwenk, and Sagot, 2023).

As shown in Figure 4.2, the SONAR architecture consists of one multilingual text encoder

initialized with NLLB (N. Team et al., 2022) and multiple monolingual speech encoders

initialized with W2v-BERT 2.0 (Chung et al., 2021) followed by a multilingual text decoder

also initialized with NLLB. For comparing the multimodal representations of SONAR,

this work focuses on the hidden representations of the encoders. Speech or text inputs

given to SONAR surpass all layers of the corresponding encoder, which then the last

encoder representations are used to produce language-agnostic sentence embeddings

by pooling along the sequence dimension. While mean pooling is used for text encoder

outputs, learning (attention) pooling is used for the speech outputs. Additionally, the

mean squared error (MSE) loss is used in the SONAR embedding space, which encourages

1
https://huggingface.co/facebook/seamless-m4t-v2-large
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4.1. Models

Figure 4.2.: Model Architecture of SONAR. (Duquenne, Schwenk, and Sagot, 2023)

the SONAR to correctly align sentences in the shared embedding space by reducing the

differences between embeddings of the same semantic meaning but of different languages

and modality.

The pre-trained SONAR model from fairseq22 was chosen for this work. Similar to

SeamlessM4T in Section 4.1.1, all encoders have in total of 24 layers with the same feature

size of 1024. Also for SONAR as well, speech and text representations of the same layers

{1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 23, 24} were extracted, with the addition of the input

embeddings, the final speech and text embeddings after the pooling, which are all of

the same feature size of 1024. Thus, the representation sets of both modalities for each

layer and language are the same size as those extracted from SeamlessM4T, specifically

(𝐷𝑙 , 1024).

4.1.3. Decoder-Only Model: SALMONN

Speech Audio Language Music Open Neural Network (SALMONN) is a MLM developed

to process music, speech and also ambient noise in combination with a text instruction

prompt (Tang et al., 2024).

SALMONN is based on the pre-trained Vicuna
3
model (Zheng et al., 2023), which is a

text-based LLM fine-tuned from the Llama2 model (Touvron et al., 2023) to follow text

instructions, and is equipped with low-rank adaptation (LoRA) (Hu et al., 2021) to align

the two cross-modal input and output space of Vicuna. The audio and the text instruction

referring to the audio are simultaneously given to SALMONN. While the text inputs are

embedded for the Vicuna model by the Llama tokenizer and embedder in a fairly simple

way, audio inputs have to surpass several components. As seen in Figure 4.3, the audio

inputs are first fed into the encoder of the ASR model Whisper
4
(Radford et al., 2023) and

the BEATs
5
(Chen et al., 2022) encoder, which can process a wide range of audio data

2
https://github.com/facebookresearch/SONAR

3
https://huggingface.co/lmsys/vicuna-7b-v1.5

4
https://huggingface.co/openai/whisper-large-v2

5
https://github.com/microsoft/unilm/tree/master/beats

13



4. Experimental Setup

Figure 4.3.: Model Architecture of SALMONN. (Tang et al., 2024)

beside speech. The resulting two outputs are then given to a Window-level Q-Former that

unifies the two encoder outputs into auditory embeddings of the input space of Vicuna by

transforming the encoder output sequence varying in length to audio tokens of fixed length.

Since SALMONN only accepts audio and text inputs simultaneously and the auditory

and textual embeddings are given to Vicuna as one concatenated input, the extracted

raw representations equal the concatenated speech and text representations. To analyze

hidden speech and text representations separately, the raw representations are split into

speech and text representations with the input length dimension.

For this work, the 7B version
6
of SALMONN was used and the decoder layers of the

Vicuna LLM were analyzed. The decoder has 32 layers and the representation sets of layers

{1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 31, 32} with addition to the speech encoder

outputs before the Q-Former, the textual and the auditory embeddings were extracted.

The speech encoder outputs before the Q-former has the feature size of 2048, while the

text embeddings, speech encoder outputs after the Q-former and all decoder layers have

a feature size of 4096. The different feature sizes cause no problem for SVCCA, as it can

handle representations of different sizes. However for t-SNE, the input size matters and

the speech encoder outputs before the Q-former were padded at the end with zeros from

2048 to 4096.

MLM Speech Representations & Size of Sets Text Representations & Size of Sets

SeamlessM4T

• input embeddings

⇒ (𝐷𝑙 , 1024)

• encoder hidden representations of layers {1, 2, 4, 6,

8, 10, 12, 14, 16, 18, 20, 22, 23, 24}

⇒ (14, 𝐷𝑙 , 1024)

• input embeddings

⇒ (𝐷𝑙 , 1024)

• encoder hidden representations of layers {1, 2, 4, 6,

8, 10, 12, 14, 16, 18, 20, 22, 23, 24}

⇒ (14, 𝐷𝑙 , 1024)

6
https://huggingface.co/tsinghua-ee/SALMONN-7B
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MLM Speech Representations & Size of Sets Text Representations & Size of Sets

SONAR

• input embeddings

⇒ (𝐷𝑙 , 1024)

• encoder hidden representations of layers {1, 2, 4, 6,

8, 10, 12, 14, 16, 18, 20, 22, 23, 24}

⇒ (14, 𝐷𝑙 , 1024)

• final SONAR embeddings

⇒ (𝐷𝑙 , 1024)

• input embeddings

⇒ (𝐷𝑙 , 1024)

• encoder hidden representations of layers {1, 2, 4, 6,

8, 10, 12, 14, 16, 18, 20, 22, 23, 24}

⇒ (14, 𝐷𝑙 , 1024)

• final SONAR embeddings

⇒ (𝐷𝑙 , 1024)

SALMONN

• encoder outputs before Q-Former

⇒ (𝐷𝑙 , 2048)

• auditory embeddings after Q-Former

⇒ (𝐷𝑙 , 4096)

• decoder hidden representations of layers {1, 2, 4, 6,

8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 31, 32}

⇒ (18, 𝐷𝑙 , 4096)

• textual embeddings

⇒ (𝐷𝑙 , 4096)

• decoder hidden representations of layers {1, 2, 4, 6,

8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 31, 32}

⇒ (18, 𝐷𝑙 , 4096)

Table 4.1.: List of Analyzed Model Representations. With 𝐷𝑙 = number of input data
of language l.

4.2. Data and Languages

For creating the speech and text representation sets, the FLEURS
7
dataset (Conneau et al.,

2023) was used. FLEURS supports 102 languages with an even distribution in language

resource levels and is based on the FLORES
8
dataset, which sources its sentences from

multiple Wikimedia sources from varying domains (Goyal et al., 2022). The main reason

for choosing FLEURS for this work’s data source is due to its n-way parallel sentences,

which are crucial to the similarity analysis explained in Chapter 3.

The categorization of languages into its resource-levels is based on the available hours of

speech-to-text translation data into English and pseudo labeled ASR data (Communication,

Barrault, Chung, Mariano Cora Meglioli, et al., 2023). The languages in each category is

used as the language set in Chapter 3 to analyze the influence of resource levels on the

hidden representations. A language is a high resource language, if there are at least 1000

hours of data, and a low resource language, if the hours of data are less than or equal

to 500. Every language with the volume of available data in between 1000 and 500 are

medium resource languages.

The 102 languages supported by FLEURS was reduced to a set of 30 languages for

each MLM, depending on which languages each model supports. While deciding on the

languages, care was taken into maintaining an even distribution of different language

characteristics such as script, family and resource-level (high, medium and low). As shown

7
https://huggingface.co/datasets/google/fleurs

8
https://huggingface.co/datasets/facebook/flores
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in Table 4.2, SeamlessM4T and SALMONN share the same language set. However for

SONAR, some languages had to be swapped out for other languages of the same resource-

level because SONAR did not support languages such as Amharic, Greek and Khmer.

The FLEURS dataset is divided into three splits: train, validation and test. For this work,

the text split was used to extract hidden representations and the normalized transcriptions

was used for the text representations instead of raw transcriptions. As FLEURS has mul-

tiple dataset entries for the same sentence but with different speakers, these duplicates

were removed randomly before extracting the representation for both modalities, so that

each representation set would not have two averaged representations that have the same

semantic meaning. Even though the speech representations based on the same sentence

may differ due to different speakers and audio recording environments, duplicate repre-

sentations in the text set would influence the similarity computations in our work, since

the normalized transcriptions do not change across duplicates.

For the cross-modal analysis of Section 3.1 each representation sets are reduced to the

first 251 representations, as this is the smallest number of input data without duplicates

(see Dutch in Table 4.2). For the cross-lingual analysis of Section 3.2, each intersects were

reduced to the first 194 intersecting representations for SeamlessM4T and SALMONN, and

192 for SONAR.

Code Name Script Family Resource-

Level

SeamlessM4T/

SALMONN

SONAR Text

Split

Size

Without

Dupli-

cates

amh Amharic Ethiopic Afro-Asiatic low x 516 296

arb Arabic Arabic Afro-Asiatic high x x 428 283

asm Assamese Bengali Indo-European low x 984 349

bul Bulgarian Cyrillic Indo-European low x x 658 344

cat Catalan Latin Indo-European high x x 940 350

cmn Chinese

Mandarin

Hant Sino-Tibetan high x x 945 349

deu German Latin Indo-European high x x 862 347

ell Greek Greek Indo-European medium x 650 333

eng English Latin Indo-European high x x 647 350

est Estonian Latin Uralic medium x x 893 345

fin Finnish Latin Uralic high x x 918 348

fra French Latin Indo-European high x x 676 332

heb Hebrew Hebrew Afro-Asiatic low x 792 347

hin Hindi Devanagari Indo-European medium x x 418 265

hye Armenian Armenic Indo-European low x 932 350

ind Indonesian Latin Austronesian medium x x 687 328

ita Italian Latin Indo-European high x x 865 346

jpn Japanese Japanese Japonic high x x 650 321

kat Georgian Georgian Kartvelian low x 979 350

khm Khmer Khmer Austroasiatic low x 949 335

kor Korean Korean Koreanic medium x x 382 270

lao Lao Lao Tai-Kadai low x 405 260

lit Lithuanian Latin Indo-European low x x 986 349

mal Malayalam Malayalam Dravidian low x 985 344

mar Marathi Devanagari Indo-European low x x 1020 349

nld Dutch Latin Indo-European high x x 364 251

pes Persian Arabic Indo-European low x x 871 324

rus Russian Cryrillic Indo-European medium x x 775 344

sna Shona Latin Atlantic-Congo low x 925 348

snd Sindhi Arabic Indo-European low x x 980 350

swh Swahili Latin Atlantic-Congo low x 487 312
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Code Name Script Family Resource-

Level

SeamlessM4T/

SALMONN

SONAR Text

Split

Size

Without

Dupli-

cates

tam Tamil Tamil Dravidian medium x x 591 336

tel Telugu Telugu Dravidian medium x 472 302

tha Thai Thai Tai-Kadai medium x x 1020 349

tur Turkish Latin Turkic medium x x 743 329

yue Cantonese Hant Sino-Tibetan low x x 819 339

Table 4.2.: List of Analyzed Languages. For each language, its language code, name,

script, family, resource-level and on which models the language has been

analyzed is given. The text split size is the number of sentence entries of a

language in the FLEURS dataset. The number of unique sentences in the test

split for each language is given under the ’Without Duplicates’ column.

4.3. Configurations and Parameters

The code for the SVCCA computations
9
was provided by Raghu et al. (2017). To stabilize

the similarity computations an epsilon of 1e-10 was applied. All speech and text repre-

sentation sets were reduced to a target dimension according to the similarity analysis. The

cross-modal target dimensions are listed in Appendix A.1 and in Appendix A.2 the target

dimensions for the cross-lingual analysis can be found.

For the visualization analysis, the t-SNE library sklearn.manifold.TSNE10 from scikit-

learn was used, initialized with only the default values (n_components=2, perplexity=30,

early_exaggeration=12.0, learning_rate=’auto’, max_iter=1000, etc.).

9
https://github.com/google/svcca

10
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html

17





5. Results and Discussion

In the following chapter we present the results of the analysis explained in Chapter 3 and

attempt to answer our research questions stated in Section 1.2. Firstly, we explore the

cross-modal similarity results within one language (see Section 5.1), providing an in-depth

analysis of on how the MLMs attempt to close the modality gap with the depth of its

architecture, additionally analyzing the impact of language resource levels on the similarity

between hidden speech and text representations. Following this, we delve into the cross-

lingual similarity analysis results (see Section 5.2), presenting how the models perform

with each language across or within modalities. Lastly, in Section 5.3, we visualize and

explore the distribution of hidden speech and text representations, additionally drawing

connections to the previous sections.

5.1. Cross-Modal Similarity Results

5.1.1. General Observations

The results of the cross-modal similarity analysis described in Section 3.1 applied on

the pre-selected 30 languages and on all three models are shown in Figure 5.1. For each

model, the cross-modal SVCCA similarities are consistently better than the baseline, which

equal the SVCCA similarity of randomly initialized representation sets of the same size as

other sets of the model. The higher cross-modal similarity than the baseline in all layers

shows that the encoder/decoder of all three models are generally capable of capturing the

shared features of speech and text inputs. Another consistent finding across all MLMs

is the increase in the cross-modal similarity with the depth of the encoder/decoder. For

SeamlessM4T and SONAR (see (1) and (2) in Figure 5.1), the similarity increase between in

the first and last layer is approximately +0.04, while for SALMONN (see (3) in Figure 5.1)

the increase is about +0.02, even though the similarity decreases in the last few layers of

the decoder. Thus, the encoder/decoder of all MLMs are also capable of aligning shared

information of speech and text inputs, not letting the difference in modality influence the

hidden representations.

However, a drop in similarity in the early layers is visible in all three models, before

recovering to the gradual increase. The lowest point is found in the fourth layer of the

encoders of SeamlessM4T and SONAR, and likewise in the fourth layer of the SALMONN

decoder. In both SeamlessM4T and SONAR, the decrease from the embedding similarity

equals about −0.039 and −0.028, respectively, reaching the lowest similarity of all en-

coder layers. For SALMONN, the similarity drops from the second decoder layer with

a decrease of −0.039. We assume that the drop in all models is caused by the different
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(1)

(2)

(3)

Figure 5.1.: Cross-Modal Similarity Analysis Results For All Languages. With (1)

SeamlessM4T Encoder, (2) SONAR Encoder and (3) SALMONN Decoder.
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role of the first few layers in comparison to the deeper layers. Since the earlier layers

are highly influenced by the input and may focus on capturing low-level information

and modality specific features, such as phonemes for speech or sentence structure for

text inputs, early hidden representations hold a lower cross-modal similarity. After that,

the encoder/decoder restructures the hidden representations converting them into more

abstract, modality-independent representations, leading to the recovery.

Additional explanation on the course of each graph in Figure 5.1 and further insights

into the factors that could lead to the reason behind these similarity scores can be found

in Section 5.3, where the t-SNE results are presented and associated with the cross-modal

similarity analysis.

5.1.2. Impact on Modality Gap

SeamlessM4T As mentioned in Section 4.1.1, the SeamlessM4T conformer speech encoder

is post-fixed with a length adaptor, which should adapt the speech representations to

the text representations for the input space of the text decoder. In the resulting graph of

the cross-modality comparison of SeamlessM4T (see (1) in Figure 5.1), we can observe

that the similarity between the text representations of the last encoder layer and the

speech representations after the length adaptor is marginally higher than the cross-modal

similarity before the length adaptor by +0.003, just barely pushing the similarity between

the hidden speech and text representations to over 0.9. Even though +0.003 is a minor

increase, the length adaptor is still a crucial component for the SeamlessM4T architecture.

Since SeamlessM4T consists of separate speech and text encoders followed by a shared

decoder, it is important for the length adaptor to be trained to preserve the high similarity

across modalities by shortening the length-variable speech representations and aligning

them to text representations.

SONAR Apart from the first drop mentioned in Section 5.1.1, the similarity of the SONAR

speech and text representations experiences more drops in the 12th layer and the 20th

layer of the encoder (see (2) in Figure 5.1). These drops are however not as striking as the

first, as they do not fall under the similarity of the previous drop. We assume that this

observation is occurring due to the same reason behind the drop in the fourth layer, as

stated in Section 5.1.1. Since every layer in the encoder has different weights and thus

different roles in processing the representations of the previous layer, some layers may

focus on the input modality rather than producing abstract representations, resulting

in a decline in similarity. These drops are however always followed by an increase in

similarity above the previous peak, proving that both SONAR encoders are able to recover

and produce more abstract and modality-independent speech and text representations.

Both SeamlessM4T and SONAR reach a fairly high similarity score in the last encoder

layer, just falling behind of 0.9. However, with its pooling mechanism, SONAR performs

better in closing the modality gap than the other two MLMs, reaching the final similarity of

0.926, which is about +0.025 and +0.055 higher than the final similarities of SeamlessM4T

and SONAR, respectively. The pooling method along the sequence dimension shortens
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the representations to a fixed size, therefore increasing the cross-modal similarities by a

very sharp increase of +0.03 from the last encoder layer. The MSE loss used in the SONAR

embedding space additionally helps to increase the cross-modal similarity, since it better

aligns sentences to the language-agnostic embedding space, by reducing the representation

differences in both language and modality.

SALMONN In contrast to SeamlessM4T and SONAR, the cross-modal similarities in the

decoder input space are lower than the similarity in the first decoder layer (see (3) in Figure

5.1). To be more precise, the similarity between the BEATs & Whisper speech encoder

outputs and the Vicuna text embeddings are about −0.037 lower than the input embedding

similarities of SeamlessM4T and SONAR. We assume the reason behind the low similarity

is lies within the BEATs encoder. Even if the Whisper encoder is trained to distinguish

speech from audio noise, the BEATs encoder subsequently magnifies noise, such as music

and ambient noise, limiting the similarity between the speech and text representations

of the same semantic meaning to increase. Additionally, the window-level Q-Former

of SALMONN just marginally increases the cross-modal similarity (compare first two

data points in (3) of Figure 5.1), as its only role is to downsize the audio encoder outputs

to the Vicuna input space tokens, by maintaining the diverse audio features including noise.

Another difference to the previous MLMs is that the similarity scores do not gradually

increase after the recovery from the drop in the forth decoder layer. Instead, the cross-

modal similarity remains approximately at 0.88 from the 10th to the 26th decoder layer (see

(3) in Figure 5.1). This is then followed by a small decrease, reaching the final similarity

score of 0.871. The reason behind this decrease lies in the nature of decoders taking abstract

representations from the encoder to generate outputs in a specific modality or language,

resulting in more modality- and language-specific representations. Since SALMONN,

unlike the other two MLMs, also processes music and ambient noise in addition to speech

with the BEATs encoder, these various audio features are still evident in the speech

representations, limiting the cross-modal similarity to increase. Additionally, SALMONN

uses the text-based LLM Vicuna that follows text instructions based on audio inputs,

instead of translating speech and text inputs like SeamlessM4T or producing language-

agnostic embeddings like SONAR. Its priority is therefore not to increase the cross-modal

similarity, rather engaging in the modality specific features of the inputs.

5.1.3. Impact of Language Resource Levels

SeamlessM4T The course of the SeamlessM4T graph of each three language resource

levels (see Figure 5.2) are similar to that of all 30 languages combined: A major drop in

similarity from the input space to the fourth encoder layer, followed by a gradual increase

until the highest similarity score is reached. However, the influence of the language

resource level is visible through the variation of the similarity scores based on the resource

level. While the similarities of the high and medium resource languages are overlapping

in almost all encoder layers and are just slightly higher than the averaged similarities of

all 30 languages (see (1) of Figure 5.1), the similarities of the low resource languages are

noticeably lower than the other resource levels, with the lowest similarity in the fourth
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layer falling below 0.84 and the highest similarity score in the last encoder layer not

reaching 0.9. This proves that the cross-modal similarity depends on how extensive the

encoder has been trained on languages of different resource levels. As high resource

languages have a high volume of available training data than low resource languages, the

encoder can accurately extract the shared features of the speech and text representations,

resulting in higher similarity scores.

Figure 5.2.: SeamlessM4T Cross-Modal Similarity Analysis Results For Each Re-
source Level.

However, the highest similarity, which is the score of the last encoder layer, is not propor-

tional to the resource levels, as both high and medium resource cross-modal comparisons

reach 0.902. This may be a result of regularization techniques used by SeamlessM4T in the

training phase (e.g. dropouts), to prevent the speech and text encoders from overfitting

to languages with large amount of training data. Regularization ensures generalization

across languages with different resource levels, and encourages the SeamlessM4T encoders

to prioritize accurate modality-independent hidden representations over perfect similarity

scores for high and medium resource languages, therefore limiting them to 0.902. Never-

theless, it is also important to mention that cross-modal similarities should necessarily

completely close the modality gap by reaching similarities of 1.0, as this would mean that

models are not capable of capturing language specific feature in their representations.

In contrary, the increase in similarity after the length adaptor is proportional to the

language resource level. With only high resource languages, the SeamlessM4T length

adaptor increases the similarity by +0.006 from the last encoder layer. This is three times

more of that what the length adaptor can reach for medium resource languages, and

for low resource languages six times of its amount. Even if these increases differ only

marginally, these results show the how high quantity and quality of training data allows

the length adaptor to accurately align speech representations to those of text inputs, as it
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has a better understanding of how to shorten speech sequences to text, resulting in higher

cross-modal representation similarity scores for higher resource languages.

SONAR The course of the SONAR graph is the same across all four analyses with different

language sets. Same as SeamlessM4T, the similarities of each layer are slightly shifted

according to the language resource level (see Figure 5.3). While the results on all 30

languages with varying resource levels (see Figure 5.1) resembles the medium resource

language graph, the influence of language resource levels are observed in the last few

SONAR encoder layers. The similarities of high resource languages are at maximum by

+0.009 higher than the same values of the analysis on all languages, while the similarities

of low resource languages is at maximum lower by −0.006. Since higher quantity and

quality of training data of higher resource languages ensure the ability of the SONAR

encoders to accurately extract the shared semantic features of speech and text inputs, the

SONAR cross-modal similarity for high resource languages experiences a stronger increase

in similarity from the 12th to the 16th layer, following with a very minor decrease in the

20th encoder layer, ultimately reaching the highest similarity score of 0.905 in the last

encoder layer across all SONAR analysis. The decrease in the 20th layer is consecutively

stronger with low resource languages, almost reaching the same level as the previous drop

in the 12th layer, making the recovery in the 16th layer insignificant. With low resource

languages, SONAR only reaches the similarity score of 0.89, −0.015 lower than the score

of the same layer with high resource languages.

Figure 5.3.: SONAR Cross-Modal Similarity Analysis Results For Each Resource
Level

Same as the SONAR analysis for all 30 languages (see (2) in Figure 5.1), the pooling

methods also further closes the modality gap between the hidden speech and text represen-

tations for all three language resource levels. However, the increase from the last encoder

layer to the shared embedding space is similar across all language resource levels, being
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approximately 0.03. This can be explained with the pooling methods effectively smoothing

out all features that does not add value to the semantic meaning of the representation. The

embeddings therefore become insensitive to different language resource levels to create

consistent language-agnostic embeddings, resulting in similar increases. Even though the

increase in similarity in the embedding layer is not influenced by the language resource

levels, varying final similarity scores can be still achieved by the effort of the SONAR

encoders to accurately align speech and text representations, making SONAR to achieve

the highest final cross-modal similarity across all three analyzed models with it being just

slightly below 0.94 for high resource languages (see Figure 5.3).

SALMONN Same as SeamlessM4T and SONAR, the course of the similarity graph does

not change with varying language resource levels (see Figure 5.4). The overall graph is

only shifted upwards or downwards depending on the resource level, also with the same

reasoning of SeamlessM4T and SONAR. The SALMONN analysis on medium resource lan-

guages is the most similar to the similarity scores on all 30 languages, with the similarities

only varying on average by +0.003. The influence of the resource levels are more visible

in the layers before and in the last few layers of the decoder.

Figure 5.4.: SALMONN Cross-Modal Similarity Analysis Results For Each Re-
source Level.

The cross-modal similarities before the Q-Former are highly dependent on the language

resource level. SALMONN achieves a high cross-modal similarity only with high resource

languages, almost being at the same level as the similarity of the first decoder layer (see

Figure 5.4). Compared to the medium and low resource languages, this similarity is re-

spectively +0.021 and +0.028 higher. This observation is heavily influenced by the Llama2

model (Touvron et al., 2023), on which is the Vicuna model of SALMONN is based. Llama2

has been predominantly trained on high resource languages, more precisely, 90% of the

whole pre-training data are English (Touvron et al., 2023, Chapter 5.2). As a result, the
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Vicuna embedder performs best for English and other high resource languages in capturing

linguistic and semantic features compared to other resource levels.

We also assume that the Whisper encoder contributes partly in increasing the embed-

ding similarity, as Whisper is also mostly trained on English and other high resource

language speech recognition data (Radford et al., 2023, Appendix E) with English making

about 65% out of all training data. Whisper also states that it achieves <50% word error rate

(WER) in multilingual transcription for all medium and for some low resource languages of

this work (Radford et al., 2023, Appendix D.2). However, the amount of hours of medium

resource training data differs drastically compared to the amount of English data. For

example, while for English there are approximately 440,000 hours of speech recognition

data, there are only 41 and 12 hours for Estonian and Hindi, respectively. For low resource

languages, the amount of training data lies below 10 hours or Whisper was entirely not

trained on them (Radford et al., 2023, Appendix E). Consequently, due to both Whisper

encoder and Vicuna failing to extract accurate features from languages that are not English

or from any other high resource language, the cross-modal similarity before the Q-Former

is lower than those of medium and low resource languages.

Same as the SALMONN analysis with all 30 languages, a similarity increase with the

Q-Former on medium and low resource languages does not exist or is barely noticeable,

compared to the increase of +0.005 with high resource languages. Since the speech en-

coders of SALMONN are most likely not accurate for medium and low resource languages,

the Q-Former is not able to add to the similarity just by downsizing the speech sequence

of varying lengths to a match text sequences with preserving the important language and

semantic features, as there is no accurate representation of the speech inputs to begin with.

For the same reason behind the varying similarities before the Q-Former, the previously

mentioned decrease starting from the 26th layer in Section 5.1.2 is more prominent in the

SALMONN analysis on low resource languages and barely noticeable with high resource

languages. Thus, the similarity for high resource languages stays above 0.88, which is the

highest final similarity across the SALMONN analysis on varying resource levels. Due to

Vicuna and Whisper being mostly an high resource language model and more capable in

processing English, we assume that these languages prevent the cross-modal similarity to

decrease after the 26th decoder layer.

SeamlessM4T SONAR SALMONN

Common

Observations Across

Models

• cross-modal similarity of the encoder/decoder representations is higher than a random

baseline

• cross-modal similarity increases with the depth of the encoder/decoder

• course of cross-modal similarity does not change with varying language resource levels

• overall cross-modal similarity is proportional to the language resource level

→ Each model is capable of capturing shared semantic information independent of the input

modality.

→ The quantity and the quality of the training data proportionally impacts the cross-modal

similarity.
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SeamlessM4T SONAR SALMONN

Final Cross-Modal

Similarity

(all/high/medium/low)

(0.901/0.908/0.904/0.893) (0.926/0.938/0.924/0.918) (0.878/0.881/0.874/0.861)

Impact of ... Length Adaptor

• marginal similarity increase

• increase proportional to lan-

guage resource level

Pooling

• steep similarity increase

due to the MSE loss in the

language-agnostic embed-

ding space

• increase same in all resource

levels

Window-Level Q-Former

• marginal similarity increase

• increase only visible with

high resource languages

→ The cross-modal similarity is also affected by the architecture and the training setup of the

model.

Table 5.1.: Summary of the Cross-Modal Analysis Results.

5.2. Cross-Lingual Similarity Analysis Results

5.2.1. General Observations

To examine how the cross-lingual similarity within one modality changes with the depth

of the model’s architecture, we averaged the similarity scores of every possible language

pair for each layer and modality. We did not add the similarities of the same-language

pairs to the calculations, as they all equal 100.0 and do not add value to the final results.

The averaged cross-lingual similarities within each modality are shown in Figure 5.5.

One common observation across all three models is that the cross-lingual intra-text

similarities for each encoder/decoder layer are higher than the intra-speech similarities,

meaning that each model is more capable of closing the language gap within the text

modality. For SeamlessM4T and SONAR, the difference is visible through all encoder

layers, while for SALMONN it is more visible in the decoder input space and the last half

of the decoder layers. The intra-speech similarity start at a relatively low score compared

to those of intra-text comparisons, even though all cross-lingual comparisons are based

on inputs of the same intersecting semantic meaning. For SeamlessM4T and SONAR, the

scores start at around 0.63, while for SALMONN it starts at around 0.79. We assume that

this higher similarity of SALMONN is caused by the two speech encoders having more

resources than the SeamlessM4T and SONAR embedders to capture the important features

of the speech inputs.

The reason behind the higher initial cross-lingual similarity within the text modality

lies in the speech inputs being more versatile than the text inputs. Compared to the static

and normalized transcriptions, where the language and the meaning of words can be

directly identified, the speech inputs vary with different speakers and audio noise, making

it difficult to capture the language and semantic meaning. In addition, since languages

produce different audio features and the embeddings in the encoder/decoder input space

are still highly tied to low-level features, the cross-lingual intra-speech similarity is limited.

However, the encoder/decoder of each model is capable of handling with different speech

data, increasing the final intra-speech similarity to reach approximately the same level as
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(1)

(2)

(3)

Figure 5.5.: Averaged Cross-Lingual Similarities for Same Modality Comparisons.
With (1) SeamlessM4T, (2) SONAR and (3) SALMONN.
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the final intra-text similarity. In contrast, all three models only needed a small increase

to reach the final intra-text similarity, since the stating similarities were high to begin with.

Same as the results of the cross-modal similarity analysis in Section 5.1, all cross-lingual

similarities within one modality increase with the depth of the encoder/decoder. Due to

both speech and text encoders of SeamlessM4T and SONAR being initialized with the

same models (see Section 4.1.1), they return similar graphs (see (1) and (2) in Figure 5.5).

Nevertheless, it is important to mention that both final cross-lingual similarities of SONAR

are at least +0.011 higher than those of SeamlessM4T.

For text inputs, SONAR reaches a high level of language-independence in the last en-

coder layer. The mean pooling does not increase the cross-lingual intra-text similarity, as

it only downsizes the last encoder representation to match the shared embedding space

of SONAR. The learning pooling with the embedding space MSE loss on the other hand

increases the intra-speech similarity by downsizing the last encoder speech representation

and emphasizing semantic meaning to match the language-agnostic embedding space.

The length adaptor does also further close the language gap, however not as effective

as the pooling method of SONAR, resulting in a final cross-lingual intra-speech similarity

score of under 0.9. In contrast to the other speech sequence shortening methods, the

Q-Former of SALMONN only marginally increases the intra-speech similarity (see (3) in

Figure 5.5), similar to the cross-modal results of SALMONN in Section 5.1.2.

However, evident in all three models, the language gap is more closed in the cross-lingual

comparisons within the text modality than speech. Even if the cross-lingual similarities

of intra-speech comparisons increase with the depth of the encoder/decoder, we assume

that the noise and various audio features from the speech inputs still remain in the hidden

representations, limiting their similarity to increase like the intra-text inputs.

Comparing these results to the cross-modal results in Figure 5.1, we can observe that

it is different from MLM to MLM in which conditions the model can close the similarity

gap the most. SeamlessM4T is more capable of closing the language gap for cross-lingual

text inputs and the modality gap for same-language inputs, as both final similarity scores

reach above 0.9 (see (1) in Figures 5.1 and 5.5). We assume the reason behind this observa-

tion is that SeamlessM4T can process the normalized text inputs more accurately with

capturing the shared features in the hidden representations, since text is more stable and

static compared to speech. Additionally, while the cross-modal similarity only increases

marginally after the length adaptor, the cross-lingual intra-speech similarity increases by

about 0.02 after the length adaptor. This is due to the role of the length adaptor to shorten

and align speech representations of varying length to the text representations, making

speech representations more comparable across languages, but it does not bridge the gap

between different modalities.

Contrary to SeamlessM4T, SONAR performes better in closing the modality gap of same

language inputs, as both final cross-lingual similarities within one modality are lower
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than the final cross-modal similarity for same-language inputs (see (2) of Figure 5.1). This

result shows us that even though SONAR aims to produce language-agnostic embeddings,

language features are still evident in the final embeddings, making the final cross-modal

similarity at maximum by +0.025 higher than the cross-lingual similarities within one

modality. Another difference between SONAR and SeamlessM4T lies within the similarity

increases after the last encoder layer. While the increases of the length adaptor differs

in the cross-modal and cross-lingual analysis, the similarity increase after the pooling

method of SONAR remain approximately the same in both analysis.

For SALMONN, the cross-lingual intra-text similarities are the highest by about +0.032
higher than the cross-lingual intra-speech similarity scores and +0.021 higher than the

final cross-modal similarity (see (3) of Figure 5.1). We assume this is due to the Vicuna

model, which SALMONN is based on, originally being a text based model. Even though

Vicuna was fine-tuned to process speech inputs in the form of BEATs andWhisper encoder

outputs, the final cross-lingual intra-speech similarity is far less of what the other MLMs

can achieve. Additionally, the cross-lingual similarities within one modality face the same

consistency in similarity in the last few layers of the decoder, especially more noticeable

in the intra-speech analysis. The reason behind this is the same as the one mentioned in

Section 5.1.2. Since SALMONN main purpose is not to generate translations or produce

modality- and language-independent embeddings, it does not aim at capturing the shared

semantic meaning and to achieve a high cross-lingual similarity, but rather at engaging in

the unique features of the inputs to generate answers for the text instructions.

Further insights on the course of the cross-lingual similarity can be found with our

t-SNE results in Section 5.3, where we explain the potential causes of the observations in

this section, such as the impacts of the pooling methods of SONAR and the major drop in

similarity after the first decoder layer of SALMONN.

5.2.2. Impact of Languages Across Modalities

For all three MLMs, the cross-lingual similarities of the input embeddings, the first and the

last layer of the encoder/decoder and lastly, the model specific components handling length-

variant speech sequences were taken into analysis. The similarities for each language pair

of all 30 languages are presented in heatmaps listed in Appendix A.3 with all similarity

scores multiplied by 100 for better visualization.

SeamlessM4T The cross-lingual similarity analysis results of SeamlessM4T in Figures

A.1 and A.2 resemble the cross-modal results of Section 5.1, as the similarity ranges of the

analyzed layers stay around the cross-modal similarity scores of the corresponding layers,

as shown in graph (1) in Figure 5.1. The cross-lingual scores in this section are higher or

lower than the score evaluated on all 30 languages, depending on the language pair.

In the input embedding space of SeamlessM4T, there is no defined structure in the

similarity distribution, as the embeddings are still highly influenced by the input data

varying in modality and language. For example, non-related languages like Estonian and
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German have a higher similarity score of 90.1 than more linguistically similar languages,

such as German and Dutch with 88.6 (see (1) in Figure A.1). After the input embeddings

enter the encoder, the similarity decreases for all language pairs, as noticed in Figure 5.1.

There is still no structure visible in the first encoder layer (see (2) in Figure A.1), however

the diagonal of the heatmap, which holds the similarities from the same-language pairs, is

more noticeable than before, as it shows higher similarities relative to the other compar-

isons. This observation shows us that the SeamlessM4T encoders are able to recognize and

capture the language the speech and text inputs are based on already in the first hidden

representations, resulting in higher similarities on the diagonal.

In the last encoder layer of SeamlessM4T, an increase in similarity is visible for all

language pairs (see (1) in Figure A.2). The most noticeable increases are on the diagonal

of the heatmap (see (1) in Figure A.3), since both representation sets are based on the

same language. Differences in the input language besides the different input modality

therefore adds more complexity to the comparison, resulting in lower cross-lingual simi-

larities across modalities. It can also be observed that SeamlessM4T performs the better

in closing the language gap with English, as all cross-lingual comparisons with English,

regardless of which modality, have higher increases from the first encoder layer. The

reason behind this observation can be explained with the amount of English training data

and the strategy used to fine-tune the SeamlessM4T encoders. Since English is a high

resource language, SeamlessM4T was able to use a large amount of ASR data to train the

model (Communication, Barrault, Chung, Mariano Coria Meglioli, et al., 2023, Appendix

I.2). In addition, the X-to-text model of SeamlessM4T, which includes both speech and text

encoders, was fine-tuned on the X–eng and eng-X translation directions (Communication,

Barrault, Chung, Mariano Cora Meglioli, et al., 2023), resulting in higher cross-lingual

similarity scores with English.

Additionally, same as what we have examined in Section 5.1.3, the increase in similarity

is proportional to the language resource level, as cross-lingual comparisons including high

resource languages have higher increases from the first to the last encoder layer than

other resource levels (see (1) in Figure A.3), resulting in cross-lingual comparisons with

only high resource languages to hold higher similarities in the last encoder layer (see

(1) in Figure A.2). However, differences in similarity except for the diagonal in the last

encoder layer are very small, meaning SeamlessM4T has also been extensively trained on

the selected medium and low resource languages to bridge the language barrier, capturing

the cross-lingual shared semantic meanings for all language pairs.

The lack of training data is noticeable in the minor increases from the first encoder

layer to the last in all comparisons including the speech representations of Shona (sna) and

Sindhi (snd) (see (1) in Figure A.3). This is caused by SeamlessM4T not being sufficiently

trained on these languages, since the speech-to-text and speech-to-speech translation

tasks with the two languages being the source language was trained on zero-shot. The

semantic meaning of the Shona and Sindhi speech inputs are therefore not accurately

captured in the hidden speech representations, resulting in lower similarity scores.
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As seen in Section 5.1.2, the length adaptor only minimally changes the cross-modal

similarity scores. This observation is also evident in the cross-lingual comparisons, as

most differences range between −0.8 and +0.8. This is due to the goal of the length adaptor

to align the length of speech representations to text, not primarily further extracting the

cross-lingual shared semantic meaning. However, for the two zero-shot languages, the

length adaptor only to decreases the similarity at maximum by −1.4 and achieves the

opposite of what it aims for (see (2) in Figure A.3). We assume this is the result of the

length adaptor’s main purpose and the fact that it was not trained sufficiently on the

zero-shot languages. While adapting the speech representations, it might falsely discard

the few shared features that was left from the speech encoder while downsizing the speech

features, resulting in the decrease in similarity.

SONAR SONAR and SeamlessM4T return very similar cross-lingual results until the last

encoder layer, since the speech and text encoders of both MLMs are based on the same

models, similar of what we have observed previously in the previous analysis in Sections

5.1.2 and 5.2.1. More precisely, the cross-lingual similarity results across modalities of the

input embeddings and the first encoder layer of SONAR also have no define structure (see

(1) and (2) in Figure A.11) and the cross-lingual similarities of the same language pairs in

the last encoder layer are also higher compared to the other comparisons (see diagonal in

heatmap (1) of Figure A.12).

One difference is that the increases from the first encoder layer to the last layer highly

depend on the language resource levels of the speech representations, as the columns of

the high and medium resource languages (e.g. English, Finnish, Japanese) have generally

higher increases compared to the low resource level columns in (1) of Figure A.13, resulting

in the columns of the same high and medium resource languages to have higher similarity

scores in the last encoder layer (see (1) in Figure A.12). This shows is that the cross-lingual

similarities across modalities are dependent on the quality of the speech representations

of the encoder and how much shared semantic meaning has been captured in them. Since

speech is more variant than normalized text transcriptions, the SONAR speech encoder

has to be capable of capturing the true semantic meaning behind the language and the

modality. With high and medium resource languages, the encoder can be sufficiently

trained on capturing these features, resulting in higher cross-lingual similarity scores.

Even though SONAR is a model developed to produce language-agnostic sentence

embeddings independent from the input modality and language, the unique language

features are still evident in the representations after the pooling, resulting in higher

increases and similarity scores of the language pairs along the diagonal (see (2) of Figures

A.12 and A.13), where the speech and text representations of the same language are

compared. Same as SeamlessM4T, representations varying in language and modality

brings more complexity to the comparison, resulting in the similarities on the diagonal

to reach at maximum 95.8 while the cross-lingual similarities reach at maximum 93.4.

Nevertheless, SONAR reaches the highest overall final cross-lingual similarity scores across
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modalities compared to SeamlessM4T and SALMONN (see Figures 5.1 and 5.5), achieving

language-agnostic embeddings to a fairly high extent.

SALMONN Same as SeamlessM4T and SONAR, not linguistically similar languages hold

higher similarities in the decoder embedding space before the Q-Former, as the text embed-

dings focus on character-level features. Nevertheless, a pattern is visible in the distribution

of the cross-lingual similarities between the speech encoder outputs and text embeddings

(see (1) of Figure A.21). The similarity scores depend on the Vicuna text embeddings,

however they are not proportional to the language resource level as we could have ex-

pected, since the similarities of cross-lingual comparisons including text embeddings

of medium and low resource languages are generally higher than those including high

resource languages. We assume that this is due to Vicuna being mainly trained on English

and some other high resource languages (Touvron et al., 2023, Chapter 5.2), which results

in its text embeddings of medium and low resource languages to be highly generalized to

match the high resource languages Vicuna was trained on, increasing the similarity scores

across all languages.

The same aforementioned observations of the encoder outputs are also visible after the

window-level Q-Former (see (2) in Figure A.21), with the similarity between the speech

and text representations of the same language additionally being higher compared to the

other comparisons, due to the language features being evident in the representations. The

overall cross-lingual similarity barely changes after the Q-Former, as seen in the marginal

differences in the heatmap of Figure A.23, matching our observations in Sections 3.1 and 3.2.

After the first decoder layer, the complete rows of medium and low resource languages

holding higher similarities are not as visible as before (see (1) in Figure A.22), even though

they have increased in similarity by an average of 2.0. Instead, the cross-modal same-

language comparisons of the languages with generalized text embeddings hold the highest

similarities (e.g. Amharic, Greek and Tamil), increasing by a maximum of +6.4 from the

decoder input embeddings to the first decoder layer (see (2) in Figure A.23). We assume

that the first layer of the SALMONN decoder is able to capture some language features

out of the input embeddings limiting the similarities to rise for cross-lingual comparisons

including the generalized text representations of medium and low resource languages.

However, the addition to the language features on top of the generalized text representa-

tions increases the similarity score of medium to low resource languages when compared

to the speech representations of the same language.

Fortunately, with the depth of the decoder, SALMONN seems to recognize overly

generalized text representations, as there is a noticeable decrease in similarity for those

languages from the first decoder layer to the last, while for the similarities with the text

representations of high resource languages decrease marginally (see Figure A.24). As

a result, the cross-lingual similarity across modalities is proportional to the language

resource levels in the final decoder layer (see (2) of A.22), as comparisons with high

resource languages, such as English and French, hold higher similarities than with medium
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and low resource languages. This proportionality also matches with our cross-modal

similarity results previously seen in Section 5.1.3. Same as SeamlessM4T and SONAR, the

cross-modal similarities across the diagonal of the heatmap of the last decoder layer are

significantly higher than the cross-lingual similarities, with the similarity of English being

the highest. The language features of the input are therefore still evident in the decoder

output of SALMONN and since Vicuna was primarily trained on English, the decoder is

able to further close the modality gap for English.

5.2.3. Impact of Languages Within One Modality

After analyzing the cross-lingual similarities of all 30 languages across modalities for each

model, the same analysis can also be conducted on the cross-lingual comparisons within

one modality for the same layers. The results of this analysis only contain the similarity

scores of the lower triangle, due to the symmetry of the similarity matrix (see Appendix

A.3). Since the diagonals in the results of this section are similarities between the same

representation set and language, they are normalized to 100.0 and are not included in the

heatmap scale. The averaged similarity scores without the diagonal equal the scores in the

graphs of Figure 5.5.

SeamlessM4T For SeamlessM4T, the cross-lingual intra-speech analysis presents similar

results as the cross-lingual analysis across modalities throughout each observed Seam-

lessM4T layers, meaning that the cross-lingual and inter-modal analysis (see Figures A.1

and A.2) is highly dependent on the information the speech representations carry. Espe-

cially, the randomness of the similarity distribution of the input embeddings and in first

encoder layer (see Figure A.4) and the proportional similarity to the resource levels in

the last two SeamlessM4T layers (see Figure A.5) are visible in both cross-lingual analysis

results.

The only difference lies in the inter-layer similarity increases, as shown in Figures

A.6 and A.7. As mentioned in Section 5.2.1, the cross-lingual intra-speech similarities

start at a relatively low score, which increases with the depth of the encoder. Contrary

to the cross-lingual comparisons across modalities in Figure A.3, high increases can be

seen between the input embeddings and the first encoder layer and also between the

first and last encoder layer. However, the former does not add value to the results, since

the increases also have no define structure, and not linguistically similar language pairs

such as Italian with Arabic have the highest increases (see (1) in Figure A.6). Instead, the

increases between the first and last encoder layer is proportional to the resource levels

of the language pairs, since comparisons with the zero-shot languages Shona (sna) and

Sindhi (snd) have the lowest increases and those with English have the highest, similar to

the cross-lingual increases across modalities in heatmap (1) of Figure A.3.

In contrast to the cross-lingual and inter-modal similarity decreases for low resource

languages after the length adaptor in Figure A.3, the length adaptor only increases the

similarities in the cross-lingual intra-speech analysis by at least 1.0, as well as the similari-

ties of the language pairs with zero-shot languages (see Figure A.7). This consistent with
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our results of the averaged cross-modal similarity in Figure 5.5 in Section 5.2.1, where the

reason behind this observation can be found.

The cross-lingual intra-text comparisons do not have many peculiarities either, with

most observations already stated in Section 5.2.1: High initial similarity in the input

embedding space, followed by small gradual increases though the depth of the encoder.

Same as the cross-lingual intra-speech analysis, the similarity scores are proportional to

the language resource level throughout all analyzed layers (see Figures A.8 and A.9). For

example, while the cross-lingual comparisons with English have the highest scores overall,

low resource languages such as Amharic, Khmer and Shona have the lowest.

One striking difference is that the SeamlessM4T text encoder performs differently for

the Mandarin Chinese and Cantonese. In the input embedding space and the first encoder

layer, the intra-text similarity between Mandarin and Cantonese is the highest, just falling

behind 90.0 (see Figure A.8). This observation is most likely due to their linguistic simi-

larity in their written from. As Mandarin and Cantonese share a significant amount of

vocabulary, they also share tokens in the embedding space. This causes their similarity

in the encoder input space to be higher than with other languages. Even after the first

encoder layer, the similarity stays high, since early hidden representations are more tied

to the character level features rather than the semantic meaning.

This is nevertheless reversed with the depth of the text encoder, as SeamlessM4T

recognizes the differences between the two languages, resulting in a minor decrease in

similarity (see (2) in Figure A.10), while all other comparisons rise in similarity. However,

all cross-lingual similarities involving Mandarin and Cantonese have a smaller increase

from the first encoder layer to the last. For Cantonese, we can argue that it is a low resource

language, but this is not the case for the high resource language Mandarin. We assume

that the SeamlessM4T text encoder has some difficulties in understanding languages of

the Hant family due to their complex syntactic and morphological structures compared

to other languages like English or French, which have the highest similarities in the last

encoder layer.

SONAR As SONAR and SeamlessM4T are initialized with the same speech and text mod-

els, the cross-lingual intra-modality similarity analysis results in the encoder input space

and after the first encoder of SONAR are very similar to those of SeamlessM4T (see Figures

A.14 and A.18). Differences between the two models are only visible after the last encoder

layer, since both models are trained on different tasks.

Same as the last speech encoder layer of SeamlessM4T, the SONAR intra-speech similar-

ity scores in the last encoder layer are proportional to the resource level of the language

pair, with some exceptions (see (1) in Figure A.15). Foremost, all comparisons with the low

resource languages Assamese and Sindhi have lower increases from the first encoder layer

(see (2) in Figure A.16) and as a result, have lower similarities than other comparisons.

In contrast, we can observe exceptionally high similarity increases for certain language
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pairs, such as Dutch-German, Catalan-French/Italian, Bulgarian-Russian and Estonian-

Finnish (see (2) in Figure A.16). Since the aforementioned language pairs each share the

same script and are linguistically very similar, SONAR is able to produce similar speech

representations based on their shared semantic meaning, minimizing the language gap

only for linguistically similar languages (see (1) in Figure A.15).

As mentioned before, the cross-lingual intra-text analysis results of SeamlessM4T and

SONAR are mostly the same, as the same observations in the SeamlessM4T part of Section

5.2.3 are also visible in the SONAR results, with the same reasoning behind it. The only

difference is that apart from the low increases and similarity scores of language pairs

including Mandarin and Cantonese in the last encoder layer, all comparisons with the

low resource languages Assamese and Sindhi also have smaller increases from the first

encoder layer to the last (see (2) in Figure A.20) and therefore lower similarity scores than

the rest (see Figure A.19).

The pooling method of SONAR does not change the cross-lingual intra-text similarities,

as seen in Section 5.2.1, but averages the similarities in the cross-lingual intra-speech

comparisons, giving these high-similarity language pairs smaller increases than those

with low similarity (see (2) in Figure A.17). For both intra-modal analysis, SONAR reaches

final cross-lingual similarities of about 88.0 − 94.0 (see (2) in Figure A.15 and Figure A.19),

achieving its goal of producing language-agnostic embeddings within one modality to a

high extent. However, influences of language resource levels are unavoidable even with

SONAR, as for both final cross-lingual and intra-modal similarities, the comparisons with

English have the highest scores, while it is the lowest for low resource languages such as

Assamese and Sindhi.

SALMONN Same as SeamlessM4T and SONAR, the distribution of the cross-lingual and

intra-speech similarities in the decoder input space before the Q-Former have no distinct

structure, with non-related language pairs such as Bulgarian-Finnish having the highest

similarity score (see (1) in Figure A.25). However, the reason behind this observation is

not the same as the other two models (see Section 5.2.2), as the varying input features

are first processed through the Whisper and BEATs encoder. We assume that the lack of

structure is caused by the BEATs encoder outputs, which is trained to capture background

audio noise, magnifying uncertainty to the Whisper encoder outputs.

The overall intra-speech similarity does not increase drastically, as seen previously in

Figure 5.5, but the minimal increases from the encoder outputs to the outputs after the

Q-Former depend on the language resource level (see (1) in Figure A.27). As stated in

Tang et al. (2024), a large amount of speech and audio data was used to close the gap

between the pre-trained components of SALMONN and the Q-Former. We assume that the

Q-Former was trained on similar languages as the Whisper encoder and Vicuna, meaning

the training data consists mostly of high and medium resource languages. The Q-Former

can therefore accurately align speech representations for these languages with leaving the

shared semantic features behind, resulting in higher increases compared to low resource
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languages such as Amharic and Georgian. This pattern in the cross-lingual intra-speech

similarity scores does not change with the depth of the decoder as the similarity increases

(see Figures A.25 and A.26), meaning that the fine-tuned Vicuna model is not able to

accurately capture shared semantic features if the language comparison pair includes a

low resource language Vicuna was not sufficiently trained on.

Which languages Vicuna was mostly trained on is more evident in the cross-lingual

intra-text analysis, because these languages have a very high similarity score in the Vicuna

input space. As seen in heatmap (1) in Figure A.29, comparisons of only high resource

European languages with Latin and Cyrillic script, such as Catalan, English, German and

Russian, have higher similarity scores than others. The generalization of low resource

language text inputs, mentioned in Section 5.2.2, is therefore limited in the cross-lingual

intra-text similarity, since embeddings of high resource languages that capture the shared

semantic features more accurately.

For text embeddings, the fined-tuned Vicuna model of SALMONN flattens the cross-

lingual similarities, which can already be observed in the disproportionate increases to the

language resource level in the first decoder layer (see (1) of Figure A.31), and consequently

reaching cross-lingual intra-text comparisons with less drastic differences in similarity

than before (see Figure A.30). However, similar to the intra-speech analysis, a bias for high

resource and linguistically similar languages is still visible, meaning SALMONN can only

further close the language gap if these conditions are met.

SeamlessM4T SONAR SALMONN

Common

Observations Across

Modalities

• comparisons with same-language pairs (diagonal of heatmaps) hold the highest similarities

• final cross-lingual similarity is proportional to the resource level of language pairs (exception:

SALMONN, similarities influenced by Whisper not recognizing unseen languages)

→ Comparisons differing in only one attribute (modality or language) hold higher similarities,

as they have more common features aside from same semantic meaning.

→ The quantity and the quality of the training data proportionally impacts the cross-modal

similarity.

Common

Observations Within

Modalities

• high initial intra-text similarity, low initial intra-speech similarity

• cross-lingual similarity increases with the depth of the encoder/decoder

• intra-speech similarity < intra-text similarity in almost all layers (exception: SALMONN)

• final cross-lingual similarity is proportional to the resource level of language pairs

→ As speech is more varying in language features and length than text, the cross-lingual

similarities within the speech modality are lower than those of text.

Final Cross-Lingual

Similarity (intra-

speech/intra-text)

(0.885/0.905) (0.901/0.916) (0.856/0.892)

→ The language gap is more closed in a cross-lingual intra-text setting, due to the stability of

normalized text inputs.
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SeamlessM4T SONAR SALMONN

Impact of ... Length Adaptor:

• increases cross-lingual intra-

speech similarity more than

cross-modal analysis

→ The downsizing of speech

representations makes them

more comparable within the

same modality.

Pooling:

• mean pooling does not in-

crease cross-lingual intra-

text similarity

• learning pooling increases

cross-lingual intra-speech

similarity with a similar in-

crease as in the cross-modal

analysis

→ The cross-modal similarity is

highly influenced by the speech

learning pooling.

→ Text representations reach

language-agnostic embeddings

with the encoder (see SONAR t-

SNE results)

→ The speech encoder repre-

sentations need learning pool-

ing and MSE loss to produce

language-agnostic embeddings.

Window-Level Q-Former

• marginal similarity increase,

same as cross-modal analy-

sis

→ The Q-Former is used as a

connection module between the

encoder speech representations

and the text-based LLM.

Table 5.2.: Summary of the Cross-Lingual Analysis Results.

5.3. Representation Visualization Results

In the following section, the results of the t-SNE analysis are presented and discussed. For

capacity and redundancy reasons, we only present the t-SNE results that have a correla-

tion to our other analysis results or show a significant change in the distribution of the

representations.

As mentioned in Section 3.3, we use t-SNE to visualize the distributions of multimodal

hidden representations. The results are shown in Appendix A.4. The common ground that

is shared across all three MLMs is that throughout all model architecture layers (except

for the last few layers of the SONAR decoder), a clear separation between the speech and

text representations is visible, meaning all models are not capable of completely closing

the modality gap, since modality features are evident regardless of the modality alignment

strategies that have been used. This observation matches the cross-modal results seen in

Figure 5.1, as the modality gap is never fully closed for all models. Additionally, another

view of the cross-modal and cross-lingual similarity results of Sections 5.1 and 5.2 is gained

though the visualization of the representation distribution, giving us a further explanation

on the course of the similarity.

SeamlessM4T In the encoder input space of SeamlessM4T (see (1) Figure A.32), we can

observe that the text embeddings are already clustered into languages, with a minimal

number of text embeddings that have not been correctly aligned with their language cluster.

These clusters are mostly distinct, except for clusters of linguistically similar languages

such as Bulgarian-Russian, Mandarin-Cantonese and Estonian-Finnish. In contrast, the

speech embeddings in the encoder input space are not fully separated into languages.

Instead, they are mostly aggregated into one spot, since it is not easy to define the language

of the speech input in comparison to text inputs. While the clusters of text representations
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remain the mostly same after the first encoder layer (see (2) Figure A.32), the aggregation

of speech embeddings is however separated into several smaller speech representation

clusters for each language, meaning the speech encoder is able to capture language features

as early as in the first encoder layer.

This separation of speech representations continue in the following encoder layers, first

forming multiple bigger clusters of each language near the modality separation line in the

fourth encoder layer (see (1) in Figure A.33) to becoming distinct speech representation

clusters for each language in the 14th encoder layer (see (1) Figure A.34), just like the text

representations were clustered in the encoder input space.

After the speech and text representations are clustered into languages, the distribution of

both modalities follow the same path: linguistically similar clusters, such as French-Italian

and Dutch-German, first begin to join each other until the representations are evenly

spread out into smaller bundles across all languages, with a few independent clusters.

For text representations, this final distribution is already reached in the 14th encoder

layer (see (1) in Figure A.34), since the text representations start as languages clusters

in the encoder input space and the merging starts as early as in the fourth layer (see (1)

Figure A.33). These smaller bundles of text representations across different languages are

the representations of the same semantic meaning (see (1) in Figure A.37), meaning that

SeamlessM4T is capable of extracting the shared semantic features of text representations

with the depth of the encoder. The merging of representations also correlates with the

increase in the cross-modal and cross-lingual similarities from the fourth to the 14th

encoder layer, as seen in Figures 5.1 and 5.5.

For speech representations, the merging starts in the 18th encoder layer (see (2) in Figure

A.34) after the text representations have been fully separated into semantic meanings, and

is also separated into small semantic bundles only after the last encoder layer (see (2) in Fig-

ure A.35 and (1) in Figure A.37). Same as text, the increase in similarity within the speech

modality between the 18th and last encoder layer is also visible in the SeamlessM4T graphs

in Figure 5.1 and 5.5. While the text representations are more evenly spread throughout

the t-SNE map with relatively constant distances between the small semantic bundles,

some speech representations have not been assigned to its bundle, resulting in a large

aggregation with no structure across several languages in the last encoder layer, meaning

that the Seamless encoder can not effectively capture the shared semantic meaning for

certain speech inputs. This observation is also reflected in the averaged cross-lingual

graph in Figure 5.5, as the intra-speech similarity in the last encoder layer is smaller than

the intra-text similarity.

The speech clusters of Japanese and the two zero-shot languages Sindhi and Shona with

the Cantonese, Mandarin and Sindhi text clusters are very noticeable in the last encoder

layer, as the representations have not been aligned with their corresponding semantic

bundles, meaning that the encoder is not fully capable of extracting the semantic meaning

for these languages. As a result, complete rows and columns of lower cross-lingual similar-

ities in the analysis results of Section 5.2 can be observed if the language comparison pair
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includes one of the aforementioned languages (see (1) in Figures A.2, A.5 and Figure A.9).

The length adaptor does not change much in the distribution of the speech representa-

tions, only slightly separating the large aggregation of speech representations into more

distinct clusters of low resource languages or languages with a unique script, such as

Mandarin, Korean and Persian, and also creating a new Amharic speech cluster (see (1) in

Figure A.36). Thus, for these highlighted languages in the t-SNE map (2) of Figure A.36,

the length adaptor of SeamlessM4T emphasizes language-specific features rather than the

semantic features, resulting in lower similarity scores for these languages, as shown in

heatmap (2) of Figure A.3.

SONAR While the distribution of the text representations of SONAR in the encoder input

space and the first encoder layer is very similar to those of SeamlessM4T, the speech

representations are mostly clustered into several smaller clusters for each language, as

seen in the two t-SNE maps in Figure A.38. These smaller speech clusters are however not

distributed across the t-SNE map without any structure like SeamlessM4T, as the clusters

of one language are still closer to one other than to other language clusters, meaning that

SONAR has a better understanding on how to extract the language of speech embeddings,

even though SeamlessM4T and SONAR are initialized on the same models.

Nevertheless, the distribution of the SONAR text and speech representations follows

the same path as SeamlessM4T. For text representations the merging begins in the sixth

encoder layer (see (1) in Figure A.39) with linguistically similar languages, and is fully

homogeneous in the 22nd layer (see (2) in Figure A.40). This also matches with the cross-

lingual similarity increase between the sixth and 22nd encoder layers in Figure 5.5. In

contrast to the distribution of the SeamlessM4T text representations, SONAR is fully

capable of extracting the shared semantic meaning of all text inputs, as there are no text

language clusters left in the t-SNE map of the 22nd encoder layer.

Unlike SeamlessM4T, the speech representations in SONAR are never divided into

one distinct cluster for each language, instead they remain in multiple clusters for each

language, as seen in the tenth encoder layer in Figure A.39, before linguistically similar

languages start to join one another in the 14th layer (see (1) in Figure A.40). Several speech

language clusters form bigger clusters with the depth of the encoder, just like SeamlessM4T,

but they are not separated into the semantic meaning with only the encoder, as seen in

the last encoder layer in Figure A.41. Regardless of the final encoder distribution of the

speech representations, since similar languages are clustered together, an increase of the

cross-lingual similarity within the speech modality from the 14th to the last encoder is

shown in the cross-lingual SONAR analysis in Figure 5.5.

The t-SNE results of SONAR after the pooling show us that SONAR reaches its goal

of producing language-agnostic embedding to a high extent (see (2) in Figure A.41), as

representations, regardless of modality and language, are bundled together based on the

semantic meaning (see (2) in Figure A.42). Since SONAR is the only model out of the
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three analyzed MLMs that reaches this distribution by producing representations inde-

pendent from language and modality, SONAR also reaches the highest cross-modal and

cross-lingual similarity scores, as seen in Figures 5.1 and 5.5.

The increases caused by the pooling in Figure 5.5 also correlates with our findings in

this section. Since all text representations are already separated into semantic meaning in

the last encoder layer (see (1) in Figure A.42), resembling the final embedding distribution,

no increase in similarity is shown after the mean pooling in the cross-lingual intra-text

analysis. Therefore, mean pooling is mainly used to transform the text representations

to match the embedding size. In contrast, the learning pooling with MSE loss in the

embedding space separates the speech clusters in the last encoder layer into semantic

meaning, increasing the cross-lingual intra-speech similarity by emphasizing the semantic

features in the speech representations.

SALMONN Same as the previous two models, all text embeddings are clustered into lan-

guages (see Figure A.43), since it is more easier to predict the language the input data is

based on with text inputs than with speech inputs. Text clusters with similar linguistic

features are either completely overlapping each other like Cantonese and Mandarin, or are

connected like Bulgarian-Russian and English-French/Italian. Since embeddings of similar

languages may have shared word tokens, the cross-lingual similarities of these languages

are higher, supporting our finding in the cross-lingual similarity analysis within the text

modality in Figure A.29.

Different to the input space t-SNE mappings of the previous two models, the distribution

of the speech encoder outputs before the Q-Former build multiple smaller clusters for

each language similar to SONAR, but are very randomly distributed across the t-SNE map.

This observation is caused by the two encoders of SALMONN. While the Whisper encoder

captures language features and produces similar speech representations for inputs of the

same language, forming the language clusters in (1) of Figure A.43, the BEATs encoder

outputs magnifies distortion of the speech representations, scattering the language clusters

across the t-SNE map. The general distribution of the speech representations remains

the same after the Q-Former, only being more aggregated than before (see (2) in Figure

A.43). Since the Q-Former is used to downsize the varying speech sequence lengths to

text with maintaining all important features, it does not greatly change the distribution

and similarity of the representations, as seen previously in Figures 5.1 and 5.5.

The SALMONN speech and text representations after and including the second decoder

layer follow a different path than SeamlessM4T and SONAR. The speech representations

of SONAR never form distinct language clusters as the previous two models, instead the

speech aggregation of multiple smaller clusters for each layer become denser with the

depth of the decoder. In the second and the fourth layers, the smaller language clusters are

still differentiable from others (see Figure A.44), however the speech representations begin

to merge after the fourth layer until the distribution of the 12th decoder layer is reached

(see (1) in Figure A.45). This is then maintained until the more homogeneous merge of
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5. Results and Discussion

speech representations is achieved in the last decoder layer (see (2) in Figure A.46). Since

t-SNEmaps similar representations with more closer to one another, this progression of the

speech distribution resembles the course of the SALMONN cross-modal and cross-lingual

similarity results (see Figures 5.1 and 5.5), with an increase in similarity from the fourth to

the 12th decoder layer, maintaining the similarity of the 12th layer. Additionally, as the

final distribution of speech representations lack of separation into languages or semantic

meaning correlating to higher cross-modal and cross-lingual similarities, this observation

also alignswith the decrease in similarity in the last decoder layer of all SALMONNanalysis.

However, languages such as Amharic, Georgian, Khmer and Shona are more noticeable

throughout the decoder layers. For example, Shona is not fully integrated with the rest of

the speech aggregation in the last decoder layer. We assume that the reason behind this

lies in the Whisper encoder not fully supporting these low resource languages, resulting

in less accurate speech representations with a low similarity with other representations of

other languages. Additionally, the languages of the less integrated speech clusters match

the languages in cross-lingual analysis results of the last decoder layer in Figure A.26, with

which all cross-lingual comparisons hold the lowest similarity.

The distribution of the SALMONN text representations undergoes the most drastic

transformation from the decoder input space to the second decoder layer, since the distinct

language clusters form a chain of text representations throughout the t-SNE map (see (1)

in Figure A.44). These is no structure noticeable within the chain of text representations,

as the representations of each language are evenly spread out across the continuum of the

chain. We assume this is the reason behind the deep drop in the cross-lingual intra-text

SALMONN analysis results, as shown in Figure 5.5, and therefore also in the cross-modal

analysis result in Figure 5.1. Since the text representations are not gathered based on lan-

guage nor semantic meaning, which are correlated to a high cross-lingual similarity as seen

in the previousmodels, the cross-lingual similarity decreases after the second decoder layer.

However not all languages are integrated into the text representation chains, as seen at

the far left end of the chain in Figure A.44. Since Vicuna has not been sufficiently trained

on these languages (Amharic, Armenian, Cantonese, Chinese Mandarin, Georgian, Greek,

Khmer, Thai and Tamil), their representations as a result do not accurately in capture

linguistic and semantic features. The same observation is also evident in the cross-lingual

intra-text SALMONN analysis of the first decoder layer, since comparisons including one

of these aforementioned languages are noticeably lower than other comparisons (see (2)

in Figure A.29).

After the fourth decoder layer, the chain of text representations divides into smaller

chains for each language, until distinct, isolated clusters for each language, resembling

distribution in the decoder input space, is reached in the final decoder layer (see (2) in

Figure A.46). The SALMONN decoder is therefore able to recover from the low similarity

in the earlier layers of the decoder, with accurately capturing the languages features of the

text inputs. The clusters containing the similar languages Cantonese and Chinese Man-

darin is an exception, as they are completely overlapping each other, which explains the
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5.3. Representation Visualization Results

high cross-lingual intra-text similarity of the Cantonese-Mandarin language pair shown

in heatmap (2) of Figure A.30.

Since the both speech and text representations of SALMONN are not separated into

their shared semantic meaning across languages, indicating a higher cross-modal and

cross-lingual similarity as seen in the previous models, the SALMONN decoder reaches a

lower final similarity in both cross-modal and cross-lingual similarity analysis results, as

shown in Figures 5.1 and 5.5.

SeamlessM4T SONAR SALMONN

Common

Observation

Across Models

• separation into modalities visible throughout all layers (exception: SONAR)

→Modality-specific features are evident in the representations of all layers, preventing the closure

of the modality gap.

Distribution of

Speech

Representations

• embeddings are collected into

one aggregation across lan-

guages

• distinct language clusters

reached in the 14th encoder

layer

• 18th to the last encoder layer:

merging of clusters, beginning

with linguistically similar lan-

guages

• separation into semantic

meaning partly reached,

aggregation across languages

still visible in the last encoder

layer

• embeddings in multiple clus-

ters for each language

• one distinct cluster for each

language is never formed

• from the 14th encoder layer:

merging of clusters, beginning

with linguistically similar lan-

guages

• separation into semantic

meaning not reached with the

encoder, aggregation across

similar languages still visible

in the last encoder layer

• embeddings in multiple clus-

ters for each language, scat-

tered across the t-SNE map

• one distinct cluster for each

language is never formed

• forms homogeneous aggrega-

tion with the depth of the de-

coder

→ The lack of structure and sep-

aration aligns with the low cross-

modal and cross-lingual similari-

ties.

→ The merging and separation into semantic meaning correlates

with the gradual increase in the cross-modal and cross-lingual simi-

larity analysis results.

Distribution of

Text

Representations

• embeddings are clustered into

languages

• 4th to 14th encoder layer:

merging of clusters, beginning

with linguistically similar lan-

guages

• separation into semantic

meaning reached in the last

encoder layer, with a few

independent language clusters

as exceptions

• embeddings are clustered into

languages

• 6th to the 22th encoder layer:

merging of clusters, beginning

with linguistically similar lan-

guages

• separation into semantic

meaning fully reached in the

last encoder layer

• embeddings are clustered into

languages with linguistically

similar languages overlapping

each other

• forms a chain in the second de-

coder layer

• 12th to the last decoder layer:

chain is separated into lan-

guages until distinct language

clusters are formed

→ It is assumed that the chain

of text representations correlates

with the drop in the cross-modal

and cross-lingual intra text simi-

larity, as representations lack of

shared features.

→ The lack of structure and sep-

aration aligns with the low cross-

modal and cross-lingual similari-

ties.

→ The merging and separation into semantic meaning correlates

with the gradual increase in cross-modal and cross-lingual similarity

analysis results.

43



5. Results and Discussion

SeamlessM4T SONAR SALMONN

Impact of ... Length Adaptor:

• only slightly separates speech

aggregation into language

clusters

→ The length adaptor does not

contribute to capturing shared se-

mantic meaning, as it only down-

sizes speech representations with

preserving features.

Pooling:

• the distribution of text repre-

sentations remain the same

• aligns speech representations

to the text representations

clustered separated into se-

mantic meaning

→ Learning pooling and MSE

loss in the embedding space em-

phasizes semantic features of the

speech representations, increas-

ing both cross-modal and cross-

lingual similarities.

Window-Level Q-Former

• no noticeable difference, only

brings scattered speech clus-

tered together

→ The Q-Former does not add

to both cross-modal and cross-

lingual similarities, as it is used

as a connection module between

encoder speech outputs and the

text-based LLM.

Table 5.3.: Summary of the t-SNE Results.
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6. Conclusion

6.1. Answers to Research Questions

In this work, we analyzed the cross-modal and cross-lingual similarities between repre-

sentations of MLMs across a set of languages, comparing them within a shared semantic

space to better understand how MLMs handle their multimodal input. With the results of

our analysis in Section 5, we can answer our research questions of Section 1.2 that built

the basis of this work. In summary, the similarity between multimodal representations

is influenced by a wide range of factors, including the model architecture, the task it is

designed to perform, and the availability of language data.

Research Question 1: How does the similarity of representations change with the depth of the
model’s layers? First, we observed that in both cross-modal and cross-lingual settings, the

SVCCA similarities increase with the depth of the model architecture. Thus, each model

progressively captures shared features through each hidden layer, producing modality- and

language-independent representations. As both features are present in the representations

of almost encoder or decoder layers, the modality and language gap is never closed, with

the highest cross-modal and cross-lingual still below 0.95.

Research Question 2: How does the similarity of representations change with varying language
resource levels? Language resource levels also affect the similarity between multimodal

representations. Since high-resource languages benefit from a large amount of high-quality

training data, cross-modal and cross-lingual similarities are significantly higher for these

languages. Therefore, it is important for MLMs to be sufficiently trained on languages to

capture shared features between multimodal representations. However, it has also been

observed that even for low-resource languages, which may have been trained on minimal

data or are zero-shot languages, the similarities are still higher than a random baseline,

meaning that the models are able to generalize beyond the data they have seen during

training, emphasizing their robustness.

Research Question 3: How do the similarities of representations differ in a cross-modal and
cross-lingual setting? Regarding the differences in cross-modal and cross-lingual settings,

the model demonstrates varying levels of similarity depending on how many attributes —

modality or language — differ. Higher similarities are reached when only one attribute

differs in the comparison of the representations. This is because, in addition to the shared

semantic meaning, another consistent attribute across the comparisons allows the repre-

sentations to have more shared features, resulting in higher similarities. Therefore, when

both modality and language differ, the similarities decrease, even if the semantic meaning
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6. Conclusion

between the compared representations is preserved. This highlights the limitations in the

alignment capabilities of current MLMs.

Research Question 4: How does the architecture of the model affect the similarity of represen-
tations? The tasks on which the MLMs have been trained, as well as the components

of their architecture, also greatly affect the similarity between speech and text represen-

tations. For models developed for multimodal translation or for achieving multimodal

language-agnostic embeddings, such as SeamlessM4T and SONAR, high similarity between

multimodal encoder representations of the same semantic meaning is crucial for their

performance. These models therefore reach cross-modal similarities of over 0.9, while the

decoder of instruction-following models like SALMONN, which do not prioritize high

multimodal similarity, lack such high levels of similarity.

Higher similarities are also made possible by various speech sequence shortening meth-

ods, as MLMs generally have a shared embedding space where speech representations

of varying lengths must be adapted. The length adaptor and Q-Former of SeamlessM4T

and SALMONN marginally increase both cross-modal and cross-lingual similarities, as

their primary goal is to downsize speech representations of varying lengths, rather than

to increase similarity by extracting more shared features from the multimodal comparison.

In contrast, the leaning pooling method of SONAR in combination with the MSE loss in

embedding space increases both cross-modal and cross-lingual similarities, as they smooth

out language- and modality-specific features, making the representations more abstract

and similar through their shared semantic meaning.

6.2. Limitations of this Work

Our work is limited to the data used for the analysis, since the extracted representations

only come from one multimodal and multilingual n-way parallel dataset: FLEURS. Al-

though the FLEURS dataset covers different domains due to it being based on FLORES (see

Section 4.2), it is often the case that one dataset does not fully capture the diversity of

languages, dialects and speech patterns, due to all sentences being sourced fromWikimedia

sources and the low number of speakers for each language (Goyal et al., 2022).

Additionally, this work focuses on the analyzing MLMs and their multimodal repre-

sentation similarities, rather than evaluating the model architecture and its performance.

While our findings help in understanding on how MLMs handle with multimodality, it

does not make any implications on model improvements, as this would be out of the scope

of this work. However, future research building upon the findings of this work could dive

into enhancing model architectures or training strategies to further improve cross-modal

alignment.
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A. Appendix

A.1. Target Dimensions for Cross-Modal Analysis

A.1.1. SeamlessM4T

amh arb bul cat cmn deu ell eng est fin fra hin hye ind ita

Input 87 90 94 87 85 94 96 93 93 86 92 92 92 91 87

1 143 141 141 142 138 144 138 140 145 133 139 133 142 135 135

2 142 140 141 144 139 141 139 141 144 135 142 134 143 136 137

4 157 155 157 159 156 156 155 156 158 152 157 151 158 155 153

6 162 161 166 165 158 165 162 164 166 158 165 156 160 160 163

8 157 155 159 156 154 155 155 157 157 150 155 154 156 155 156

10 162 163 168 166 157 165 164 168 166 160 166 161 164 162 164

12 174 175 179 177 173 175 178 179 179 173 177 175 176 176 176

14 167 166 168 165 162 164 168 169 168 163 166 165 168 167 164

16 167 161 163 159 160 159 162 165 162 159 161 162 164 163 158

18 171 167 170 166 166 166 169 172 169 166 168 169 170 168 166

20 178 176 179 176 175 174 178 180 179 175 176 177 179 178 176

22 182 182 184 182 180 179 184 185 183 179 181 182 184 183 182

23 184 184 186 185 182 182 186 187 186 183 184 185 186 186 185

24 186 187 189 187 183 184 189 189 188 185 187 187 188 188 187

Adaptor 192 193 195 193 189 191 194 195 193 191 193 193 194 194 193

jpn kat khm kor lit mar nld pes rus sna snd tam tha tur yue

Input 90 84 89 94 91 90 90 88 91 91 93 93 91 90 94

1 139 140 136 138 144 134 151 140 141 139 137 131 146 139 143

2 138 141 138 136 144 134 149 138 140 140 139 132 144 140 141

4 155 157 153 151 160 152 161 155 155 158 157 150 156 158 154

6 159 162 159 157 164 156 169 161 164 160 162 153 161 162 160

8 153 157 156 152 158 156 160 155 157 157 161 152 156 155 160

10 161 164 159 160 166 162 170 161 166 161 165 156 160 162 158

12 173 177 172 173 177 173 179 174 179 173 176 170 174 173 176

14 165 168 163 164 167 166 168 166 167 163 165 163 163 166 165

16 161 164 163 162 162 164 162 164 161 165 165 161 161 163 163

18 167 169 167 168 169 170 169 169 168 170 171 167 166 169 170

20 175 178 175 176 178 178 177 177 178 174 177 176 176 177 178

22 180 184 179 181 183 183 182 182 183 176 181 181 181 182 183

23 182 186 181 184 185 185 185 184 186 178 183 183 183 184 185

24 186 188 184 186 188 187 187 187 188 180 185 185 185 187 187

Adaptor 190 194 189 191 194 193 193 192 194 188 192 192 192 192 192

Table A.1.: SeamlessM4T Target Dimensions for Speech Representation Sets. For
each language (header) and encoder layer (left column). ’Input’ refers to the

encoder input embeddings of SeamlessM4T and ’Adaptor’ refers to the speech

representations after the length adaptor.
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A. Appendix

amh arb bul cat cmn deu ell eng est fin fra hin hye ind ita

Input 191 194 193 194 184 196 189 197 198 197 194 191 188 196 196

1 189 189 190 192 180 194 186 194 194 194 192 188 185 192 194

2 186 185 187 189 177 190 183 191 191 191 189 185 183 189 190

4 185 184 185 186 175 188 182 187 188 188 186 184 183 186 187

6 188 188 188 189 177 190 186 190 190 189 189 188 187 188 190

8 190 190 190 191 181 192 189 192 191 190 191 190 189 190 192

10 191 191 191 191 184 192 190 193 192 191 192 192 191 191 193

12 192 192 192 192 185 193 191 193 193 191 193 193 191 192 193

14 192 191 192 192 185 193 191 193 193 191 193 194 191 192 193

16 192 191 193 193 185 193 191 193 193 191 193 194 192 193 194

18 192 191 193 193 185 193 191 194 193 191 193 194 192 193 194

20 192 191 193 193 185 193 191 194 194 191 194 195 192 193 194

22 193 192 194 194 186 194 192 195 195 192 195 195 193 194 195

23 194 192 195 195 187 195 193 195 196 193 195 196 194 195 196

24 197 197 197 197 191 197 197 197 198 196 198 198 197 198 198

jpn kat khm kor lit mar nld pes rus sna snd tam tha tur yue

Input 192 193 190 192 197 194 196 193 196 197 191 192 191 198 186

1 188 190 186 189 194 190 194 189 192 194 188 189 186 194 180

2 186 187 184 187 191 187 191 187 189 190 185 187 184 191 178

4 184 186 182 185 187 186 188 185 186 187 184 186 182 188 174

6 186 188 185 187 188 189 190 187 189 188 187 189 185 189 173

8 188 190 187 189 189 190 192 189 191 190 188 190 187 190 174

10 190 191 189 190 190 191 193 191 193 191 190 191 189 191 175

12 191 193 190 190 190 193 193 192 193 192 190 192 190 192 176

14 191 193 190 190 191 193 193 192 194 193 190 193 190 192 176

16 192 193 190 189 191 193 194 192 194 193 190 193 190 192 176

18 192 193 190 189 190 193 193 192 194 193 189 193 190 192 177

20 192 193 191 189 191 194 194 193 194 193 189 193 190 193 177

22 193 194 192 190 192 195 195 194 195 194 190 194 191 194 178

23 194 195 192 190 192 195 196 195 196 195 190 195 192 194 179

24 197 197 196 196 196 198 198 197 198 197 196 197 196 197 185

Table A.2.: SeamlessM4T Target Dimensions for Text Representation Sets. For
each language (header) and encoder layer (left column). ’Input’ refers to the

encoder input embeddings of SeamlessM4T.
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A.1. Target Dimensions for Cross-Modal Analysis

A.1.2. SONAR

amh arb bul cat cmn deu ell eng est fin fra hin hye ind ita

Input 89 90 95 87 85 95 91 92 84 92 77 92 90 87 92

1 146 152 149 148 149 150 144 150 141 147 149 143 143 143 144

2 146 145 153 143 144 153 143 146 140 152 147 139 137 146 152

4 154 155 159 156 155 159 153 157 149 160 152 148 148 155 158

6 158 158 168 166 155 167 162 162 152 167 160 153 157 164 160

8 158 162 159 157 158 161 154 156 146 159 154 157 158 154 159

10 147 150 153 149 147 151 153 151 143 153 147 148 147 149 149

12 171 174 177 174 167 172 175 176 170 174 171 173 172 172 173

14 178 177 182 180 175 179 182 182 177 180 178 178 178 180 177

16 171 172 174 172 170 173 176 174 170 173 172 172 172 173 172

18 166 176 165 164 173 168 165 168 168 166 176 174 170 167 176

20 175 180 173 169 177 174 173 177 177 171 182 179 177 172 180

22 183 183 181 177 178 179 179 185 183 178 186 183 182 178 182

23 189 188 188 184 184 185 185 190 188 184 192 189 189 185 187

24 191 189 190 186 187 186 188 192 190 186 192 191 191 186 189

Pooling 201 198 202 202 200 202 203 202 201 201 202 199 201 202 200

jpn kat khm kor lit mar nld pes rus sna snd tam tha tur yue

Input 94 89 92 90 89 91 87 91 94 92 93 94 84 89 95

1 146 141 153 146 144 157 146 148 145 137 142 146 148 145 150

2 145 139 149 149 147 156 147 139 152 141 139 144 142 141 155

4 149 147 156 156 154 163 152 151 158 147 146 151 147 152 159

6 149 147 166 158 157 171 155 163 161 147 151 157 147 154 160

8 153 149 158 158 159 165 152 158 163 148 155 158 149 151 161

10 144 147 152 148 150 156 146 150 152 143 145 149 147 147 150

12 168 168 176 173 173 178 171 175 176 169 168 174 169 170 172

14 173 176 181 177 177 182 177 182 179 175 175 178 176 176 179

16 167 172 173 173 172 176 173 174 172 170 171 174 171 171 174

18 175 170 164 173 174 169 173 164 178 171 175 175 168 171 177

20 179 174 173 178 178 176 178 174 181 177 177 178 174 177 181

22 182 184 181 182 182 181 184 181 183 179 182 183 185 181 182

23 189 193 187 189 189 187 189 188 187 184 188 189 193 187 186

24 190 194 188 190 190 188 191 189 189 187 189 191 194 189 189

Pooling 200 200 201 200 201 202 201 202 196 199 199 199 200 201 199

Table A.3.: SONAR Target Dimensions for Speech Representation Sets. For each
language (header) and encoder layer (left column). ’Input’ refers to the encoder

input embeddings of SONAR and ’Pooling’ refers to the speech representations

after learning pooling.
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A. Appendix

amh arb bul cat cmn deu ell eng est fin fra hin hye ind ita

Input 191 192 192 195 184 197 197 198 198 194 190 194 197 196 193

1 189 189 190 193 181 195 196 196 196 193 187 191 195 195 189

2 188 189 190 192 180 194 194 195 194 193 187 190 193 193 187

4 188 188 189 191 180 191 192 193 192 190 188 189 191 191 187

6 191 191 191 192 182 193 192 194 193 191 191 191 191 192 188

8 193 192 193 193 186 194 193 194 193 193 194 193 192 193 191

10 193 193 193 192 189 194 193 194 192 193 194 193 192 193 192

12 194 193 193 193 190 194 194 194 193 193 194 194 193 193 192

14 194 193 194 193 191 194 194 194 193 194 194 194 192 194 193

16 194 193 194 193 191 194 193 194 193 194 194 194 192 194 193

18 194 193 193 193 191 194 193 193 192 193 193 194 191 193 193

20 191 191 191 190 188 191 190 191 190 190 191 192 190 190 191

22 195 196 195 195 194 196 196 195 195 195 196 196 196 195 195

23 198 196 197 196 196 199 199 197 197 198 197 198 197 198 198

24 203 200 203 202 202 203 203 203 202 203 202 203 203 203 203

Pooling 203 200 203 202 202 203 203 203 202 203 202 203 203 203 203

jpn kat khm kor lit mar nld pes rus sna snd tam tha tur yue

Input 193 188 197 190 195 197 194 195 191 197 191 193 186 199 185

1 190 185 195 188 193 195 191 193 189 195 189 190 183 196 182

2 189 185 194 188 192 194 190 192 189 194 189 189 184 195 182

4 188 185 191 188 190 192 189 190 188 192 190 189 185 192 182

6 189 187 192 191 192 193 191 191 190 193 191 191 187 193 184

8 191 190 193 193 193 194 192 193 192 193 193 193 191 193 187

10 192 191 193 193 193 193 193 193 193 193 193 194 192 193 189

12 193 193 193 193 193 193 194 193 193 193 193 194 192 193 191

14 193 193 193 194 194 194 194 193 193 194 194 194 193 193 192

16 193 194 193 194 194 194 194 193 194 194 194 194 193 194 192

18 193 193 193 193 194 193 193 193 193 193 194 194 193 193 192

20 190 191 191 191 191 191 191 191 190 191 191 192 191 191 189

22 195 195 195 196 196 196 195 196 196 195 196 196 195 195 194

23 197 198 197 197 197 198 198 199 198 198 196 197 197 198 197

24 202 202 203 202 202 203 203 204 201 202 202 201 203 203 202

Pooling 202 202 203 202 202 203 203 204 201 202 202 201 203 203 202

Table A.4.: SONAR Target Dimensions for Text Representation Sets. For each

language (header) and encoder layer (left column). ’Input’ refers to the encoder

input embeddings of SONAR and ’Pooling’ refers to the text representations

after mean pooling.
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A.1. Target Dimensions for Cross-Modal Analysis

A.1.3. SALMONN

amh arb bul cat cmn deu ell eng est fin fra hin hye ind ita

Encoder 168 166 169 165 162 161 168 159 168 158 166 164 167 163 162

Input 164 163 164 163 160 159 163 163 163 159 165 160 163 160 161

1 164 163 164 163 160 159 163 163 163 159 165 161 163 161 161

2 164 163 164 163 160 158 163 163 162 158 165 160 163 160 160

4 169 169 170 168 166 164 169 169 168 164 170 165 169 166 165

6 177 179 181 179 178 177 181 181 180 176 181 176 180 177 177

8 185 186 187 186 186 184 188 188 187 184 188 184 187 185 185

10 190 192 193 192 192 191 193 194 193 191 194 190 192 191 192

12 194 195 197 196 196 195 197 197 196 195 197 194 196 195 196

14 195 197 198 198 198 197 198 199 198 197 198 196 197 197 197

16 196 198 199 198 198 197 199 199 199 198 199 197 198 198 198

18 197 199 200 199 199 198 200 200 200 199 200 198 199 199 199

20 198 200 201 200 200 199 201 201 200 200 201 199 200 200 200

22 199 201 201 201 201 200 201 202 201 200 201 199 200 201 201

24 199 201 202 201 201 200 201 202 201 201 202 200 201 201 201

26 198 200 201 201 200 199 201 201 201 200 201 199 200 200 201

28 196 198 199 200 199 197 199 200 199 199 199 198 198 199 199

30 195 198 198 199 198 196 198 199 198 198 198 197 197 198 198

31 194 197 198 198 197 195 197 198 197 197 197 196 196 197 197

32 191 193 194 194 193 191 194 195 192 192 194 191 192 192 192

jpn kat khm kor lit mar nld pes rus sna snd tam tha tur yue

Encoder 160 166 160 162 160 165 167 160 166 159 167 162 166 167 167

Input 158 163 158 160 161 160 164 158 162 159 163 159 160 162 161

1 158 163 158 160 161 160 164 159 162 159 163 159 160 162 161

2 158 163 158 160 161 160 164 158 162 158 162 159 160 162 161

4 164 168 163 166 167 164 171 163 168 162 167 163 165 168 167

6 176 177 173 178 178 174 182 173 179 170 176 173 176 178 179

8 184 185 182 185 185 182 188 182 187 178 183 181 184 185 186

10 190 190 189 191 192 188 194 189 193 185 190 188 190 192 192

12 195 194 193 196 195 193 197 194 196 190 194 192 193 196 196

14 197 196 195 197 197 195 199 196 198 192 195 194 195 198 197

16 198 196 196 198 198 196 199 197 199 193 196 195 196 198 198

18 199 198 197 199 199 197 200 198 200 195 198 197 197 199 199

20 200 198 198 200 199 198 201 199 201 196 199 198 198 200 200

22 200 199 199 201 200 199 202 200 201 197 199 198 199 201 200

24 201 200 200 201 200 199 202 200 201 198 200 199 199 202 201

26 200 199 199 201 199 199 201 200 201 197 199 198 198 201 200

28 199 197 197 199 198 197 200 198 199 195 197 197 196 200 198

30 198 196 196 199 197 196 199 198 199 194 196 196 195 199 197

31 197 195 195 198 196 195 198 197 198 194 195 195 194 198 197

32 193 192 189 194 192 189 194 191 194 189 190 190 190 194 192

Table A.5.: SALMONN Target Dimensions for Speech Representation Sets. For each
language (header) and decoder layer (left column). ’Encoder’ refers to the

encoder speech outputs before the Q-Former and ’Input’ refers to the decoder

input embeddings after the Q-Former.
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A. Appendix

amh arb bul cat cmn deu ell eng est fin fra hin hye ind ita

Embedding 50 40 194 204 184 206 35 208 198 198 205 45 37 196 205

1 117 111 191 200 182 202 112 205 195 195 202 119 113 193 202

2 24 23 53 64 66 69 29 66 62 66 72 33 23 60 75

4 90 118 131 140 132 139 123 143 137 138 144 125 107 135 145

6 138 159 169 171 169 172 161 175 163 169 176 159 148 166 175

8 158 175 181 182 182 183 175 185 173 180 186 175 166 179 185

10 168 183 187 188 188 189 183 191 180 187 191 183 175 185 190

12 176 188 192 191 193 192 189 195 186 191 194 188 183 189 194

14 178 189 193 193 194 194 190 196 187 192 195 189 185 190 195

16 177 190 194 194 196 195 190 198 189 193 197 190 186 192 196

18 182 192 196 196 198 197 192 200 191 194 199 193 189 195 198

20 183 193 197 197 199 199 192 202 192 195 200 193 189 196 199

22 186 195 198 199 199 200 194 203 193 196 201 195 192 197 200

24 188 196 199 199 199 200 195 204 195 197 201 195 193 198 200

26 191 197 200 200 200 201 196 204 196 198 202 197 195 199 201

28 192 198 200 200 200 202 197 205 197 198 202 197 196 200 201

30 193 199 201 201 201 202 198 205 198 199 202 198 196 200 201

31 196 201 203 203 202 204 200 206 201 201 204 200 198 203 203

32 195 201 202 199 200 202 200 201 197 200 201 199 197 201 201

jpn kat khm kor lit mar nld pes rus sna snd tam tha tur yue

Embedding 183 32 64 133 196 49 203 36 202 192 53 37 53 194 179

1 183 114 125 151 192 121 200 118 198 190 125 119 116 191 180

2 68 26 45 54 59 34 71 27 61 68 28 34 37 61 63

4 140 121 110 136 134 126 141 122 136 140 115 113 116 135 132

6 171 156 145 169 160 158 174 159 172 162 153 150 151 162 169

8 183 170 163 182 171 171 184 175 184 170 169 168 168 175 182

10 189 177 171 188 178 179 190 183 190 176 177 176 177 183 189

12 193 184 178 192 184 184 193 189 193 182 184 183 184 188 193

14 194 186 179 193 186 185 195 190 194 183 186 184 186 190 195

16 196 187 177 194 188 186 196 191 196 184 187 185 186 191 196

18 198 190 181 196 191 189 198 192 197 187 190 188 189 193 197

20 199 191 181 197 192 190 199 193 199 188 190 188 189 194 198

22 200 193 184 198 194 192 201 195 200 188 192 191 191 196 199

24 200 194 186 198 195 193 201 196 200 190 194 192 193 197 199

26 201 196 189 200 196 195 202 197 201 191 195 194 195 198 200

28 202 197 191 201 197 196 202 198 202 192 196 195 196 199 200

30 203 197 192 202 198 196 202 199 202 193 195 196 197 200 201

31 204 198 194 203 201 198 204 200 204 195 196 198 199 202 201

32 203 198 194 203 198 197 202 200 203 191 192 197 199 200 200

Table A.6.: SALMONN Target Dimensions for Text Representation Sets. For each
language (header) and decoder layer (left column). ’Embedding’ refers to the

Vicuna text embeddings.

56



A.2. Target Dimensions for Cross-Lingual Analysis

A.2. Target Dimensions for Cross-Lingual Analysis

SeamlessM4T SONAR SALMONN

Layer Speech Text Speech Text Speech Text

Encoder/Embedding 133 156

Input 91 155 90 155 133

1 117 153 122 153 133 160

2 117 151 125 152 133 130

4 129 149 127 150 137 134

6 132 150 135 151 144 141

8 129 151 131 151 148 145

10 135 152 124 151 152 149

12 142 153 139 151 154 151

14 134 153 143 152 155 153

16 133 153 138 152 156 154

18 137 153 141 152 156 156

20 143 154 144 150 157 157

22 143 154 147 153 157 158

23 148 155 150 155

24 149 156 150 158 158 159

Adaptor/Pooling 154 156 158 158

26 157 159

28 156 160

30 155 160

31 155 161

32 152 159

Table A.7.: Target Dimensions for Cross-Lingual Analysis. For the cross-lingual

analysis we used one target dimension for each layer and for all languages,

leaving at least 90% of the variance behind. ’Encoder/Embedding’ refers to the

encoder speech outputs and text embeddings of SALMONN. ’Input’ refers to

the encoder input embeddings of SeamlessM4T and SONAR, for SALMONN

it refers to the encoder speech outputs after the Q-Former. ’Adaptor/Pooling’

refers to the representations after the length adaptor of SeamlessM4T and

pooling of SONAR.
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A. Appendix

A.3. Cross-Lingual Analysis Results

A.3.1. SeamlessM4T - Cross-Modal Similarities

(1)

(2)

Figure A.1.: SeamlessM4T Cross-Lingual & Cross-Modal Similarity Analysis Re-
sults 1. With the results of (1) the input embeddings and (2) the first encoder

layer.
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A.3. Cross-Lingual Analysis Results

(1)

(2)

Figure A.2.: SeamlessM4T Cross-Lingual & Cross-Modal Similarity Analysis Re-
sults 2. With the results (1) of the last encoder layer and (2) from after the

length adaptor.
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A. Appendix

(1)

(2)

Figure A.3.: SeamlessM4T Cross-Lingual & Cross-Modal Similarity Differences.
With the differences (1) between the first and last encoder layer and (2)

between the last encoder layer and after the length adaptor.
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A.3. Cross-Lingual Analysis Results

A.3.2. SeamlessM4T - Intra-Speech Similarities

(1)

(2)

Figure A.4.: SeamlessM4T Cross-Lingual & Intra-Speech Similarity Analysis Re-
sults 1. With the results of (1) the input embeddings and (2) the first encoder

layer.
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A. Appendix

(1)

(2)

Figure A.5.: SeamlessM4T Cross-Lingual & Intra-Speech Similarity Analysis Re-
sults 2. With the results (1) of the last encoder layer and (2) from after the

length adaptor.
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A.3. Cross-Lingual Analysis Results

(1)

(2)

Figure A.6.: SeamlessM4T Cross-Lingual & Intra-Speech Similarity Differences 1.
With the differences (1) between the input embeddings and the first encoder

layer and (2) between the first and last encoder layer.
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A. Appendix

Figure A.7.: SeamlessM4T Cross-Lingual Speech Similarity Differences 2. Differ-
ences between the last encoder layer and after the length adaptor.
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A.3. Cross-Lingual Analysis Results

A.3.3. SeamlessM4T - Intra-Text Similarities

(1)

(2)

Figure A.8.: SeamlessM4T Cross-Lingual & Intra-Text Similarity Analysis Results
1. With the results of (1) the input embeddings and (2) the first encoder layer.
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A. Appendix

Figure A.9.: SeamlessM4T Cross-Lingual & Intra-Text Similarity Analysis Results
2. With the results of the last encoder layer.
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A.3. Cross-Lingual Analysis Results

(1)

(2)

Figure A.10.: SeamlessM4T Cross-Lingual & Intra-Text Similarity Differences.
With the differences (1) between the input embeddings and the first encoder

layer and (2) between the first and last encoder layer.
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A. Appendix

A.3.4. SONAR - Cross-Modal Similarities

(1)

(2)

Figure A.11.: SONAR Cross-Lingual & Cross-Modal Similarity Analysis Results 1.
With the results of (1) the input embeddings and (2) the first encoder layer.
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A.3. Cross-Lingual Analysis Results

(1)

(2)

Figure A.12.: SONAR Cross-Lingual & Cross-Modal Similarity Analysis Results
2. With the results of (1) the last encoder layer and (2) the final language-

agnostic embeddings.
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A. Appendix

(1)

(2)

Figure A.13.: SONAR Cross-Lingual & Cross-Modal Similarity Differences. With

the differences (1) between the first and last encoder layer and (2) between

the last encoder layer and the final language-agnostic embeddings.

70



A.3. Cross-Lingual Analysis Results

A.3.5. SONAR - Intra-Speech Similarities

(1)

(2)

Figure A.14.: SONAR Cross-Lingual & Intra-Speech Similarity Analysis Results 1.
With the results of (1) the input embeddings and (2) the first encoder layer.
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A. Appendix

(1)

(2)

Figure A.15.: SONAR Cross-Lingual & Intra-Speech Similarity Analysis Results 2.
With the results (1) of the last encoder layer and (2) of the final language-

agnostic embeddings.
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A.3. Cross-Lingual Analysis Results

(1)

(2)

Figure A.16.: SONAR Cross-Lingual & Intra-Speech Similarity Differences 1. With

the differences (1) between the input embeddings and the first encoder layer

and (2) between the first and last encoder layer.
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Figure A.17.: SONAR Cross-Lingual & Intra-Speech Similarity Differences 2. With

the differences between the last encoder layer and the final language-

agnostic embeddings.
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A.3. Cross-Lingual Analysis Results

A.3.6. SONAR - Intra-Text Similarities

(1)

(2)

Figure A.18.: SONAR Cross-Lingual & Intra-Text Similarity Analysis Results 1.
With the results of (1) the input embeddings and (2) the first encoder layer.
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A. Appendix

Figure A.19.: SONAR Cross-Lingual & Intra-Text Similarity Analysis Results 2.
With the results of the last encoder layer and of the final language-agnostic

embeddings, as the mean pooling does not change the similarities.
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A.3. Cross-Lingual Analysis Results

(1)

(2)

Figure A.20.: SONAR Cross-Lingual & Intra-Text Similarity Differences. With the

differences (1) between the input embeddings and the first encoder layer

and (2) between the first and last encoder layer.
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A.3.7. SALMONN - Cross-Modal Similarities

(1)

(2)

Figure A.21.: SALMONNCross-Lingual & Cross-Modal Similarity Analysis Results
1. With the results of (1) the encoder outputs before and (2) after the Q-

Former. The text embeddings are the same for both heatmaps.
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A.3. Cross-Lingual Analysis Results

(1)

(2)

Figure A.22.: SALMONNCross-Lingual & Cross-Modal Similarity Analysis Results
2. With the results of (1) the first and (2) the last decoder layer.
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A. Appendix

(1)

(2)

Figure A.23.: SALMONN Cross-Lingual & Cross-Modal Similarity Differences 1.
With the differences (1) between the embeddings before and after the Q-

Former and (2) between the input embeddings after the Q-Former and first

decoder layer.
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A.3. Cross-Lingual Analysis Results

Figure A.24.: SALMONN Cross-Lingual & Cross-Modal Similarity Differences 2.
With the differences between the first and last decoder layer.
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A. Appendix

A.3.8. SALMONN - Intra-Speech Similarities

(1)

(2)

Figure A.25.: SALMONNCross-Lingual & Intra-Speech Similarity Analysis Results
1. With the results of (1) the encoder outputs before and (2) after the Q-

Former.
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A.3. Cross-Lingual Analysis Results

(1)

(2)

Figure A.26.: SALMONNCross-Lingual & Intra-Speech Similarity Analysis Results
2. With the results of (1) the first and (2) the last decoder layer.
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A. Appendix

(1)

(2)

Figure A.27.: SALMONN Cross-Lingual & Intra-Speech Similarity Differences 1.
With the differences (1) between the encoder embeddings before and after

the Q-Former and (2) between the input auditory embeddings after the

Q-Former and first decoder layer.
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A.3. Cross-Lingual Analysis Results

Figure A.28.: SALMONN Cross-Lingual Speech Similarity Differences 2. With the

differences between the first and last decoder layer.
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A.3.9. SALMONN - Intra-Text Similarities

(1)

(2)

Figure A.29.: SALMONN Cross-Lingual & Intra-Text Similarity Analysis Results 1.
With the results of (1) the input text embeddings and (2) the first decoder

layer.
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A.3. Cross-Lingual Analysis Results

Figure A.30.: SALMONN Cross-Lingual & Intra-Text Similarity Analysis Results 2.
With the results of the last decoder layer.
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A. Appendix

(1)

(2)

Figure A.31.: SALMONN Cross-Lingual & Intra-Text Similarity Differences. With

the differences (1) between the input text embeddings and the first decoder

layer and (2) between the first and last decoder layer.
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A.4. T-SNE Results

A.4. T-SNE Results

A.4.1. SeamlessM4T

(1)

(2)

Figure A.32.: SeamlessM4T t-SNE Results 1. With the results of (1) the input embed-

dings and (2) the first encoder layer.
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(1)

(2)

Figure A.33.: SeamlessM4T t-SNE Results 2. With the results of (1) the fourth and (2)

the tenth encoder layer.
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A.4. T-SNE Results

(1)

(2)

Figure A.34.: SeamlessM4T t-SNE Results 3. With the results of (1) the 14th and (2)

the 18th encoder layer.

91



A. Appendix

(1)

(2)

Figure A.35.: SeamlessM4T t-SNE Results 4. With the results of (1) the 22th and (2)

the 24th encoder layer.
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A.4. T-SNE Results

(1)

(2)

Figure A.36.: SeamlessM4T t-SNE Results 5. With the results of (1) after the length

adaptor and (2) after the length adaptor with only the clusters visible.

93



A. Appendix

(1)

(2)

Figure A.37.: SeamlessM4T t-SNE Results 6. With the results of (1) last encoder layer

and (2) after the length adaptor with only the ids of the input sentences

visible. Sentences with the same semantic meaning have the same id in

FLEURS across all languages, meaning that the representations of each

bundle is based on the same semantic meaning.
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A.4. T-SNE Results

A.4.2. SONAR

(1)

(2)

Figure A.38.: SONAR t-SNE Results 1. With the results of (1) the input embeddings

and (2) the first encoder layer.
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(1)

(2)

Figure A.39.: SONAR t-SNE Results 2. With the results of (1) the sixth and (2) the tenth

encoder layer.
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A.4. T-SNE Results

(1)

(2)

Figure A.40.: SONAR t-SNE Results 3. With the results of (1) the 14th and (2) the 22nd

encoder layer.
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(1)

(2)

Figure A.41.: SONAR t-SNE Results 4. With the results of (1) the 24th and (2) the final

language-agnostic embeddings.
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A.4. T-SNE Results

(1)

(2)

Figure A.42.: SONAR t-SNE Results 5. With the results of (1) the 14th encoder layer and

(2) the final language-agnostic embeddings with only the ids of the input

sentences visible. Sentences with the same semantic meaning have the same

id in FLEURS across all languages, meaning that the representations of each

bundle is based on the same semantic meaning.
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A.4.3. SALMONN

(1)

(2)

Figure A.43.: SALMONN t-SNE Results 1. With the results of (1) the encoder outputs

before and (2) after the Q-Former. The text embeddings are the same for

both t-SNE maps.
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(1)

(2)

Figure A.44.: SALMONN t-SNE Results 2. With the results of (1) the second and (2)

fourth decoder layer.
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(1)

(2)

Figure A.45.: SALMONN t-SNE Results 3. With the results of (1) the 12th and (2) 18th

decoder layer.
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A.4. T-SNE Results

(1)

(2)

Figure A.46.: SALMONN t-SNE Results 4. With the results of (1) the 24th and (2) 32nd

decoder layer.
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