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Abstract

Large language models (LLMs) have made tremendous progress in handling multiple
languages, notably enhancing the performance of low-resource languages through cross-
lingual transfer and even showing certain capabilities for languages that were not directly
involved in the training process. However, it is still unclear how these models specifically
represent different languages, and the persistence of the "curse of multilinguality"—a
phenomenon where capacity bottlenecks, resulting from adding more languages, lead to
performance degradation—remains to be verified. This study advances research in this
field by quantitatively analyzing the representations of multilingual trained BLOOM and
English-centric LLaMA to explore their internal representations for different languages. It
compares high-resource and low-resource languages; languages from different script and
language families; and language representations across different models, aiming to reveal
patterns in language representations. Techniques such as SVCCA, probing, and t-SNE are
used to analyze the hidden representations. Our findings reveal that resource level and
the presence of languages in the model’s training data are significant factors influencing
language similarity, with languages using the Latin script also showing a notably high
degree of similarity. Furthermore, this study examines the relationship between these
observed patterns and translation performance. The analysis reveals a positive linear
correlation between language similarity and translation performance.
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1. Introduction

1.1. Motivation

Recently, large language models (LLMs) have shown tremendous progress on a wide range
of NLP tasks. Multilingual LLMs are capable of processing multiple languages within a
single model. These models rely on cross-lingual transfer to significantly enhance the
performance of low-resource languages (Conneau et al., 2020; Johnson et al., 2017) and
can even demonstrate certain capabilities in languages that were not directly involved in
the training process (Artetxe and Schwenk, 2019; Wu and Dredze, 2019; Pires et al., 2019).
However, it is still not very clear how these models represent different languages.

In the field of multilingual natural language processing, models are commonly afflicted
by what is termed the "curse of multilinguality". The "curse of multilinguality" refers to
the phenomenon where adding more languages to the model eventually leads to capacity
bottlenecks and performance degradation. This phenomenon has been observed in various
NLP tasks, including multilingual pretraining (Conneau and Lample, 2019) and machine
translation (Aharoni et al., 2019). Whether the "curse of multilinguality" still applies also
remains to be verified.

This study aims to contribute to this area of inquiry by analyzing the hidden represen-
tations for different languages. By comparing high-resource and low-resource languages,
as well as languages from different script and language families, this study analyzes the
similarities and differences in hidden representations to uncover underlying patterns.
Experiments are conducted with the multilingually-trained LLM BLOOM (Scao et al., 2022)
and the English-centered LLM LLaMA (Touvron et al., 2023a,b) to assess the consistency of
these findings across different LLMs. Techniques such as Singular Vector Canonical Corre-
lation Analysis (SVCCA) (Raghu et al., 2017), probing (Adi et al., 2016), and t-Distributed
Stochastic Neighbor Embedding (t-SNE) (van der Maaten and Hinton, 2008) are used to
analyze the hidden representations.

1.2. Research Questions

Our primary research question focuses on conducting an analysis of the hidden representa-
tions from different languages with different large language models (LLMs). This question
can be subdivided into two sub-questions, accompanied by an additional exploratory
question:

• RQ1. Given the same LLM, how do the hidden representations for different
languages differ? Are there patterns (e.g. high- vs. low-resource, script families)?

1



1. Introduction

The objective of this question is to analyze the similarities and differences in hidden repre-
sentations for different languages within the same large language model (utilizing LLaMA).
By contrasting high-resource languages with low-resource languages and languages from
different language and script families, our aim is to find common patterns within the
hidden representations.

• RQ2. Are the findings from RQ1 consistent across different LLMs?
We also conducte experiments within the BLOOM model identical to those in RQ1, exam-
ining whether the findings are consistent across different large language models.

• RQ3. To what extent do the results (from RQ1 and RQ2) relate to translation
performance?
This question explores the relation between translation performance and the results of
RQ1 and RQ2. When we obtain similarity metrics between the hidden representations for
two languages, we examine whether this value is related to the translation performance
when translating between these two languages. Specifically, we evaluate the translation
performance of translating several languages into English, as well as translating from
English back to these languages, thereby analyzing the correlation between translation
performance and language similarity.

2



2. Background and Related Works

This chapter provides foundational background for this study, beginning with an introduc-
tion Transformer (Vaswani et al., 2017), the most popular neural network model currently
used for neural sequence representation, as well as three classic language models based on
this architecture. This chapter proceeds to discuss multilingual models and the issue they
face, with a particular focus on prior works analyzing multilingual representations and
their findings. It particularly highlights the main differences between this study and prior
works. Finally, this chapter offers a summary and comparison of the two large language
models used in our experiments: a English-centered model LLaMA (Touvron et al., 2023a,b)
and a multilingually-trained model BLOOM (Scao et al., 2022).

2.1. Neural Sequence Representation

Neural sequence representation is a method that utilizes neural network models to convert
sequence data into dense vector representations. The characteristic of sequence data is
that it consists of a series of elements arranged in a specific order, and neural sequence
representation techniques are capable of capturing the dependencies and patterns among
these elements. Neural networkmodels used for sequence representation include Recurrent
Neural Networks (RNN) (Lipton, 2015; Sutskever et al., 2014), as well as variants based
on Convolutional Neural Networks (CNN) (Gehring et al., 2017), and the currently most
popular, the Transformer (Vaswani et al., 2017).
The self-attention mechanism of the Transformer allows it to process the entire input

sequence simultaneously, directly calculating the relationships between any two positions
within the sequence. This mechanism enables the model to be more effective in handling
long-distance dependencies, as it does not need to pass information step-by-step like RNN
or Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997), nor does it
require gradually expanding the receptive field through multiple layers of convolutions
like CNN variants. The self-attention mechanism allows for the simultaneous processing
of all elements within the sequence, i.e., parallel computation, significantly enhancing
computational efficiency. The advantages of the Transformer in handling sequence data
tasks have established it as a mainstream model in the NLP field.

2.2. Transformer

The Transformer model was first proposed in 2017, in the paper "Attention Is All You
Need" (Vaswani et al., 2017). Transformer is only based on the attention mechanism and
does not require recursion and convolution at all. The architecture of the Transformer
model is clearly delineated through a diagram in the paper, as shown in Figure 2.1.

3



2. Background and Related Works

Figure 2.1.: The architecture of the Transformer model from the paper "Attention Is All
You Need" (Vaswani et al., 2017).

2.2.1. Encoder and Decoder

The encoder-decoder structure is a common model structure in neural networks, especially
in tasks requiring the conversion of an input sequence to an output sequence, such as
translation tasks (Cho et al., 2014; Sutskever et al., 2014; Bahdanau et al., 2015), text
summarization (Nallapati et al., 2016), and text to speech (Jia et al., 2022) among others.
The encoder maps an input sequence represented by symbols (𝑥1, . . . , 𝑥𝑛) to a continuous
representation sequence 𝑧 = (𝑧1, . . . , 𝑧𝑛). Given z, the decoder then generates the symbols
of an output sequence (𝑦1, . . . , 𝑦𝑚) one element at a time. At each step, the model is
autoregressive (Graves, 2014), consuming the previously generated symbols as additional
input when generating the next symbol.
The Transformer also employs an encoder-decoder structure. Both the encoder and

decoder are composed of six identical layers stacked on top of each other. Each layer
has two sub-layers. The first is a multi-head attention mechanism, and the second is a
simple position-wise feed-forward network. Position-wise feed-forward networks are
fully connected feed-forward networks that apply the same operation separately to each
position. A residual connection (He et al., 2016) is employed around each of the two
sub-layers, followed by layer normalization (Ba et al., 2016). The decoder further inserts a
third sub-layer that performs multi-head attention over the output of the encoder stack.
Additionally, the self-attention sub-layer in the decoder stack is modified to prevent
positions from attending to subsequent positions. This masking, combined with the output

4



2.2. Transformer

embeddings being offset by one position to the right, ensures that predictions for position
i depend only on the known outputs at positions less than i.

2.2.2. Attention

Self-attention is a form of attention mechanism that associates different positions within a
single sequence to compute the representation of the sequence. The attention function can
be described as mapping a query and a set of key-value pairs to an output, with the queries,
keys, values, and outputs all being vectors. In self-attention, each position possesses a
query vector that is used to search for and measure its association with other positions in
the sequence. Each position is associated with a key vector, which is used to match with
the query to determine the importance of each position for the current query position.
The values are paired with keys and contain the relevant information content for each
position in the sequence. The output is obtained by calculating a weighted sum of the
values, where the weight of each value is computed based on the similarity between the
query and the corresponding keys.

The most commonly used two types of attention functions are additive attention (Bah-
danau et al., 2015) and dot-product attention. The attention function used by Transformer
is based on dot-product attention, divided by a scaling factor of 1√

𝑑𝑘
, where 𝑑𝑘 is the

dimension of the queries and keys: Attention(𝑄,𝐾,𝑉 ) = softmax
(
𝑄𝐾𝑇√
𝑑𝑘

)
𝑉 .

Multi-head attention allows the model to attend to information from different repre-
sentational subspaces at different tokens simultaneously. This is implemented by linearly
projecting the queries, keys, and values h times where h is the number of heads, each with
a different, learned parameter matrix. Thus, each head can learn different things in differ-
ent representational spaces. The attention function is then applied in parallel, yielding
an output value for each subspace. These output values are concatenated and projected
once more to obtain the final output value, as shown in Figure 2.2: MultiHead(𝑄,𝐾,𝑉 ) =
Concat(head1, . . . , headℎ)𝑊 𝑂 ,where head𝑖 = Attention(𝑄𝑊 𝑄

𝑖
, 𝐾𝑊 𝐾

𝑖 ,𝑉𝑊
𝑉
𝑖
).

Figure 2.2.: Multi-head attention from the paper "Attention Is All You Need" (Vaswani
et al., 2017).

In the decoder’s multi-head attention component, the outputs from the top layer of the
encoder are utilized as keys and values, while the queries are derived from the preceding

5



2. Background and Related Works

masked multi-head attention outputs. By integrating these two parts of information, the
encoder-decoder attention mechanism, also known as cross-attention, enables the decoder
to fully utilize the contextual information of the input sequence understood by the encoder
when considering how to continue generating the output sequence.

2.2.3. Positional Encoding

Since the Transformer model itself does not contain recurrent or convolutional structures,
it needs to understand and utilize the sequential information in other ways. The Trans-
former adds "positional encoding" to the input embeddings at the bottom of the encoder
and decoder stacks to incorporate information about the relative or absolute positions of
the tokens in the sequence. The positional encodings have the same dimension𝑑model as the
embeddings, so that the two can be summed. The Transformer uses fixed positional encod-
ing: 𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin

(
𝑝𝑜𝑠

100002𝑖/𝑑model

)
, 𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos

(
𝑝𝑜𝑠

100002𝑖/𝑑model

)
, where pos is the position

and i is the dimension. That is, each dimension of the positional encoding corresponds to
a sinusoid. The wavelengths form a geometric progression from 2𝜋 to 10000 × 2𝜋 .

2.3. Transformer-Based Language Models

Since its introduction, the Transformer architecture has become the cornerstone of modern
natural language processing technologies, inspiring a series of innovative language models
such as GPT-1 (Radford and Narasimhan, 2018), BERT (Devlin et al., 2019), T5 (Raffel et al.,
2020), among others. Although all these models are based on the Transformer architecture,
they differ in their specific implementations: the GPT series is a decoder-only model, BERT
is an encoder-only model, and T5 employs the complete Transformer model, incorporating
both encoder and decoder components.

2.3.1. Decoder-Only Model: GPT-1

GPT-1 (Generative Pre-trained Transformer 1) (Radford and Narasimhan, 2018), as well
as the entire GPT series, adopt a decoder-only architecture. Each decoder layer of GPT-1
includes multi-head self-attention mechanisms and feed-forward neural networks. Its
self-attention mechanism is autoregressive (Graves, 2014), meaning that in generating
text, the model only considers previous words to predict the next word. GPT-1 utilizes
a semi-supervised approach to language understanding, combining unsupervised pre-
training and supervised fine-tuning. Initially, GPT-1 learns the initial parameters of the
neural network model using a language modeling objective on unlabeled data. Then,
it adjusts these parameters according to the supervised objectives of specific tasks. By
pre-training on a diverse corpus containing long stretches of continuous text, GPT-1 gains
significant world knowledge and the ability to handle long-distance dependencies, which
it then successfully transfers to discriminative tasks such as question answering, semantic
similarity assessment, entailment determination, and text classification.

6



2.4. Multilingual Models

2.3.2. Encoder-Only Model: BERT

BERT (Bidirectional Encoder Representations from Transformers) (Devlin et al., 2019) a
model based on the Transformer encoder that focuses on understanding input text. It learns
deep bidirectional text representations through pre-training from unlabeled text. It does
not use traditional unidirectional language models but instead masks certain input tokens
randomly and predicts these tokens to train deep understanding of bidirectional context.
This process is known as the masked language model (MLM), though it is often referred to
as a cloze task in the literature (Taylor, 1953). Additionally, BERT enhances understanding
of the relationship between two sentences through the next sentence prediction (NSP) task,
which is crucial for downstream tasks such as question answering and natural language
inference. In NSP, BERT learns to predict whether one sentence genuinely follows another,
using real consecutive sentence pairs as positive samples and randomly selected sentence
pairs as negative samples. By simply adding an output layer during the fine-tuning phase,
BERT can adapt to various downstream tasks without significant modifications to its
architecture.
Compared to BERT, GPT-1 (Radford and Narasimhan, 2018) employs a left-to-right

architecture, where every token can only attend to previous tokens in the self-attention
layers of the Transformer (Vaswani et al., 2017). Devlin et al. (2019) believe that such
restrictions are sub-optimal for sentence-level tasks, and could be very harmful when
applying finetuning based approaches to token-level tasks such as question answering,
where it is crucial to incorporate context from both directions.

2.3.3. Encoder-Decoder Model: T5

The T5 (Text-to-Text Transfer Transformer) (Raffel et al., 2020) employs the full Transformer
model, encompassing both the encoder and decoder components, to realize its unique "text-
to-text" framework. T5 treats all language problems as text-to-text conversion issues, that is
transforming input text into output text. For example, translation involves converting text
from one language to another, text classification entails transforming text into descriptions
of category labels, and question answering involves converting questions and context into
answers. The encoder component is responsible for understanding the context of the input
text, while the decoder component is tasked with generating the output text.
The "text-to-text" framework of T5 treats all natural language processing (NLP) tasks

as generation tasks, whereas "encoder-only" models like BERT (Devlin et al., 2019) are
designed to produce a single prediction per input token or a single prediction for an entire
input sequence. This makes them suitable for classification or span prediction tasks, but
not for generative tasks such as translation or abstractive summarization.

2.4. Multilingual Models

Monolingual models are designed and trained for specific languages, for example, the
original version of BERT (Devlin et al., 2019) is focused on English, as well as models
based on the BERT architecture that are tailored for French (Martin et al., 2020), Finnish
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(Virtanen et al., 2019), Dutch (de Vries et al., 2019), and Arabic (Antoun et al., 2020). In
contrast, multilingual models are capable of processing multiple languages.

2.4.1. Multilingualism in Language Models

Multilingual models are trained on datasets containing a variety of languages, learning rep-
resentations that are common across multiple languages. The learning of such cross-lingual
representations has been validated in multilingual models such as the self-supervised
models M-BERT (Multilingual BERT) (Devlin et al., 2019), XLM (cross-lingual language
models) (Conneau et al., 2020), XLM-R (XLM-RoBERTa) (Conneau et al., 2020) and the
supervised model Google’s multilingual neural machine translation system (Johnson et al.,
2017).
Multilingual models, relying on cross-lingual transfer, can significantly enhance the

performance of low-resource languages (Conneau et al., 2020; Johnson et al., 2017). In
XLM (Conneau et al., 2020), the perplexity of the Nepali language model improves through
the utilization of data from English and Hindi. In Google’s multilingual neural machine
translation (Johnson et al., 2017), shared parameters force the model to learn more gen-
eralized language representations, which helps to improve the model’s performance on
low-resource language pairs. Multilingual models can demonstrate certain performance
capabilities on languages that were not directly involved in the training process (Artetxe
and Schwenk, 2019; Wu and Dredze, 2019; Pires et al., 2019).
On some cross-lingual understanding tasks, multilingual models can not only match

but even surpass the performance of monolingual models (Conneau et al., 2020). However,
for specific language tasks, the performance of multilingual models may not be as good
as that of monolingual models focused on a specific language. Possible reasons include
insufficient training data for multilingual models for specific languages (Wu and Dredze,
2020; Rönnqvist et al., 2019), and the use of language-adapted tokenizers (Rust et al., 2021).

2.4.2. Curse of Multilinguality

While increasing the number of languages, there is an improvement in cross-linguistic
performance for low-resource languages, but beyond a certain point, there is a decline
in overall performance on both monolingual and cross-lingual benchmark tests. This
phenomenon is known as the curse of multilinguality (Conneau et al., 2020). The reason
is that for a model of fixed size, the capacity allocated to each language decreases as
the number of languages increases, leading to a decrease in model performance. This
trade-off can be mitigated by increasing the model’s capacity (Pfeiffer et al., 2022), i.e.,
the number of parameters in the model. Capacity bottlenecks also exist in multilingual
machine translation (Aharoni et al., 2019) and can also be mitigated by allocating more
capacity (Bapna and Firat, 2019).
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2.4.3. Prior Works on Analyzing Multilingual Representations and Their
Findings

The Less the Merrier? Investigating Language Representation in Multilingual
Models (Nigatu et al., 2023). Nigatu et al. (2023) investigated the representations of
different languages in three autoregressive models including LLaMA (Touvron et al., 2023a),
BLOOM (Scao et al., 2022), and GPT-3 (Brown et al., 2020), as well as in five autoencoder
models, including XLM-R (Conneau et al., 2020), m-BERT (Devlin et al., 2019), AfroLM
(Dossou et al., 2022), IndicBERT (Doddapaneni et al., 2023), AraBERT (Antoun et al., 2020).
They used UMAP (McInnes et al., 2020) to perform two-dimensional visualizations of the
representations learned by the models. They used the hidden state vectors of the first token
in each sentence as the sentence embedding for all layers for autoencoder models. For
LLaMA and BLOOM, the hidden state vector of the last token in each sentence was used as
the sentence embedding for all layers. For GPT-3, the embedding models from OpenAI’s
API endpoints were used. To corroborate the results they observed in the visualization
of the embedding spaces, they used K-Means clustering on the learned representations
they extracted from the pre-trained models to test to what extent different models can
differentiate among languages.
Furthermore, they chose the Named Entity Recognition (NER) task (Singh, 2018), an

information extraction task, to evaluate the performance of the selected autoencoder model
in executing tasks that require deep language understanding. For autoregressive models,
the models were prompted in six languages during the experiment, and the generated text
was classified using GEEZSwitch (Gaim et al., 2022) to assess downstream applications.

The analysis focused on language families, dialects, and writing scripts, with particular
attention to resource-limited language environments. As a conclusion, they observed that
community-centered language models perform better at distinguishing among languages
in the same family for low-resource languages.

Our work focuses on the LLaMA2 (Touvron et al., 2023b) and BLOOM models with the
aim of contrasting english-centric with multilingual models, and examines the consistency
of hidden representations within these two models. In their work, they used very different
model sizes for LLaMA and BLOOM which makes them not comparable. We employ
another dimensionality reduction technique, t-SNE (van der Maaten and Hinton, 2008),
for visualization. In their research, they did not analyze the representations per layer. In
contrast, we select several representative layers from the model. We then perform mean
pooling on the hidden state vectors of all tokens in each sentence within these layers to
obtain the sentence embeddings. We also employ SVCCA (Raghu et al., 2017) and probing
(Adi et al., 2016) to analyze the similarity between the hidden representations of different
languages within these models. Their analyses did not provide quantitative similarity
metrics; therefore, our analysis is broader in this sense. We choose translation as a down-
stream task to explore the correlation between the similarity of hidden representations
and translation performance. Besides language families and writing scripts, our analysis
also emphasizes the contrast between high-resource and low-resource languages.

Towards a Deep Understanding of Multilingual End-to-End Speech Translation
(Sun et al., 2023). Sun et al. (2023) conducted an exhaustive analysis of a multilingual
end-to-end speech translation (E2E ST) model that covered 22 languages, utilizing the
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SVCCA (Raghu et al., 2017) tool. The analysis calculated the SVCCA scores between
the hidden states at various layers of the encoder for the X→En translation direction,
and the decoder for the En→X translation direction, for different language pairs (i.e.,
pairs of X). Similar to our work, they selected a set of semantically similar sentences for
each pair of languages to accurately calculate language similarity based on sentence-level
representations. They used SacreBLEU (Post, 2018) to evaluate the quality of translation
in three directions: X→En, X→X, and En→X.

The evaluation of translation quality was also considered during the analysis of language
similarity. It was concluded that for low-resource languages, increasing the amount of
parallel training data was more crucial than relying solely on the knowledge transfer ability
of the multilingual end-to-end speech translation model. Additionally, building a high-
quality language-specific sub-space was crucial for enhancing low-resource translation
quality.

Unlike their work, which focuses on speech translation where the input is audio, we are
interested in text generation. Our work also uses SVCCA as a tool to analyze the similarity
of representations across different languages, focusing on decoder-only multilingual large
language models. Additionally, we conduct translation tasks to explore the correlation
between language similarity and translation performance.

Do LlamasWork in English? On the Latent Language of Multilingual Transform-
ers (Wendler et al., 2024). Wendler et al. (2024) focused on LLaMA2 (Touvron et al., 2023b)
and explored whether multilingual language models used English as an internal pivot
language, especially when dealing with non-English prompts. Since the latent vectors had
the same shape across all layers, in principle, any latent vector could be processed into a
token distribution as if it were from the final layer. This process is called "unembedding".
The logit lens (Nostalgebraist, 2020) did so by using the language modeling head, which
was usually only applied in the final layer, prematurely in earlier layers, without any
additional training. They used the logit lens technique in the intermediate non-final layers
to apply unembedding early, allowing them to peek into the model’s internal state and
analyze whether the decoded tokens were semantically correct and to which language they
belonged. Observations through the logit lens indicated that when processing non-English
inputs, the outputs of the intermediate layers tended to first lean towards English before
shifting to the target language. This supported the hypothesis of English serving as a
potential pivot language.
To further verify this conclusion, they employed a geometric perspective analysis,

observing the dynamic paths of embedding vectors in high-dimensional Euclidean space
to analyze how these vectors gradually transformed into output embeddings capable of
predicting the next token. The path of the embedding vectors showed three phases: an
initial stage without a clear inclination towards any specific language’s token space, a
middle phase leaning towards English, and a final stage shifting to the target language.
This indicated that during the intermediate processing, the model might first go through
an "English-centric" conceptual space. Under this interpretation, the model’s internal
lingua franca was not English per se, but concepts that tended to be English-oriented.
Thus, English could still be considered a pivot language, but semantically rather than
purely lexically.
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We are also interested in the impact of being English-centric, which we analyze by
comparing LLaMA and BLOOM; however, our main goal differs from theirs. Our work,
on the other hand, focuses on examining the similarities and differences in the hidden
representations of different languages within LLaMA2, employing SVCCA (Raghu et al.,
2017), probing (Adi et al., 2016), and t-SNE (van der Maaten and Hinton, 2008) to conduct
an in-depth analysis of the hidden representation vectors.

2.5. Two Large Language Models

We conduct experiments using two large language models: LLaMA2 (Touvron et al., 2023b)
and BLOOM (Scao et al., 2022). LLaMA2 primarily focuses on English, while BLOOM is
trained on multiple languages.

2.5.1. LLaMA

LLaMA (Touvron et al., 2023a,b) is based on the Transformer architecture, opting for an
decoder-only approach, with several improvements made upon this foundation: 1. The
ReLU non-linear activation function is replaced with the SwiGLU activation function. 2.
Absolute position embeddings are removed, and rotational position embeddings (Su et al.,
2024) are added at each layer of the network.
LLaMA tokenizes the data using the byte pair encoding (BPE) (Sennrich et al., 2016)

algorithm, utilizing the implementation from SentencePiece (Kudo and Richardson, 2018).
Notably, LLaMA splits all numbers into individual digits, and falls back to bytes to decom-
pose unknown UTF-8 characters.

The LLaMA model is available in several size variants, namely with 7 billion parameters
(7B), 13 billion parameters (13B), 33 billion parameters (33B), and 65 billion parameters
(65B).

In the training data of LLaMA2, 89.7% of the content is in English. Additionally, the
training data includes 24 languages: Ukrainian (uk), unknown, Korean (ko), German (de),
Catalan (ca), French (fr), Serbian (sr), Swedish (sv), Indonesian (id), Chinese (zh), Czech (cs),
Spanish (es), Finnish (fi), Russian (ru), Hungarian (hu), Dutch (nl), Norwegian (no), Italian
(it), Romanian (ro), Japanese (ja), Bulgarian (bg), Polish (pl), Danish (da), Portuguese (pt),
Slovenian (sl), Vietnamese (vi), and Croatian (hr).

2.5.2. BLOOM

Similar to LLaMA, BLOOM (Scao et al., 2022) is based on the Transformer architecture
and adopts an decoder-only approach. Some improvements have been made: 1. ALiBi
position embeddings (Press et al., 2022) replace the traditional approach of adding position
information to the embedding layer. They directly reduce attention scores based on the
distance between keys and queries. It lead to smoother training and better downstream
performance. 2. Extra layer normalization is added to the BLOOM model after the first
embedding layer to avoid training instabilities.
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The default tokenizer such as GPT-2’s (Radford et al., 2019) tokenizer is primarily
designed for English, but Bloom undergoes multilingual training, so the tokenizer needs to
be specially designed to ensure encoding sentences in a lossless manner. Fertility, which is
defined as the number of subwords created per word or per dataset by the tokenizer, is
used as a metric for sanity checks relative to existing monolingual tokenizers. Compared to
LLaMA, a key difference in BLOOM’s tokenizer is its much larger vocabulary size. BLOOM
has chosen 250,680 vocabulary items as its final size to achieve the fertility objective
compared to monolingual tokenizers. A larger vocabulary can reduce the risk of over-
segmenting some sentences, which is particularly important for low-resource languages.
BLOOMuses byte-level byte pair encoding (BPE) (Gage, 1994; Radford et al., 2019), allowing
it to handle all 256 possible byte combinations, thereby completely eliminating the issue
of unknown tokens and maximizing vocabulary sharing in multilingual text processing
(Wang et al., 2019). In contrast, although LLaMA also employs the BPE algorithm, it
focuses more on character-level processing rather than purely byte-level.. Furthermore,
BLOOM’s pre-tokenizer uses regular expression rules for initial text segmentation and
limits the maximum length of token sequences generated by the BPE algorithm. This pre-
tokenization strategy avoids common English-centric splitting methods and specifically
retains important characters in programming languages, such as spaces and newline
characters.
The BLOOM model is available in several variants with different sizes: 560 million

(560M), 1.1 billion (1.1B), 1.7 billion (1.7B), 3 billion (3B), 7.1 billion (7.1B), and 176 billion
(176B) parameters.

Unlike LLaMA, BLOOM’s training dataset encompasses 46 natural languages, with the
Indo-European and Sino-Tibetan language families dominating a major portion, while
Indonesian data and the Niger-Congo language family subset constitute only a small
fraction. Figure 2.3 provides a graphical overview of the languages used in BLOOM’s
training data.

Figure 2.3.: Graphical overview of languages in BLOOM’s training data from the paper
"BLOOM: A 176B-Parameter Open-Access Multilingual Language Model" (Scao
et al., 2022). The thin orange surface represents Indonesian and the green
rectangle represents the Niger-Congo language family.
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2.5.3. LLaMA vs BLOOM: A Comparative Summary

Table 2.1 provides a summary and comparison of the key features of LLaMA and BLOOM.

LLaMA BLOOM
Architecture transformer (decoder-only) transformer (decoder-only)
Variants (in size) 7B, 13B, 33B, 65B 560M, 1.1B, 1.7B, 3B, 7.1B, 176B
Vocabulary size 32000 250880

Languages in
training data

89.7% English,
also: ko, de, ca, fr, sr, sv, id,
zh, cs, es, fi, ru, hu, nl, no, it,
ro, ja, bg, pl, da, pt, sl, vi, hr

46 natural languages: ak, ar, as,
bm, eu, bn, ca, ny, sn, tum, en,
fon, fr, gu, hi, ig, id, xh, zu, kn,
ki, rw, rn, ln, lg, ml, mr, ne, nso,
or, pt, pa, st, tn, zhs, es, sw, ta,
te, zht, tw, ur, vi, wo, ts, yo

Table 2.1.: Comparison of LLaMA and BLOOM.
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3. Analytical Methods for Multilingual
Hidden Representations

We use three techniques to deeply analyze multilingual hidden representations: SVCCA
(Raghu et al., 2017) for comparing the similarity between different languages, t-SNE
(van der Maaten and Hinton, 2008) for visualizing high-dimensional data, and probing
(Adi et al., 2016) for exploring the information encoded in hidden representations.

3.1. SVCCA

Singular vector canonical correlation analysis (SVCCA) (Raghu et al., 2017) is a general
method that allows for the comparison of the similarity of representations across different
layers and networks. For a given dataset 𝑋 = {𝑥1, . . . , 𝑥𝑚} and a neuron 𝑖 on layer 𝑙 , 𝑧𝑙𝑖 is
defined to be the vector of outputs on 𝑋 , i.e. 𝑧𝑙𝑖 =

(
𝑧𝑙𝑖 (𝑥1), . . . , 𝑧𝑙𝑖 (𝑥𝑚)

)
. Considered over

a dataset 𝑋 with𝑚 examples, a neuron is a vector in R𝑚 . A layer is the subspace of R𝑚
spanned by its neurons’ vectors. The steps of SVCCA are as follows:

Input: SVCCA takes as input two sets of neurons 𝑙1 = {𝑧𝑙1,1, . . . , 𝑧𝑙1,𝑑1
} and 𝑙2 = {𝑧𝑙2,1, . . . , 𝑧𝑙2,𝑑2

},
where 𝑙1 ∈ R𝑚×𝑑1 and 𝑙2 ∈ R𝑚×𝑑2 respectively represent the representations of two layers,
with 𝑑1 and 𝑑2 being the dimensions of the layers corresponding to 𝑙1 and 𝑙2. Our experi-
ments compare the similarity between different languages within the same layer of the
same network; therefore, 𝑑1 and 𝑑2 are equal.
Step 1 First SVCCA performs a singular value decomposition (SVD) of each subspace

to get subspaces 𝑙′1 ⊆ 𝑙1, 𝑙
′
2 ⊆ 𝑙2 which comprise of the most important directions of the

original subspaces 𝑙1, 𝑙2, where 𝑙′1 ∈ R𝑚×𝑑 ′1 , 𝑙′2 ∈ R𝑚×𝑑 ′2 . We retain enough dimensions to
keep 90% of the variance in the data.
Step 2 Second, compute the Canonical Correlation similarity (CCA) of 𝑙′1, 𝑙

′
2: linearly

transform 𝑙′1, 𝑙
′
2 to be as aligned as possible and compute correlation coefficients. In par-

ticular, given the output of step 1, 𝑙′1 = {𝑧𝑙 ′1,1, . . . , 𝑧𝑙
′

1,𝑑1
}, 𝑙′2 = {𝑧𝑙 ′2,1, . . . , 𝑧𝑙

′

2,𝑑2
}, CCA linearly

transforms these subspaces 𝑙1 = 𝑊𝑥𝑙
′
1, 𝑙2 = 𝑊𝑦𝑙

′
2 such as to maximize the correlations

corrs = {𝜌1, . . . , 𝜌min(𝑑 ′1,𝑑 ′2)} between the transformed subspaces.
Output: With these steps, SVCCA outputs pairs of aligned directions, (𝑧𝑙1

𝑖
, 𝑧
𝑙2
𝑖
) and how

well they correlate, 𝜌𝑖 . Step 1 also produces intermediate output in the form of the top
singular values and directions.
We follow Raghu et al. (2017) to use the mean of the correlations: 𝜌 = 1

min(𝑑 ′1,𝑑 ′2)
∑
𝑖 𝜌𝑖 .

Consistent with the approach of Sun et al. (2023), based on the research by Kudugunta et al.
(2019), we employ the sequence-based SVCCA method. For each sentence, we calculate
the average of the hidden state vectors for all its tokens. This operation is performed using
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a pooling method, with the aim of combining the representations of each token in the
sentence into a single, sentence-level representation. Compared to token-based strategy,
this sequence-based SVCCA more appropriately compares unaligned sequences across
different languages.

3.2. t-SNE

t-distributed stochastic neighbor embedding (t-SNE) (van der Maaten and Hinton, 2008)
maps high-dimensional datasets to two or three-dimensional spaces to facilitate easier
exploration and visualization through graphical means. t-SNE preserves the local structure
of the data, ensuring that similar data points remain close to each other in the low-
dimensional mapping, thereby revealing the clustering structure within the data. The
computation process of t-SNE can be divided into the following steps, and we use the
notations from van der Maaten and Hinton (2008):
For every pair of data points 𝑥𝑖 and 𝑥 𝑗 in the original high-dimensional dataset, t-SNE

first calculates the conditional probability 𝑝 𝑗 |𝑖 , which represents the probability of 𝑥 𝑗 being
selected as a neighbor of 𝑥𝑖 under a Gaussian distribution centered at 𝑥𝑖 , using the formula,
where 𝜎𝑖 is the variance of the Gaussian distribution:

𝑝 𝑗 |𝑖 =
exp(−||𝑥𝑖 − 𝑥 𝑗 | |2/2𝜎2

𝑖 )∑
𝑘≠𝑖 exp(−||𝑥𝑖 − 𝑥𝑘 | |2/2𝜎2

𝑖
)

To simplify the optimization process, t-SNE uses symmetrical probabilities 𝑝𝑖 𝑗 , which
are obtained by taking the average of the conditional probabilities 𝑝 𝑗 |𝑖 and 𝑝𝑖 | 𝑗 .

The rapid decay of the Gaussian distribution’s probability density reduces the influence
of slightly distant points in high-dimensional space when mapped to low dimensions,
leading to the excessive clustering of distant points in the low-dimensional space and
failing to adequately represent the actual distance relationships in high-dimensional space.
To overcome this overcrowding problem, t-SNE uses a Student-t distribution to calculate
the similarity 𝑞𝑖 𝑗 between points, with the formula:

𝑞𝑖 𝑗 =
(1 + ||𝑦𝑖 − 𝑦 𝑗 | |2)−1∑
𝑘≠𝑙 (1 + ||𝑦𝑘 − 𝑦𝑙 | |2)−1

The objective of t-SNE is to minimize the Kullback-Leibler divergence 𝐶 between the
high-dimensional probability distribution 𝑃 and the low-dimensional probability distri-
bution 𝑄 , which conserves the local structure of data points across the higher and lower
dimensional spaces:

𝐶 = 𝐾𝐿(𝑃 | |𝑄) =
∑︁
𝑖

∑︁
𝑗

𝑝𝑖 𝑗 log
𝑝𝑖 𝑗

𝑞𝑖 𝑗

t-SNE optimizes the cost function using the gradient descent algorithm to find the
optimal position of the low-dimensional data points 𝑦𝑖 . The formula for the gradient is:

𝛿𝐶

𝛿𝑦𝑖
= 4

∑︁
𝑗

(𝑝𝑖 𝑗 − 𝑞𝑖 𝑗 ) (𝑦𝑖 − 𝑦 𝑗 ) (1 + ||𝑦𝑖 − 𝑦 𝑗 | |2)−1
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3.3. Probing

Compared to SVCCA, t-SNE focuses more on intuitive visualization because it primarily
explains data through visual displays, showing the relative positions and clustering of data
points, but it does not provide precise numerical values to quantify these relationships. In
contrast, SVCCA is a quantitative analysis tool that calculates the correlations between
datasets to provide specific numerical values, thereby helping us to precisely understand
the similarities and differences between different languages or layers. Therefore, t-SNE
emphasizes intuitive understanding, while SVCCA provides quantitative results. The
combination of both allows us to comprehensively analyze and explain the relationships
between hidden representation vectors.
In our experiment, we use t-SNE to reduce the dimensionality of hidden representa-

tion vectors for different languages to a two-dimensional space, in order to observe the
distinctions and patterns among these languages.

3.3. Probing

Probing (Adi et al., 2016) is a technique used to evaluate the information encoded in sen-
tence embeddings. By setting specific prediction tasks, this technique reveals how sentence
embeddings capture various aspects of language, such as sentence length, vocabulary
content, and word order, which are fundamental attributes.
These probing tasks typically include the following steps: first, designing a prediction

task related to sentence structure, such as sentence length, the presence of a specific
word in the sentence, or the relative order of words; second, creating training and test-
ing datasets based on existing sentence embeddings and training a classifier to address
these prediction tasks; finally, evaluating the effectiveness of the sentence embeddings in
encoding predefined linguistic properties based on the performance of the classifier.

For example, the length task uses a multi-class classification model to predict sentence
length groupings, the word content task uses binary classification to detect whether a
specific word is present in the sentence, and the word order task uses binary classification
to predict the relative order of two words in the sentence, thus assessing the sensitivity of
sentence embeddings to these language properties.
In our experiment, we use a probing task to assess how models process and encode

multiple languages. Probing can be done on different granularities (token- or sentence-
level), and we choose to do it on the token level. Specifically, we design a language
recognition task whose goal is to identify the language of each token in the model’s
hidden representations, classifying them according to a predefined list of languages. This
experimental design allows us to understand in detail how various models differentiate
and handle vocabulary in a multilingual environment and evaluate their ability to encode
linguistic information at the token-level.
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4. Experimental setup

We conduct two main experiments using two large language models, LLaMA (Touvron
et al., 2023a,b) and BLOOM (Scao et al., 2022). The first involves extracting and processing
multilingual hidden representations for subsequent comparisons, and the second entails
carrying out translation tasks.

4.1. Dataset: FLoRes-200

Our experiments are based on a multilingual parallel translation dataset named FLoRes-200
(NLLB team et al., 2022; Goyal et al., 2021; Guzmán et al., 2019). This dataset includes
translations of 842 different web articles, totaling 3001 sentences. These sentences are
divided into three splits: dev, devtest, and test (hidden), with the dev set containing 997
sentences, the devtest set comprising 1012 sentences, and the test set encompassing 992
sentences. On average, sentences are approximately 21 words long. In this dataset, each
sentence maintains parallelism across all included languages, meaning that despite the
differences in language, their meanings are the same.

4.2. Evaluation Metric: BLEU

The evaluation of machine translation systems traditionally relies on the BLEU (Papineni
et al., 2002) metric, which assesses the linguistic quality of translated texts against reference
translations. While newer metrics such as COMET (Rei et al., 2020) are more recently
adopted, our study concentrates on the BLEU metric. Comparing BLEU scores often proves
more complex than expected due to inconsistencies in tokenization methods, leading to
significant score fluctuations. SacreBLEU (Post, 2018) provides a unified and standardized
method for calculating BLEU scores, ensuring consistency and replicability of evaluation
results. It not only wraps the original reference implementation (Papineni et al., 2002)
but also adds features such as automatic downloading and management of test sets, thus
simplifying the scoring process.
Moreover, sacreBLEU outputs a version string1 that clearly displays the configuration

used, allowing other researchers to precisely replicate scoring results. In our experiments,
for Chinese, the tokenizer used is marked as "zh", while for other languages, the default
tokenizer "13a" is used.

1BLEU|nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.0.0
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4.3. Multilingual Hidden Representation Experiments with
LLaMA and BLOOM

For the selected languages, we extract hidden representations from specific layers of the
LLaMA and BLOOM models during the processing of the FLoRes-200 dataset. We then
further process these hidden representations to facilitate the application of SVCCA (Raghu
et al., 2017), t-SNE (van der Maaten and Hinton, 2008), and probing (Adi et al., 2016)
techniques.

4.3.1. Choice of Models

Both models we use are huggingface hosted models. We choose the smallest model in
the LLaMA2 series, the 7B, specifically the instruction-fine-tuned LLaMA-2-Chat model,
mainly because it can operate on smaller GPUs. For BLOOM, we also select a version with
the same number of parameters to ensure comparability with LLaMA. Although we tried
BLOOMZ, an instruction-fine-tuned version of the BLOOMmodel during our experiments,
we ultimately do not use it because the FLoRes dataset was trained on this basis (Zhu et al.,
2023; Scao et al., 2022).

4.3.2. Choice of Languages

Table 4.1 lists the languages involved in our experiments, including the scripts to which
these languages belong, their language families, and the classification of these languages
into high-resource or low-resource categories.

Language Script Language Family Subgrouping Res.
English (en) Latin Indo-European Germanic High
French (fr) Latin Indo-European Italic High
Catalan (cat) Latin Indo-European Italic High
Occitan (oci) Latin Indo-European Italic Low
German (deu) Latin Indo-European Germanic High
Luxembourgish (ltz) Latin Indo-European Germanic Low
Limburgish (lim) Latin Indo-European Germanic Low
Russian (rus) Cyrillic Indo-European Balto-Slavic High
Bulgarian (bul) Cyrillic Indo-European Balto-Slavic High
Belarusian (bel) Cyrillic Indo-European Balto-Slavic Low
Bashkir (bak) Cyrillic Turkic Common Turkic Low
Modern Standard Arabic (arb) Arabic Afro-Asiatic Semitic High
Western Persian (pes) Arabic Indo-European Iranian High
Sindhi (snd) Arabic Indo-European Indo-Aryan Low
Chinese (zh) Han (Simplified) Sino-Tibetan Sinitic High

Table 4.1.: The languages involved in the experiments. "Res." indicates whether the lan-
guage is classified as high-resource or low-resource, based on the categorization
from the paper "No language left behind: Scaling human-centered machine
translation" (NLLB team et al., 2022).
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4.3. Multilingual Hidden Representation Experiments with LLaMA and BLOOM

4.3.3. Extraction of Hidden Representations

In this study, we set up experiments for 15 selected languages. We extract the hidden
representations generated during the processing of the FLoRes-200’s devtest and dev sets
from LLaMA, as well as the hidden representations generated during the processing of the
FLoRes-200’s devtest sets from BLOOM. Each sentence in the datasets is first processed
through a tokenizer to convert the text into a format that the models can understand
and handle. These processed data is then fed into the models for a forward pass. During
this process, we store the hidden representations produced at specific layers, including
the embedding layer, 1st, 4th, 8th, 16th, 24th, 28th, and the last layer. Throughout the
experiment, we ensure that each sentence in the datasets is processed independently, and
the hidden representations for each sentence are saved separately.

4.3.4. Comparison of Hidden Representations

We compare the hidden representations from specific layers, including the embedding
layer, 1st, 4th, 8th, 16th, 24th, 28th, and the last layer, in order to observe trend variations
across different layers. Using FLoRes-200, a multilingual parallel translation dataset, our
experiments focus on comparing parallel sentences. That is, the semantics are always
the same, and we are just comparing the differences in representation between different
languages.
We used two techniques, SVCCA (Raghu et al., 2017) and t-SNE (van der Maaten and

Hinton, 2008), to compare hidden representations at the sentence level. For each sentence
in the devtest sets, we perform mean pooling and then aggregate these processed hidden
representations to form a data matrix with dimensions (1012, 4096). "1012" indicates the
total number of sentences in the devtest, while "4096" denotes the dimensionality of the
hidden representations from the LLaMA and BLOOM models. In applying the SVCCA
technique, we select 780 as the number of singular values (SV), reducing the original
4096-dimensional data to 780 dimensions. This reduction is intended to preserve over
90% of the data variance for all languages, thus maintaining the primary features of the
data while reducing its complexity. We pair the data from the selected 15 languages and
perform SVCCA analysis on each pair to calculate the SVCCA scores. These scores assist
in quantifying the similarity between the hidden representations of different languages.
We use probing (Adi et al., 2016) technique to compare hidden representations at

the token level. Specifically, our probing task involves classifying each token’s hidden
representations in the datasets into one of 15 languages. Initially, we independently train
classifiers for selected layers using hidden representations of the dev sets extracted from
LLaMA. Subsequently, we test these classifiers using the hidden representations of the
devtest sets extracted from LLaMA to evaluate their accuracy in correctly identifying
tokens of different languages. The accuracy measures the proportion of tokens that are
correctly classified to their respective languages. This calculation is based on all tokens in
the devtest set for each language. The specific settings of the classifiers are detailed in
Appendix A.1.
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4. Experimental setup

4.4. Setup for Translation Tasks

We employ the LLaMA and BLOOMmodels to execute translation tasks, which are divided
into two setups based on the type of prompt: zero-shot and few-shot. Under zero-shot and
few-shot prompting, we use the LLaMA and BLOOM models to translate the selected 15
languages. This includes translating from these languages into English and from English
into these languages, as well as randomly selecting 10 language pairs for bidirectional
translations. The translation tasks are performed sentence-by-sentence using the devtest
sets. We save the translation results and use the devtest sets in the target language as
a reference file to calculate the sacreBLEU score, thereby assessing the quality of the
translations.

4.4.1. Zero-Shot Setup

In the zero-shot setup, the model is tasked with translation without prior examples. The
prompt format is "[sentence] Translate this sentence from X1 to X2: ", where "X1" denotes
the source language and "X2" the target language. "[sentence]" is a sentence in X1 language
that needs to be translated. For example, the sentence "I am at home." would be presented
to the model as: "I am at home. Translate this sentence from English to German: ". This
zero-shot prompt is processed through a tokenizer and then passed to the model, which
uses its generation function to perform the translation.

4.4.2. Few-Shot Setup

In the few-shot setup, we provide four specific translation examples to prompt the model.
The prompt format is as follows:

[source sentence 1] Translate this sentence from X1 to X2: [target sentence 1]
[source sentence 2] Translate this sentence from X1 to X2: [target sentence 2]
[source sentence 3] Translate this sentence from X1 to X2: [target sentence 3]
[source sentence 4] Translate this sentence from X1 to X2: [target sentence 4]
[sentence] Translate this sentence from X1 to X2:

where "X1" denotes the source language and "X2" the target language, "[sentence]" is a
sentence expressed in the source language that needs to be translated, "[source sentence]" is
a sentence expressed in the source language, and "[target sentence]" is a sentence expressed
in the target language. These are four pairs of parallel sentences randomly selected from
the dev sets, meaning that each pair is semantically equivalent. This four-shot prompt is
processed through a tokenizer and then passed to the model, which uses its generation
function to perform the translation task.
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5. Analyses of Hidden Representations

We primarily analyze the hidden representations for 15 selected languages extracted from
LLaMA2 (Touvron et al., 2023b). Detailed information about these 15 languages can be
found in Section 4.3.2. We analyze the results of SVCCA (Raghu et al., 2017), t-SNE (van der
Maaten and Hinton, 2008), and probing (Adi et al., 2016) techniques across different layers
and assess the impact of resource level, language families, and script families on these
results. In Section 5.5, we check whether the main findings are consistent with another
model, which is BLOOM (Scao et al., 2022).

5.1. Results Across Layers

For our experiment, we select 8 specific layers, including the embedding layer, 1st, 4th,
8th, 16th, 24th, 28th, and the last layer. We compare the results of using SVCCA, t-SNE,
and probing techniques across these layers.

5.1.1. SVCCA Results

(a) LLaMA (b) BLOOM

Figure 5.1.: Average SVCCA scores across layers of LLaMA and BLOOM, calculated by
summing the SVCCA scores for all language pairs in each layer and then taking
the average.

We use SVCCA (Raghu et al., 2017) to calculate the similarity scores between hidden
representations for 15 languages across selected layers. In order to provide a comparative
reference, we calculate the SVCCA score of the baseline, which consists of two sets of
randomly generated numbers. These numbers have dimensions matching those of the
hidden representations, namely (1012, 4096). Its SVCCA score is 82.0%. The SVCCA scores
for all language pairs across the selected layers of LLaMA and BLOOM are illustrated in Ap-
pendix A.2. Upon comparison, we discover that the SVCCA scores for the embedding layer
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5. Analyses of Hidden Representations

exhibit significant differences when compared to those of subsequent layers. Although
the specific values of SVCCA scores may vary between layers, pairs of languages with
high scores generally maintain high scores across all layers, while those with low scores
continue to exhibit lower similarities in each layer. For example, French and English, as
well as French and Catalan, consistently achieve the highest SVCCA scores at every layer,
while the low scores of language pairs such as Belarusian and Luxembourgish, Sindhi and
Limburgish continue across all layers. This indicates that the similarity trend (high or low)
between pairs of languages remains consistent, regardless of the layer.

(a) LLaMA embedding layer (b) BLOOM embedding layer

Figure 5.2.: Comparison of SVCCA results for the embedding layer of LLaMA and BLOOM.
The numbers represent the SVCCA scores for corresponding language pairs as
percentage, with darker colors indicating higher scores and greater similarity.

Figure 5.1 displays the average SVCCA scores across different layers of LLaMA and
BLOOM. The average SVCCA scores for the embedding layer of the LLaMA model are
exceptionally high. Observing the SVCCA scores for all language pairs in the embedding
layer of LLaMA in Figure 5.2, we find that languages using the Arabic script—Modern
Standard Arabic, Western Persian, and Sindhi—score particularly high compared to the
other 12 languages. However, the scores among these three languages are particularly low.
When we remove languages using the Arabic script from the data, as shown in Figure 5.3,
the average SVCCA scores for the embedding layer of the LLaMA model no longer appear
abnormal.
The average SVCCA scores are higher in the middle layers, as shown in Figures 5.1b,

5.3. There is a sharp dropping trend as it moves into the later layers, which is true for
both models; LLaMA starts to drop at layer 24, and Bloom at layer 16. This dropping
trend may be due to projecting back into the vocabulary space again. We aim to conduct
the analysis at a layer where the similarity scores are higher, as this tends to accentuate
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5.1. Results Across Layers

Figure 5.3.: Average SVCCA scores across layers of LLaMA, calculated by summing the
SVCCA scores for among languages using Latin, Cyrillic scripts, and Chinese
in each layer and then taking the average.

the distinctions between high and low scores. Therefore, we have chosen layer 16 for its
clearer differentiation in score outcomes.

5.1.2. t-SNE Results

We use t-SNE (van der Maaten and Hinton, 2008) to reduce the dimensionality of the
hidden representations for 15 languages from selected layers to two-dimensional space,
where each sentence is considered as a data point. From Figure 5.4, it can be observed
that the data points in the middle layers are more densely clustered, with significant
overlap, whereas data points in the lower or higher layers are increasingly dispersed. This
is consistent with the results of the SVCCA.

5.1.3. Probing Results

Table 5.1.: Probing task accuracy for language identification across model layers. The final
row presents the average accuracy for 15 languages.
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5. Analyses of Hidden Representations

The probing (Adi et al., 2016) task we set up aims to classify the hidden representations
of each token in the dataset into one of 15 languages. The accuracy for each language
is shown in Table 5.1. As the model layers deepen, the average accuracy progressively
increases, reaching its highest at the final layer. This suggests that language features are
likely better captured at deeper levels of the model.
We find that the results of probing are inconsistent with those of SVCCA and t-SNE.

The highest similarity in SVCCA and t-SNE occurs in the middle layers, indicating a move
towards more language independent representations in these layers, followed by the need
to acquire representations highly specific to languages during the generation phase. This
seems to contradict the results of probing.

(a) Embedding layer (b) Layer 1 (c) Layer 4 (d) Layer 8

(e) Layer 16 (f) Layer 24 (g) Layer 28 (h) Last layer

(i) The correspondence between languages and
colors.

Figure 5.4.: t-SNE visualization results for hidden representations of different languages
from various LLaMA layers.

5.2. Impact of Resource Level

Figure 5.5a reveals that high-resource languages such as English, French, Catalan, German,
Russian, and Bulgarian have high similarity, with SVCCA scores all above 87.0%. We
average the SVCCA scores among these languages, resulting in a score of 87.76%, as shown
in Table 5.2. Chinese, also a high-resource language, exhibits slightly lower similarity to

26



5.2. Impact of Resource Level

High-resource languages Low-resource languages
High-resource languages 87.76% 84.46%
Low-resource languages 84.46% 84.51%

Table 5.2.: The average SVCCA scores among high-resource languages, among high- and
low-resource languages, and among low-resource languages. High-resource
languages in calculated averages include English, French, Catalan, German,
Russian, and Bulgarian, while low-resource languages include Luxembourgish,
Limburgish, Belarusian, Bashkir, and Sindhi.

(a) High-resource languages ver-
sus high-resource languages

(b) Low-resource lan-
guages versus low-
resource languages

(c) High-resource lan-
guages versus low-
resource languages

Figure 5.5.: SVCCA results for the 16th layer of LLaMA. The numbers represent the SVCCA
scores for corresponding language pairs as percentages, with darker colors
indicating higher scores and greater similarity.

these languages, with scores ranging between 86.2% and 86.8%. However, Modern Standard
Arabic and Western Persian, although high-resource languages, exhibit lower similarity
compared to other high-resource languages, with scores ranging from 84.6% to 85.2%.

To analyze this anomaly, we calculate the total number of tokens obtained from tokeniz-
ing the entire FLoRes-200’s devtest dataset for each language. Table 5.3 reveals that for
Modern Standard Arabic results in 107,276 tokens, and for Persian, 124,339 tokens, whereas
for Chinese, the number is 62,548. In contrast, the token counts for the other high-resource
languages range between 30,000 and 50,000. Further, we examine the total number of char-
acters in the entire FLoRes-200’s devtest set for these two languages: the Modern Standard
Arabic dataset has a total of 116,307 characters, while the Western Persian dataset contains
123,827 characters. For these two languages, the total number of characters is close to the
total number of tokens. As described in Section 2.5.1, LLaMA tokenizes the data using the
byte pair encoding (BPE) algorithm, utilizing the implementation from SentencePiece. This
means that the tokenization units for Modern Standard Arabic and Western Persian are
close to the character level. The low SVCCA scores may be related to the character-level
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5. Analyses of Hidden Representations

input, which makes it more difficult to have sentence-level representations that capture
language similarity. Additionally, it may also be related to the amount of training data,
as the LLaMA training dataset does not include Modern Standard Arabic and Western
Persian.

Language LLaMA BLOOM
English (en) 32,146 27,416
French (fr) 46,829 33,020
Catalan (cat) 47,882 32,370
Occitan (oci) 52,789 40,777
German (deu) 44,899 46,141
Luxembourgish (ltz) 57,104 51,645
Limburgish (lim) 52,408 48,180
Russian (rus) 51,396 67,317
Bulgarian (bul) 56,253 67,976
Belarusian (bel) 74,532 87,633
Arabic (arb) 107,276 31,481
Persian (pes) 124,339 48,361
Sindhi (snd) 131,777 68,324
Bashkir (bak) 91,313 97,379
Chinese (zh) 62,548 25,070

Table 5.3.: The total number of tokens obtained from tokenizing the entire FLoRes-200’s
devtest dataset for each language.

Low-resource languages including Luxembourgish, Limburgish, Belarusian, Bashkir,
and Sindhi are less similar to all languages, with scores ranging between 83.7% and 85.2%, as
shown in Figures 5.5b and 5.5c. We calculate the average SVCCA scores separately among
high and low languages, and among low languages, both approximately 84.5%, as shown in
Table 5.2. However, it is particularly noteworthy that Occitan, as a low-resource language,
shows higher similarity with high-resource languages, including English, French, Catalan,
German, Russian, and Bulgarian, with scores above 86.0%, especially with French and
Catalan, reaching above 86.9%. To explain this phenomenon, we calculate the percentage of
overlapping tokens resulting from the tokenization between Occitan and various languages,
as shown in Table 5.4. The highest degree of overlap is observed with Italic languages.
This significant overlap likely underlies the observed high similarity between Occitan
and these languages. We discover that in the tokenization of the entire devtest set for
Chinese, 45% of the tokens are at the byte level. This may be the reason why Chinese has
slightly poorer SVCCA scores compared to other high-resource languages and appears
independently distributed in the t-SNE figure.

From the t-SNE visualizations of layer 16 in Figure 5.4e, we can see that French, German,
English, Catalan, Russian, Bulgarian, and Occitan are clustered together. Low-resource
languages including Luxembourgish, Limburgish, Belarusian, Bashkir, and Sindhi, along
with Modern Standard Arabic and Western Persian, are dispersed and have little to no
overlap with other languages. These observations are consistent with the findings from
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5.3. Impact of Language Families

Language Overlap percentage (%)

English (en) 15.01
French (fr) 25.14
Catalan (cat) 38.00
German (deu) 11.80

Luxembourgish (ltz) 16.26
Limburgish (lim) 16.63
Russian (rus) 6.37
Bulgarian (bul) 6.20
Bashkir (bak) 6.25
Arabic (arb) 4.80
Sindhi (snd) 5.19

Belarusian (bel) 6.07
Persian (pes) 5.33
Chinese (zh) 3.27

Table 5.4.: The percentage of overlapping tokens resulting from the tokenization between
Occitan and various languages. These percentages are the proportion of over-
lapping token counts between Occitan and other languages to the total number
of tokens in Occitan.

the analysis of SVCCA scores. The inconsistency lies with Chinese: while the SVCCA
scores between Chinese and other high-resource languages such as English and Russian
are high, Chinese is isolated, with virtually no overlap with other languages.
In summary, high-resource languages typically show higher similarity among them-

selves and low-resource languages exhibit lower similarity with all languages. However,
there are some exceptions: Modern Standard Arabic, Western Persian, and Occitan. Mod-
ern Standard Arabic and Western Persian exhibit lower similarity compared to other
high-resource languages and to each other, which may be related to their character-level
input and the absence of LLaMA’s training data. Occitan, despite being a low-resource
language, displays higher similarity with high-resource languages. A possible explanation
is the high degree of token overlap between Occitan and these languages.

5.3. Impact of Language Families

As shown in Figure 5.6, within the Indo-European Italic family, high similarity is observed
among French, Catalan, and Occitan, with SVCCA scores all above 86.8%. Within the Indo-
European Germanic language family, aside from the high similarity between English and
German at 88.5%, the similarity among English, German, Limburgish, and Luxembourgish
is lower, with scores around 85.0%. For the Indo-European Balto-Slavic family, Russian and
Bulgarian demonstrate high similarity, with a score of 87.7%, whereas Belarusian exhibits
lower similarity with these two languages, with scores around 84.8%.
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5. Analyses of Hidden Representations

(a) Italic family (b) Germanic family
(c) Balto-Slavic

family

Figure 5.6.: The SVCCA scores between languages within different language families from
the 16th layer of LLaMA.

In summary, languages belonging to the Indo-European Italic family exhibit a stronger
similarity. The Indo-European Germanic family and the Indo-European Balto-Slavic family
do not exhibit this characteristic. For languages within the Indo-European Germanic and
Indo-European Balto-Slavic families, the attribute of being high or low resource has a
more significant impact on the SVCCA scores between two languages than the factor of
belonging to the same language family.

5.4. Impact of Script Families

(a) Latin script family
(b) Cyrillic script fam-

ily
(c) Arabic script

family

Figure 5.7.: The SVCCA scores between languages within different script families from
the 16th layer of LLaMA

The analysis of script families and language families reveals a degree of overlap. However,
to ensure no findings are overlooked, it is essential to conduct both analyses.
As shown in Figure 5.7a, within the Latin script family, high-resource languages such

as English, French, German, and Catalan typically exhibit extremely high similarity, with
SVCCA scores exceeding 88.0% (with the exception of Catalan and German, where the
similarity score is 87.6%). In contrast, the similarity between these languages and high-
resource languages using different scripts does not reach 88.0%, instead ranging from
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5.5. Comparison of LLaMA and BLOOM

86.4% to 87.8%, as shown in Figure 5.5a. Notably, even the low-resource language Occitan
exhibits significant similarity to the aforementioned high-resource languages, exceeding
86.3%. LLaMA, being a model centered around English, was trained on abundant resources
for English. This may likely explain the exceptionally high similarity observed between
English and other languages such as French, Catalan, and German. In addition, languages
that use Latin scripts generally have rich resources, such as French and German.
As shown in Figure 5.7b, within the Cyrillic script family, which includes Russian,

Bulgarian, Belarusian, and Bashkir, only Russian and Bulgarian exhibit high similarity,
with a score of 87.7%, possibly because only Russian and Bulgarian are high-resource
languages. As shown in Figure 5.7c, Languages employing the Arabic script, including
Modern Standard Arabic, Western Persian, and Sindhi, show low similarity, with scores
around 84.3% to 85.0%. It is worth noting that Modern Standard Arabic and Western
Persian are not very similar, even though they are both high-resource languages, which
we analyze in the previous Section 5.2.

From the t-SNE visualizations of layer 16 in Figure 5.4e, we can see that Russian and
Bulgarian from the Cyrillic script family are adjacent and overlap, while English, French,
German, Catalan, and Occitan from the Latin script family are also adjacent and overlap,
especially English, French, and Catalan. Languages from the Arabic script family are
scattered. These observations are consistent with the findings from the analysis of SVCCA
scores.

In summary, the high-resource languages within the Latin script family, along with the
low-resource language Occitan, exhibit significant similarity, which can be attributed to
the generally rich resources of Latin scripts. In the Cyrillic script family, only Russian and
Bulgarian, which are high-resource languages, show high similarity, reflecting the impact
of resource level. In the Arabic script family, the similarity between all languages is low.
t-SNE visualizations further confirm strong clustering among languages of the Latin script
family, while languages of the Arabic script family are dispersed.

5.5. Comparison of LLaMA and BLOOM

As illustrated in Figure 5.9, significant discrepancies exist between BLOOM and LLaMA
in the representations for Modern Standard Arabic, German, Russian, and Bulgarian. We
extract the scores for these four languages for closer observation, as shown in Figure 5.8.
It is observed that the similarity of Modern Standard Arabic with English, Chinese, French,
Catalan, and Occitan is more pronounced in BLOOM than in LLaMA. This may be due to
BLOOM’s training dataset including Modern Standard Arabic and BLOOM having a larger
vocabulary than LLaMA, resulting in the Modern Standard Arabic dataset in BLOOM
having fewer tokens than LLaMA. Specifically, LLaMA has a total of 107,276 tokens, while
BLOOM has only 31,481, as shown in Table 5.3. This means that in BLOOM, Modern
Standard Arabic is not processed at the character level, but at a higher level.
Compared to LLaMA, the similarity between German, Russian, and Bulgarian with

English, Chinese, French, Catalan, Occitan, German, Russian and Bulgarian in BLOOM is
lower, likely due to the absence of German, Russian, and Bulgarian in BLOOM’s training
dataset, whereas LLaMA’s dataset includes them. This also results in token counts of
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5. Analyses of Hidden Representations

approximately 60,000 for Russian and Bulgarian, and about 46,000 for German. In contrast,
other high-resource languages, including English, French, Catalan, Chinese, and Modern
Standard Arabic, have token counts ranging from 20,000 to 30,000.

By comparing the BLOOM and LLaMAmodels, we find that for high-resource languages,
whether a language is included in the model’s training dataset significantly impacts its
similarity with other high-resource languages. At the same time, because a language has
training data, it undergos more precise and higher-level tokenization. Using lower-level
tokenization units makes it more difficult to have sentence-level representations that
capture language similarity. Besides the impact of the presence in the model’s training
dataset and the level of tokenization, the findings from BLOOM and LLaMA are consistent.

(a) BLOOM Layer 16

(b) LLaMA Layer 16

Figure 5.8.: The SVCCA scores between Modern Standard Arabic and other languages,
between German and other languages, between Russian and other languages,
and between Bulgarian and other languages.
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5.5. Comparison of LLaMA and BLOOM

(a) BLOOM Layer 16 (b) LLaMA Layer 16

Figure 5.9.: Comparison of SVCCA results for the 16th layer of BLOOM and LLaMA. The
numbers represent the SVCCA scores for corresponding language pairs as
percentages, with darker colors indicating higher scores and greater similarity.
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6. Correlation Between Translation
Performance and Patterns

We conduct translation tasks under zero-shot and few-shot promptings using the LLaMA2
(Touvron et al., 2023b) and BLOOM (Scao et al., 2022) models, and assess the quality of
translations using sacreBLEU (Post, 2018). Ultimately, we explore the correlation between
translation performance and patterns, namely the findings from the Chapter 5.

6.1. Zero-Shot Results

Language LLaMA BLOOM

EN→ X X → EN EN→ X X → EN

Chinese (zh) 9.66 0.49 0.80 0.09
French (fr) 5.33 15.69 1.54 1.72
Catalan (cat) 5.87 8.99 2.00 1.32
Occitan (oci) 2.38 15.96 0.93 10.49
German (deu) 3.15 11.44 0.86 12.88
Luxembourgish (ltz) 1.33 5.08 0.66 3.34
Limburgish (lim) 3.13 9.57 1.10 2.91
Russian (rus) 1.54 7.47 0.34 3.57
Bulgarian (bul) 1.41 3.67 0.16 3.96
Bashkir (bak) 0.44 1.90 0.15 0.38
Arabic (arb) 0.88 5.87 0.05 2.56
Sindhi (snd) 0.17 0.64 0.08 0.44
Belarusian (bel) 0.43 1.46 0.08 0.99
Persian (pes) 0.84 6.13 0.10 1.63

Average 2.61 6.74 0.63 3.30

Table 6.1.: SacreBLEU scores for EN→X and X→ EN translations under zero-shot prompt-
ing with LLaMA and BLOOM Models, where X represents a certain language.

The results from Tables 6.1 and 6.2 indicate that under zero-shot prompting, the trans-
lation performance is generally poor, with sacreBLEU scores often below 5. Overall,
LLaMA’s translation performance is significantly better than BLOOM’s. Regardless of
the translation direction, the average SacreBLEU score of LLaMA is higher than that of
BLOOM. Specifically, in translations from English to other languages (EN → X), LLaMA’s
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6. Correlation Between Translation Performance and Patterns

average score is 2.61 compared to BLOOM’s 0.63. In translations from other languages to
English (X→ EN), LLaMA achieves an average score of 6.74, while BLOOM scores 3.30.
In translations between non-English languages (X↔ X), LLaMA’s average score is 3.16,
whereas BLOOM’s is 1.42.

The translations with English as the target language are significantly better than those
with English as the source language. This phenomenon can be attributed to the abundance
of English material in the training data, making the generation of English content easier
compared to other languages. But an obvious exception is that LLaMA’s sacreBLEU score
of 9.66 for translation from English to Chinese is significantly higher than its score of
0.49 for translation from Chinese to English. Upon examining the translation results from
Chinese to English, we find that the model primarily keeps generating in Chinese instead
of English.

Language Pair Zero-shot Few-shot

LLaMA BLOOM LLaMA BLOOM

arb → pes 0.28 0.01 0.04 0.11
pes → arb 0.28 0.00 0.02 0.67
deu→ ltz 2.03 1.13 2.24 1.90
ltz → deu 2.57 1.00 8.33 2.62
oci → deu 1.72 0.58 12.24 2.14
deu→ oci 1.29 0.71 4.05 2.53
rus → fr 1.11 0.50 20.10 14.71
fr→ rus 0.77 0.21 12.82 2.30
zh → deu 0.14 0.02 7.52 2.46
deu→ zh 6.59 3.26 17.40 19.07
zh → fr 0.12 0.01 13.42 15.54
fr→ zh 7.01 0.20 17.73 24.52
cat→ fr 6.54 1.56 26.61 28.22
fr→ cat 9.53 1.57 22.17 25.27
cat→ deu 1.92 0.88 14.99 4.80
deu→ cat 4.50 3.67 18.46 16.51
oci → cat 8.44 8.78 20.91 25.42
cat→ oci 5.93 3.68 6.64 8.84
oci → zh 2.05 0.72 13.67 18.76
zh → oci 0.31 0.04 2.49 1.02

Average 3.16 1.42 12.09 10.87

Table 6.2.: SacreBLEU scores for X1 ↔ X2 translations under zero-shot and four-shot
promptings with LLaMA and BLOOM Models, where X1 and X2 represent two
different certain languages.
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6.2. Few-Shot Results

Relying solely on zero-shot learning of these models is not sufficient to obtain effective
translations, as most translation results have sacreBLEU scores below 5. Therefore, we
need to provide some examples to achieve meaningful translation results. From Tables 6.3
and 6.2, it is evident that translation performance under few-shot prompting is significantly
better than under zero-shot prompting, with the average sacreBLEU scores for few-shot
prompting basically above 10. Under few-shot prompting, LLaMA scores an average of
10.57 for EN → X and 21.11 for X → EN, while BLOOM scores an average of 8.95 for
EN → X and 16.50 for X → EN. Translations targeting English usually perform better
than those originating from English, and LLaMA’s translation performance significantly
exceeds BLOOM’s, consistent with observations from zero-shot prompting.

For translations with English, high-resource languages such as Chinese, French, Catalan,
German, Russian, and Bulgarian generally perform better in translation than low-resource
languages such as Luxembourgish, Limburgish, Bashkir, Sindhi, and Belarusian. Specifi-
cally, in bidirectional translations with English, the average scores for Chinese, French,
Catalan, German, Russian, and Bulgarian are 26.52 in LLaMA and 20.46 in BLOOM;whereas
for Luxembourgish, Limburgish, Bashkir, Sindhi, and Belarusian, the average scores are
5.44 for LLaMA and 2.41 for BLOOM. Specially, despite being a low-resource language,
Occitan exhibits excellent translation quality, with an average score of 19.37 for bidirec-
tional translations between Occitan and English in LLaMA and 20.16 in BLOOM. In the
LLaMA model, although Modern Standard Arabic and Western Persian are high-resource
languages, their translation quality is poor, with an average score of 8.04 for bidirectional
translations between them and English. However, in BLOOM, the average score for bidi-
rectional translations between Modern Standard Arabic and English is 20.09, indicating
good translation performance.
For X↔ X translations, the translation performance among high-resource languages

surpasses that among low-resource languages as well as among low-resource and high-
resource languages. Occitan and languages using the Arabic script remain exceptions.
Specifically, in LLaMA, the average score for translations among high-resource languages
(excluding Arabic script languages) is 17.12, while in BLOOM it is 15.34. There is insufficient
data to support the analysis of translations among among low-resource and high-resource
languages (excluding Occitan). Because we only conduct bidirectional translations between
German and Luxembourgish, with LLaMA scoring an average of 5.29 and BLOOM scoring
2.26. The average score for translations between Occitan and German, Occitan and Chinese,
Occitan and Catalan in LLaMA is 10.00, while in BLOOM it is 9.79, which is better than
the translation performance of other low-resource languages. The average score for
translations between the high-resource languages Modern Standard Arabic and Western
Persian is only a fraction of a point in both LLaMA and BLOOM.

We find that the above observations are consistent with the analysis in Sections 5.2 and
5.5: high-resource languages have higher similarity among themselves, while low-resource
languages show lower similarity with all languages. Occitan and languages using the Ara-
bic script are exceptions: Occitan, as a low-resource language, shows high similarity with
high-resource languages, whereas Modern Standard Arabic and Western Persian, though
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high-resource languages, show low similarity with high-resource languages. However, in
BLOOM, Modern Standard Arabic shows high similarity with high-resource languages.

Language LLaMA BLOOM

EN → X X→ EN EN → X X→ EN

Chinese (zh) 21.64 19.90 30.14 18.53
French (fr) 31.67 37.03 35.45 36.12
Catalan (cat) 26.46 37.57 29.73 36.72
Occitan (oci) 5.81 32.93 5.49 34.83
German (deu) 19.25 34.66 7.17 23.47
Luxembourgish (ltz) 1.99 13.46 0.31 9.22
Limburgish (lim) 4.53 19.85 0.80 9.99
Russian (rus) 15.61 28.04 2.47 15.56
Bulgarian (bul) 14.99 31.42 0.89 9.24
Bashkir (bak) 0.31 3.11 0.06 0.86
Arabic (arb) 2.18 15.51 12.60 27.57
Sindhi (snd) 0.21 1.72 0.01 1.20
Belarusian (bel) 0.95 8.29 0.07 1.57
Persian (pes) 2.42 12.05 0.08 4.66

Average 10.57 21.11 8.95 16.40

Table 6.3.: SacreBLEU scores for EN→X and X→ EN translations under four-shot prompt-
ing with LLaMA and BLOOM Models, where X represents a certain language.

6.3. Correlation to Representational Similarities

To explore the correlation between language similarity and translation performance, we
plot scatter plots where the horizontal axis represents the SVCCA scores between English
and another specific language, while the vertical axis shows the sacreBLEU scores for
translations from English to that language or from that language to English. As shown in
Figure 6.1, under zero-shot prompting, both the LLaMA and BLOOMmodels exhibit a weak
correlation between similarity of languages and translation performance. As depicted in
Figure 6.2, under four-shot prompting, both the LLaMA and BLOOM models exhibit a
significant correlation between similarity of languages and translation performance. To
quantify the correlation between translation performance and similarity of languages, we
calculate the Pearson correlation coefficient between the SVCCA scores and the sacreBLEU
scores.
As shown in Table 6.4, the results of the Pearson correlation coefficient are generally

consistent with the scatter plots. The data in the table indicates that under zero-shot
prompting, using LLaMA to translate from English to other languages (EN→ X) and from
other languages to English (X → EN), the correlation coefficients are around 0.6, showing
a moderate to strong positive linear correlation between SVCCA scores and sacreBLEU
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6.3. Correlation to Representational Similarities

(a) LLaMA zero-shot

(b) BLOOM zero-shot

Figure 6.1.: SVCCA scores between English and X versus sacreBLEU scores for translations
under zero-shot prompting with LLaMA and BLOOM, where X represents a
certain language.

(a) LLaMA few-shot

(b) BLOOM few-shot

Figure 6.2.: SVCCA scores between English and X and sacreBLEU scores for EN → X and
X → EN translations under four-shot prompting with LLaMA and BLOOM,
where X represents a certain language.
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Model & Direction Zero-shot Few-shot

Correlation 𝑝-value Correlation 𝑝-value

LLaMA (EN→ X) 0.6050 0.0219* 0.9421 4.78e-07*
LLaMA (X→ EN) 0.6012 0.0230* 0.9302 1.43e-06*
Bloom (EN → X) 0.7466 0.0022* 0.9178 3.71e-06*
Bloom (X→ EN) 0.0512 0.8620 0.9284 1.66e-06*

Table 6.4.: Pearson correlation coefficient between SVCCA scores and sacreBLEU scores
for EN→ X and X→ EN translations. A 𝑝-value marked with an asterisk (*)
indicates statistical significance, where the 𝑝-value is less than the threshold of
0.05.

scores. Also, the 𝑝-value of 0.02 indicates that this correlation is statistically significant.
When using BLOOM to translate from English to other languages (EN→ X), the results are
similar to those mentioned above. However, the correlation coefficient for using BLOOM
to translate from other languages to English (X → EN) is very low, demonstrating that
the correlation coefficient of 0.0512 is very close to 0 and the 𝑝-value of 0.8620 is well
above the threshold, indicating that there is almost no linear correlation between SVCCA
scores and sacreBLEU scores and this relationship is not statistically significant. This may
be due to some outlier data points, such as the abnormally low scores for translations
from French to English and from Catalan to English, which can be observed in Figure
6.1b. Upon examining the translation results from French to English and from Catalan to
English, we find that the model primarily keeps generating in French and Catalan instead
of English. Under the few-shot prompting, both the LLaMA and BLOOM models exhibit
very high correlation coefficients, above 0.9, accompanied by very low 𝑝-values. These
statistically significant high correlation coefficients demonstrate a very strong positive
linear correlation between the sacreBLEU scores and SVCCA scores in the models.
Although we observe a certain correlation between translation performance and lan-

guage similarity, we cannot yet confirm whether a positive linear relationship exists
between translation performance and language similarity. This is due to a confounding
factor—English is always a high-resource language. To reduce this potential bias, we
randomly selected ten language pairs for bidirectional translations (X ↔ X), with the
results shown in Figure 6.3. The results of the Pearson correlation coefficient in Table 6.5
indicate that there is indeed a positive linear relationship between translation quality and
similarity of languages, especially under few-shot prompting, where this relationship is
particularly strong. Under zero-shot prompting, it remains an anomaly for BLOOM, with
a 𝑝-value of 0.2 far exceeding the threshold.

We remove data points with sacreBLEU scores below 5, as these low scores can weaken
the overall effectiveness and relevance of our analysis. We aggregate all translation pairs
from X → EN, EN → X, X ↔ X, resulting in Figure 6.4 and Table 6.6. Under zero-shot
prompting, for LLaMA, there is a weak correlation between sacreBLEU scores and SVCCA
scores, but this correlation is not statistically significant. For the BLOOMmodel, due to poor
translation performance under zero-shot prompting, most translations have sacreBLEU
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(a) Zero-shot with LLaMA (b) Few-shot with LLaMA

(c) Zero-shot with BLOOM (d) Few-shot with BLOOM

Figure 6.3.: SVCCA scores between X1 and X2 versus sacreBLEU scores for X1 ↔ X2
translations., where X1 and X2 represent two different certain languages.

Model Zero-shot Few-shot

Correlation 𝑝-value Correlation 𝑝-value

LLaMA 0.5315 0.0159* 0.8104 1.476e-05*
BLOOM 0.2850 0.2233 0.7286 0.000269*

Table 6.5.: Pearson correlation coefficient between SVCCA scores and sacreBLEU scores
for X ↔ X translations.

scores below 5. After removing data points with sacreBLEU scores below 5, there are not
enough remaining data points to yield a meaningful result. Under few-shot prompting,
for both LLaMA and BLOOM, there is a significant positive linear relationship between
translation performance and language similarity.

In summary, we confirm that under few-shot prompting, there is a significant positive
linear correlation between translation performance and language similarity for both
models. However, under zero-shot prompting, due to poor translation performance with
many sacreBLEU scores below 5, we consider that there is a positive correlation between
translation performance and language similarity for LLaMA, but for BLOOM, a conclusion
cannot yet be drawn.
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(a) Zero-shot with LLaMA (b) Zero-shot with BLOOM

(c) Few-shot with LLaMA (d) Few-shot with BLOOM

Figure 6.4.: SVCCA scores versus sacreBLEU scores for language pairs including X → EN,
EN → X, and X ↔ X, with sacreBLEU scores greater than 5.

Model Zero-shot Few-shot

Correlation 𝑝-value Correlation 𝑝-value

LLaMA 0.2520 0.3130 0.6300 6.5351e-05*
BLOOM -0.9027 0.2832 0.7164 3.8500e-05*

Table 6.6.: Pearson correlation coefficient between SVCCA scores and sacreBLEU scores
for X → EN, EN → X, and X ↔ X translations, with sacreBLEU scores greater
than 5.
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7. Conclusion

7.1. Answering Research Questions

After conducting experiments and analyzing the results, we attempt to answer the three
research questions initially posed.

• RQ1. Given the same LLM, how do the hidden representations for different
languages differ? Are there patterns (e.g. high- vs. low-resource, script families)?

In analyzing the LLaMA model, we find that the average SVCCA scores for all language
pairs are higher in the middle layers compared to the two side layers. Additionally, the
similarity of hidden representations for languages is primarily impacted by the resource-
level. Specifically, hidden representations among high-resource languages usually exhibit
higher similarity, while low-resource languages show lower similarity, whether compared
with high-resource languages or low-resource languages. Furthermore, within the Latin
script family, there are extremely high similarities between languages. However, a similar
phenomenon is not observed for languages using the Cyrillic and Arabic scripts.

• RQ2. Are the findings from RQ1 consistent across different LLMs?

In comparing the BLOOM and LLaMA models, we find that for high-resource languages,
whether a language is included in the model’s training dataset significantly influences its
similarity with other high-resource languages. Additionally, Lower-level input makes it
more difficult to produce sentence-level representations that capture language similarity,
whereas higher-level input facilitates this process. All findings are consistent across both
the BLOOM and LLaMA models.

• RQ3. To what extent do the results (from RQ1 and RQ2) relate to translation
performance?

For both the LLAMA and BLOOM models, translation performance under few-shot
prompting is significantly better than under zero-shot prompting. In the analysis under
few-shot prompting, we find that the translation results are consistent with some of the
findings from RQ1 and RQ2. Furthermore, we explore the correlation between translation
performance and language similarity. We confirm that there is a strong positive linear
correlation between them under few-shot prompting. We consider that there is a positive
correlation for LLaMA, but for BLOOM, a conclusion cannot yet be drawn.
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7.2. Conclusion

To analyze the similarities and differences in hidden representations for multiple languages,
we employ SVCCA, t-SNE, and probing techniques. We analyze from the perspectives
of language resource-level, language families, and script families. We find that resource-
level is the predominant factor, and additionally, languages using the Latin script exhibit
extremely high similarity. Through comparing the LLaMA and BLOOM models, we find
that the presence of languages in the model’s training data significantly affects language
similarity. Relating these findings to translation performance, we confirm that there is a
positive linear correlation between translation performance and language similarity.

For the probing analysis, the results we obtained are very limited, therefore we plan to
continue this research in the future. We only select a few languages and want to analyze
more languages in the future to expand the language coverage of our study and obtain
more robust results. We are also interested in the hidden representations from Tower
(Alves et al., 2024), which is a multilingual LLM optimized for translation-related tasks.
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A. Appendix

A.1. Setup for Probing Classifier

The classifier employs a simple linear structure, specifically a single-layer fully connected
layer. It has an input dimension of 4096, which corresponds to the dimension of the
hidden representations, and an output dimension of 15, matching the number of language
categories. The model uses the Adam optimizer for parameter optimization, with a learning
rate set at 0.0001 to control the speed of parameter updates during training. The entire
training process is set for 5 training epochs, during which the model learns and adjusts by
iterating over all the training data.

A.2. SVCCA Scores

Figure A.1 displays the pairwise SVCCA scores for 15 languages across multiple layers—
embedding, 1st, 4th, 8th, 16th, 24th, 28th, and the last layer—of both BLOOM and LLaMA
models.
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A. Appendix

Figure A.1.: Comparison of SVCCA results across multiple layers of BLOOM and LLaMA.
The numbers represent the SVCCA scores for corresponding language pairs as
percentages, with darker colors indicating higher scores and greater similarity.

(a) LLaMA embedding layer (b) BLOOM embedding layer

(c) LLaMA layer 1 (d) BLOOM layer 1
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A.2. SVCCA Scores

(e) LLaMA layer 4 (f) BLOOM layer 4

(g) LLaMA layer 8 (h) BLOOM layer 8

(i) LLaMA layer 16 (j) BLOOM layer 16
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(k) LLaMA layer 24 (l) BLOOM layer 24

(m) LLaMA layer 28 (n) BLOOM layer 28

(o) LLaMA last layer (p) BLOOM last lLayer
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