
Playing Dialogue-Based Games with
Large Language Models

Master’s Thesis of

Tobias Polly

Arti�cial Intelligence for Language Technologies (AI4LT) Lab

Institut for Anthropomatics and Robotics (IAR)

KIT Department of Informatics

Reviewer: Prof. Dr. Jan Niehues

Second reviewer: TT-Prof. Dr. Barbara Bruno

Advisor: M.Sc. Supriti Sinhamahapatra

Second advisor: M.Sc. Lukas Hilgert

15.06.2024 – 16.12.2024



Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe



I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

Karlsuhe, 16.12.2024

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Tobias Polly)





Abstract

Large Language Models (LLMs) have proven capable of performing not only tasks like

summarization, sentiment analysis or text completion, but also question answering, ma-

chine translation and, to some extent, game playing. This work explores whether LLMs

are able to play language-based guessing games, mainly the Twenty Questions game, what

parameters in�uence performance, and how performance can be improved by di�erent

prompt tuning and training modalities. “Twenty Questions” is a game where one player

(the answerer) thinks of a concept and the other player (the questioner) has to guess it

by asking yes-no questions. We measure two di�erent scores: the game win rate, which

measures both performance of the questioner and answerer, and the response F1 score

of the answerer individually, which measures how accurately it can answer questions.

Initial evaluation of di�erent foundation models reveals modest success, with Llama-3-

70B-Instruct achieving a win rate of 23%. Smaller models like Llama-3-70B-Instruct and

Phi-3-mini-4k-Instruct only reach a win rate of 10%.

In more detailed experiments, we �nd that the untrained model’s performance is mainly

in�uenced by prompt design and domain restriction of the possible concepts in the game.

Our prompt tuning approaches reveal that the simplest prompt, a zero-shot prompt with

binary choice questions, performs best. We investigate di�erent training modalities to

improve performance of Phi-3-mini-4k-Instruct and Llama-3-8B-Instruct. For the answerer,

we �nd that supervised �ne-tuning using a suitable dataset signi�cantly improves F1 score

of both models. We also �nd that models trained on multiple choice answers perform

better on the binary choice task. The other way around, this is only true for Phi-3-mini-

4k-Instruct, while Llama-3-8B-Instruct performs better on the binary choice task when

trained on binary choice answers. For the questioner, for the lack of ground-truth data,

we employ three di�erent sources of generating training data. We �nd that this is a

challenging task and the best source of training data is found to be dialogues generated

by GPT-4o [20]. Still, in evaluation of the questioner with an untrained answerer, we

only �nd slight increases in win rate. However, in joint evaluation of both a trained

questioner and a trained answerer using single question prompt, we �nd that compared to

our initial evaluation, Phi-3-mini-4k-Instruct improves its result by a factor of 3.6, reaching

an average win rate of 24.3%, while Llama-3-8B-Instruct improves by a factor of around

2.1, reaching an average win rate of 27.3%.

i





Zusammenfassung

Die Fähigkeiten großer Sprachmodelle (Large Language Models, LLMs) übersteigen klassi-

sche Aufgaben wie Zusammenfassung, Sentiment-Analysen oder Textvervollständigung.

LLMs können eingesetzt werden zur Beantwortung von Fragen in natürlicher Sprache,

maschineller Übersetzung und, bis zu einem gewissen Grad, um Spiele zu spielen. Diese

Arbeit untersucht, ob LLMs in der Lage sind, sprachbasierte Ratespiele, insbesondere das

Spiel “Twenty Questions” zu spielen, welche Parameter das Spielergebnis beein�ussen

und wie das Ergebnis durch verschiedene Ansätze wie Prompt-Tuning und Trainingsmo-

dalitäten verbessert werden kann. Das Spiel “Twenty Questions” wird von zwei Personen

gespielt. Der Antwortgeber denkt sich ein Konzept aus und der Fragesteller muss es durch

Ja-Nein-Fragen erraten. Wir messen zwei verschiedene Metriken: die Gewinnrate im

Spiel, die sowohl die Fähigkeit des Fragestellers als auch des Antwortgebers bewertet,

und den F1-Score des Antwortgebers, die misst, wie genau er auf Fragen antwortet. Erste

Evaluierungen verschiedener Sprachmodelle zeigen mäßigen Erfolg, wobei Llama-3-70B-

Instruct eine Gewinnrate von 23% erreicht. Kleinere Modelle wie Llama-3-70B-Instruct

und Phi-3-mini-4k-Instruct erreichen lediglich eine Gewinnrate von 10%.

In detaillierteren Experimenten stellen wir fest, dass die Gewinnrate des untrainierten

Modells hauptsächlich durch die Gestaltung der Prompts und die Eingrenzung der Konzepte

im Spiel beein�usst wird. Unsere Untersuchungen zu Prompt-Tuning zeigen, dass der

einfachste Prompt, ein Zero-Shot-Prompt mit binären Entscheidungsfragen, am besten

abschneidet. Wir untersuchen verschiedene Trainingsmodalitäten, um die Gewinnrate von

Phi-3-mini-4k-Instruct und Llama-3-8B-Instruct zu verbessern. Für den Antwortgeber zeigt

sich, dass Supervised Fine-Tuning mit einem geeigneten Datensatz den F1-Score von beiden

Modellen signi�kant verbessert. Außerdem stellen wir fest, dass Modelle, die auf Multiple-

Choice-Antworten trainiert wurden, bei binären Entscheidungen besser abschneiden.

Umgekehrt gilt dies nur für Phi-3-mini-4k-Instruct, während Llama-3-8B-Instruct bei

binären Entscheidungen besser abschneidet, wenn es speziell darauf trainiert wurde. Für

den Fragesteller verwenden wir aufgrund fehlender Ground-Truth-Daten drei verschiedene

Quellen zur Generierung von Trainingsdaten. Die besten Trainingsdaten stammen aus

Dialogen, die von GPT-4o generiert wurden. Dennoch �nden wir bei der Evaluierung des

Fragestellers mit einem untrainierten Antwortgeber nur geringe Verbesserungen in der

Gewinnrate. Allerdings zeigt die gemeinsame Evaluierung eines trainierten Fragestellers

und eines trainierten Antwortgebers, der als Prompt einzelne Fragen erhält, dass im

Vergleich zu unserer ersten Evaluierung das Ergebnis von Phi-3-mini-4k-Instruct um einen

Faktor von 3,6 verbessert ist und eine durchschnittliche Gewinnrate von 24,3% erreicht

wird, während Llama-3-8B-Instruct sich um einen Faktor von 2,1 verbessert und eine

durchschnittliche Gewinnrate von 27,3% erzielt.

iii





Acknowledgments

This work was performed on the computational resource bwUniCluster 2.0 funded by

the Ministry of Science, Research and the Arts Baden-Württemberg and the Universities

of the State of Baden-Württemberg, Germany, within the framework program bwHPC.

Additionally, computational resources of the Institute for Anthropomatics and Robotics at

the Karlsruhe Institute of Technology were used.

v





Contents

Abstract i

Zusammenfassung iii

Acknowledgments v

1. Introduction 1
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Background and RelatedWork 3
2.1. Evolution of Large Language Models . . . . . . . . . . . . . . . . . . . . 3

2.1.1. Language modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2. Statistical language models . . . . . . . . . . . . . . . . . . . . . 4

2.1.3. Neural language models . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.4. Pre-trained language models . . . . . . . . . . . . . . . . . . . . . 4

2.1.5. Large Language Models . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.6. Optimizing model training and inference e�ciency . . . . . . . . 7

2.1.7. Model families used in this work . . . . . . . . . . . . . . . . . . 8

2.2. Language-based guessing games . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1. Game description . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2. Non-LLM approaches to playing guessing games . . . . . . . . . 12

2.2.3. LLMs playing guessing games . . . . . . . . . . . . . . . . . . . . 13

2.2.4. Guessing games in other applications . . . . . . . . . . . . . . . . 14

2.3. Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1. Twenty Questions datasets . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2. WordNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3. Visual Genome . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3. Methodology 19
3.1. Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1. Game scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.2. Answerer accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2. Evaluation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1. Evaluation using BIG-bench task . . . . . . . . . . . . . . . . . . 20

3.2.2. Evaluation using custom task . . . . . . . . . . . . . . . . . . . . 20

3.2.3. Evaluation of answerer accuracy . . . . . . . . . . . . . . . . . . 21

vii



Contents

3.3. Prompt tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4. Model �ne-tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1. Supervised �ne-tuning . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.2. Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.3. Joint evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4. Experiments and results 25
4.1. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2. Dataset preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3. Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4. Measuring task performance . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4.1. BIG-bench task . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4.2. Custom game task . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4.3. Common failure modes . . . . . . . . . . . . . . . . . . . . . . . 29

4.4.4. Analyzing domain restriction . . . . . . . . . . . . . . . . . . . . 30

4.4.5. Measuring answerer performance . . . . . . . . . . . . . . . . . . 31

4.4.6. Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5. Prompt tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5.1. Multiple choice answer options . . . . . . . . . . . . . . . . . . . 34

4.5.2. Few-shot prompts . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5.3. Single question answerer prompt . . . . . . . . . . . . . . . . . . 36

4.5.4. Adding visual input . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.6. Fine-tuning the answerer . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.6.1. Supervised �ne-tuning of multiple choice task . . . . . . . . . . . 38

4.6.2. Supervised �ne-tuning of binary choice task . . . . . . . . . . . . 39

4.6.3. Evaluation on game . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.7. Fine-tuning the questioner . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.7.1. Supervised �ne-tuning with taxonomy from WordNet . . . . . . 43

4.7.2. Supervised �ne-tuning with data from 20Q dialogues . . . . . . . 46

4.7.3. Supervised �ne-tuning with model distillation . . . . . . . . . . . 48

4.7.4. Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . 51

4.8. Joint evaluation of trained questioner and answerer . . . . . . . . . . . . 51

5. Conclusion 55
5.1. Answering Research Questions . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2. Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 56

Bibliography 57

A. Appendix 65
A.1. Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.2. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.3. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

viii



List of Figures

2.1. Transformer architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2. Handheld 20Q device for playing Twenty Questions . . . . . . . . . . . . 11

2.3. Similarity of user intent disambiguation, conversational search and Twenty

Questions game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4. Example data point from the AllenAI TQ dataset . . . . . . . . . . . . . . 16

2.5. Overlap of the word lists for the Twenty Questions game . . . . . . . . . 18

4.1. Distribution of answer options in �ltered AllenAI TQ dataset . . . . . . . 26

4.2. Question length distribution of �ltered AllenAI TQ dataset . . . . . . . . 26

4.3. Results of the answerer’s performance . . . . . . . . . . . . . . . . . . . 32

4.4. Usage of answer options in multiple choice task . . . . . . . . . . . . . . 35

4.5. WordNet taxonomy graph . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.6. Data collection setup for 20Q . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.7. Reinforcement learning training run . . . . . . . . . . . . . . . . . . . . . 51

A.1. Distribution of answer options in un�ltered AllenAI TQ dataset . . . . . 65

A.2. Question length distribution of un�ltered AllenAI TQ dataset . . . . . . 65

A.3. Answerer’s perspective for TQ game in original BIG-bench task . . . . . 66

A.4. Questioner’s perspective for TQ game in original BIG-bench task . . . . 67

A.5. List of concepts in original TQ task . . . . . . . . . . . . . . . . . . . . . 67

A.6. Questioner’s perspective for TQ game with corrected prompt format . . 68

A.7. Usage of yes/no/maybe answer options in multiple choice task . . . . . . 70

A.8. System prompt from questioner’s perspective for few-shot approach . . . 71

A.9. Single question answerer prompt . . . . . . . . . . . . . . . . . . . . . . 72

A.10. Results of the answerer’s performance . . . . . . . . . . . . . . . . . . . 73

A.11. Confusion matrices for binary answerer evaluation . . . . . . . . . . . . 74

A.12. Confusion matrices for multi-choice answerer evaluation . . . . . . . . . 75

A.13. Training and evaluation loss for multi-choice answerer . . . . . . . . . . 75

A.14. Training and evaluation loss for multi-choice answerer . . . . . . . . . . 76

A.15. Prompt for �ltering WordNet concepts for supervised �ne-tuning . . . . 76

ix





List of Tables

2.1. Word lists for the Twenty Questions game . . . . . . . . . . . . . . . . . 17

3.1. Di�erent sets of answer options . . . . . . . . . . . . . . . . . . . . . . . 22

4.1. Results of Twenty Questions task with original task format . . . . . . . . 28

4.2. Results of Twenty Questions task with customized task . . . . . . . . . . 29

4.3. Results of Twenty Questions task with domain-speci�c word lists . . . . 31

4.4. Comparison of di�erent multiple choice answer options . . . . . . . . . . 34

4.5. Results of using few-shot prompt . . . . . . . . . . . . . . . . . . . . . . 36

4.6. Results of single question answerer prompt . . . . . . . . . . . . . . . . . 36

4.7. Results of visual guessing game . . . . . . . . . . . . . . . . . . . . . . . 37

4.8. Evaluation of answerer at di�erent stages of training . . . . . . . . . . . 38

4.9. Results of multiple choice �ne-tuning of answerer . . . . . . . . . . . . . 39

4.10. Results of multiple choice �ne-tuning of answerer . . . . . . . . . . . . . 40

4.11. Results of answerer evaluation in game . . . . . . . . . . . . . . . . . . . 41

4.12. Results of answerer evaluation in game . . . . . . . . . . . . . . . . . . . 42

4.13. Results of training with WordNet taxonomy . . . . . . . . . . . . . . . . 45

4.14. Results of training with collected 20Q dialogues . . . . . . . . . . . . . . 47

4.15. Results of �ne-tuning Phi-3-mini-4k-Instruct using model distillation . . 49

4.16. Results of �ne-tuning Llama-3-8B-Instruct using model distillation . . . 50

4.17. Joint evaluation of questioner and answerer . . . . . . . . . . . . . . . . 52

xi





1. Introduction

This chapter introduces the motivation for this thesis, the derived research questions, and

its outline.

1.1. Motivation

In recent years, it has become apparent that Large Language Models (LLMs) are capable

of solving an increasingly wide range of tasks such as translation, summarization, and

question answering. LLM-based chat applications have become more sophisticated, hold-

ing conversations with humans and following instructions, yet some tasks, like playing

language-based games, remain challenging for LLMs. One such game is Twenty Questions

or, as a similar multimodal variant, I Spy. Such games have also been identi�ed as possible

benchmarks for evaluating LLMs [5, 46]. Guessing games are an interesting evaluation, as

they require some form of knowledge, reasoning and strategy to e�ectively narrow down

the possible answers.

These games are also interesting in the search for new applications of LLMs in less

explored environments like nursery schools. Language-based games can teach children

new words and concepts in a playful way. For usage in this setting, LLMs need to be able

to run locally to be compliant with data protection regulations. Ideally, models should be

small enough to run on a mobile device. We are interested in combining these two aspects:

Can we use small, open-weight LLMs to play language-based guessing games, and can we

use them in a way that could be bene�cial for preschool children? If successful, this may

enable new uses for LLMs in the �eld of language education.

1.2. Research Questions

From the motivation, we derive the following research questions to structure our work.

RQ1: Can language-based guessing games be played by foundation languagemodels?

Foundation language models are not �ne-tuned for a speci�c task, except for chat models

that are �ne-tuned to hold conversations with humans, follow instructions, and answer

questions. We are interested in whether these models can play language-based guessing

games. For this, we need to formalize the games in a way that is understandable for the

models, �nd suitable prompts, and evaluate the models’ performance.

1



1. Introduction

RQ2: What factors are relevant for game performance? How can they bemeasured?

We are interested in the factors that in�uence the models’ game performance in playing

these games. For example, how does the size of the model in�uence performance? Do

di�erent prompt formats work better than others, like few-shot approaches or di�erent

sets of possible answer options? How does the multimodal version of the game compare

to the text-only version? What is the in�uence of limiting the domain of the occurring

words in the game?

RQ3: Can themodel’s playing performance be improved by fine-tuning?

Finally, we investigate whether the models’ performance can be improved by �ne-tuning.

What are possible training setups for the questioner and answerer? What data sources

can be used for training, including the generation of game dialogues? Does supervised

�ne-tuning improve the models’ performance? Can we also train the model without

training data using reinforcement learning?

1.3. Outline

The rest of this thesis is structured as follows: In chapter 2, we provide the necessary

background information on LLMs, guessing games, and the datasets used in this work.

Also, we present relevant work related to our research questions. In chapter 3, we describe

the methodology used to answer the research questions, including the models, training

setups, and evaluation metrics. In chapter 4, we present the experiments conducted to

answer the research questions, as well as the results. Finally, in chapter 5, we conclude

the thesis by answering the research questions, discussing limitations and suggestions for

future work.

2



2. Background and RelatedWork

In this chapter, we provide the necessary background information to understand the rest

of this thesis. First, we give an overview of the development of LLMs and the Transformer

architecture. Two Transformer-based models used in this work are Llama and Phi, which

we introduce in more detail. We present di�erent training modalities for LLMs, including

supervised �ne-tuning and reinforcement learning. We also present techniques to improve

computation e�ciency for training and inference of models. Second, we describe the

guessing games that we are working with, Twenty Questions and I Spy, and approaches to

how they have been played computationally. Finally, we introduce the datasets that we

use in this work.

2.1. Evolution of Large Language Models

Large Language Models have come to dominate the �eld of natural language processing

(NLP) in recent years [56]. In the following, we will give a brief overview of what language

modeling is, what LLMs are, how they have evolved and how they can be �ne-tuned

e�ciently.

2.1.1. Languagemodeling

Language modeling can be described as the task of predicting the probability of a token,

given a sequence of tokens [56]. A token can be a word or a subword, like a character or a

part of a word [44]. The predicted probability can be calculated for any token in a sequence,

like a missing token or the next token in a sequence. The probability of a sequence of

tokens C1, C2, . . . , C= can be decomposed as the product of the conditional probabilities of

each token given the previous tokens [3]:

% (C1, C2, . . . , C=) = % (C1) · % (C2 |C1) · . . . · % (C= |C1, . . . , C=−1) =
=∏
8=1

% (C8 |C1, . . . , C8−1) (2.1)

The probability distribution of the next token in a sequence can then be sampled, in the

case of language generation. While language generation modeled as next token prediction

seems like a simple approach, it is general enough to be applied to any task that can be

speci�ed via text, with surprising results even for complex tasks [46]. The development of

language models is described in four major stages by Zhao et al. [56]. In the next sections,

we will describe these stages and the major developments of each stage.

3



2. Background and Related Work

2.1.2. Statistical languagemodels

The �rst stage is based on statistical learning methods built on the Markov assumption,

which states that the probability of a word only depends on its close previous context [56].

At this stage, models are developed for speci�c tasks like information retrieval or sentence

classi�cation. Simple statistical language models use a �xed context length = of tokens or

words to predict the next, which is known as =-gram models [27] A bigram (2-gram) model

can be described as a table of probabilities of pairs of words. However, as this context

length = increases, the number of possible sequences grows exponentially and for large =,

no such table can be feasibly constructed. Furthermore, such a model cannot be e�ciently

trained, as most sequences cannot be observed in the training data.

2.1.3. Neural languagemodels

The second stage is marked by the advent of neural language models [56]. These models use

sequence-to-sequence neural networks to learn the probability distribution of sequences

of tokens, like Recurrent Neural Networks (RNNs). The use of recurrence allows for the

modeling of longer context lengths. Neural networks can be layered to create deeper

networks, which makes models able to learn more complex patterns in the data. A major

contribution is the introduction of word embeddings as continuous representations of

words, like word2vec [30]. This approach allows to move from one-hot vectors (indices in a

vocabulary), which are sparse, high-dimensional and do not capture semantic information,

to dense, lower-dimensional vectors. Word embeddings are learned from large text corpora.

In the case of word2vec, this is done by training a neural network to either predict the

context words from a target word (skip-gram) or to predict the target word from the

context words (continuous bag of words). Taking the learned input vectors of the neural

network as the word embedding, this leads to a representation of words in a continuous

space where words that are semantically related are closer to each other [30].

2.1.4. Pre-trained languagemodels

The third stage has been characterized by the development of pre-trained language mod-
els [56]. Pre-trained language models are trained on large amounts of text data and can be

�ne-tuned for speci�c tasks. One example is the BERT model [11], which is trained on

predicting randomly masked words in a sentence. The model is then �ne-tuned with one

additional output layer for speci�c tasks. At the time of its introduction, BERT outper-

formed previous models on eleven NLP tasks [11]. The method of pre-training has been

shown to be a very e�ective way of applying language models to a wide range of tasks, as

pre-training is the most expensive part of the training process. BERT is also an example of

a model employing the Transformer architecture, which is another major development in

this stage.

Transformer architecture The Transformer architecture [50] is a neural network architec-

ture for sequence-to-sequence tasks that originated from the �eld of machine translation.

Previous sequence-to-sequence models used Recurrent Neural Networks (RNNs) and their

4



2.1. Evolution of Large Language Models

gated variants like long short term memory (LSTM) [16] cells or gated recurrent units

(GRU) [7]. For independent length of input and output, these models feature an encoder-

decoder architecture. Between these two parts, an attention mechanism is used to improve

the information �ow between the encoder and decoder and allowing the decoder to focus

on di�erent parts of the input sequence. The attention mechanism is a way to weigh the

importance of di�erent parts of the input sequence for each part of the output sequence.

This is done by calculating a learned key, query, and value vector for each token in the

input sequence (this includes the previously generated tokens for an autoregressive model).

In the original work introducing the Transformer, the attention matrix is calculated for

each mapping of query and key-value pairs as a scaled dot product [50]:

Attention(&, ,+ ) = softmax

(
& )
√
3:

)
+ (2.2)

where & ,  , and + are the query, key, and value vectors, respectively, and 3: is the

dimension of the key vectors. This attention calculation is done multiple times in parallel,

with di�erent learned weights for the query, key, and value vectors, which are then

concatenated and linearly transformed. This is called multi-head attention and is shown in

Figure 2.1 on the right. In contrast to previous recurrent networks, the Transformer not only

uses attention between the encoder and decoder but also within the encoder and decoder

in the form of self-attention and in turn does not use recurrent connections. Without

recurrence, there is no information of the order of the tokens in the sequence, which is

why positional encoding is added to the input embeddings. The full architecture is shown

in Figure 2.1 on the left. This architecture is not only simpler, more parallelizable and faster

to train in comparison to recurrent networks, but also outperforms previous models on

many tasks. Furthermore, the Transformer architecture alleviates the vanishing/exploding

gradient problem that occurs with the training of recurrent networks [35], as the attention

mechanism allows for direct connections between any two tokens in the sequence. The

LLMs that we use are decoder-only Transformers, which means that they only use the

decoder part of the Transformer architecture and thus, the attention mechanism can only

access the input and the words that have been generated so far.

2.1.5. Large Language Models

The fourth stage according to Zhao et al. [56], Large LanguageModels, is the result of scaling

the model size and training data. This scaling has produced models that are exceeding the

performance of smaller models by a large margin and are displaying new abilities. One of

the �rst examples of such a scaled Transformer model is GPT-3 [4], a 175 billion parameter

model that has been trained on 300 billion tokens of text data. The model reaches strong

performance in tasks that it was not directly �ne-tuned for in a few-shot setting. This

means that for many tasks, the model can be used without any additional training data,

only by providing a few examples of the task. Multiple approaches have been developed

to move from few-shot to zero-shot performance, where the model is able to perform

a task without any examples, only by providing a description of the task. Furthermore,

methods have been proposed to align models to human preferences, which we present in

the following.

5



2. Background and Related Work

Figure 2.1.: Left: The Transformer architecture [50] featuring an encoder-decoder architec-

ture with self-attention and cross-attention mechanism. Positional encoding is

concatenated to the input embeddings. Right: Multi-head attention mechanism

in the Transformer consisting of concatenated scaled dot product matrices.

Image source for both images: Vaswani et al. [50].

6



2.1. Evolution of Large Language Models

Instruction tuning Instruction tuning has been introduced by Wei et al. [51]. They train

a 137 billion parameter pre-trained model on a collection of tasks phrased as instructions

from 62 publicly available datasets. The collection includes both language understanding

tasks, like reading comprehension, and language generation tasks, like summarization and

translation. For each dataset, ten di�erent instruction templates are manually created. The

�ne-tuned model, which they named FLAN, reaches much higher performance in unseen

tasks than larger non-tuned models like GPT-3 [4], even when comparing FLAN zero-shot

to GPT-3 few-shot.

Visual instruction tuning for multimodal models Visual instruction is the extension of

instruction tuning to multimodal tasks. Liu et al. [26] train a model called LLaVA (Large

Language and Vision Alignment), which is a combination of the visual encoder CLIP [36],

that is developed by jointly training an image and text encoder, and the Llama model.

This model is trained on custom language-image instruction-following data generated

by GPT-4[32]. They �nd that the model reaches up to 90% accuracy on the science QA

dataset (a multimodal multiple choice question answering dataset).

Alignment using reinforcement learning Another approach to �ne-tune models is tar-

geted to reduce model outputs that are untruthful, unhelpful or in other ways undesirable.

Ouyang et al. [33] summarize this as the problem of aligning the model to human prefer-

ences. They �rst collect human demonstrations of desired behavior to perform supervised

�ne-tuning (equivalent to instruction tuning). Second, they collect comparison data to

train a reward model (which is a �ne-tuned GPT-3 [4] model) that can predict which of

two model outputs is preferred by a human. Finally, they use reinforcement learning,

namely proximal policy optimization [43], using the reward model. This second and third

stage is called reinforcement learning with human feedback (RLHF). They �nd that the

aligned model is strongly preferred by humans over the unaligned model, is more likely to

follow instructions and is less likely to hallucinate. This is true even if the aligned model

is much smaller than the unaligned model.

2.1.6. Optimizing model training and inference e�iciency

Handling multi-billion parameter models would be unfeasible for a thesis like this without

performance enhancement techniques. In this section, we mention performance enhance-

ment techniques for training and inference of LLMs. We present FlashAttention, which

speeds up attention calculation in both training and inference. For training, we use Low-

Rank Adaptation, a technique that allows training a model with fewer parameters than

the original model but still reaching comparable performance.

FlashAttention FlashAttention is an implementation of the attention mechanism used

Transformer models by Dao et al. [10] that uses the GPU memory hierarchy more e�-

ciently. This is achieved by restructuring the attention computation into blocks, processed

sequentially (a process known as tiling), reducing the number of reads and writes between

operations, as multiple operations are calculated per block without the need to store and

7



2. Background and Related Work

load intermediate attention matrices. Also, for the backward pass, instead of storing and

loading intermediate attention matrices, only the softmax normalization factor is stored

and attention recomputed, which reduces memory usage from quadratic to linear usage

in size of the input sequence. They �nd that this can lead to a speedup of about 15% for

training BERT-large [11]. Further optimization in FlashAttention 2 increase the speedup

to up to another 2x [9]. FlashAttention requires the use of Nvidia Ampere, Ada, or Hopper

GPUs (e.g. A100, H100 or RTX 6000 Ada).

Low-RankAdaptation As full retraining of all parameters of a large models for �ne-tuning

is expensive, Low-Rank Adaptation (LoRA) has been proposed as a technique to �ne-tune

a model with much fewer parameters than the original model but still reaching comparable

performance [18]. This is done by adding adapters to linear layers of the model in the form

of rank decomposition matrices. Given a pre-trained weight matrix,0 ∈ R3×: , a weight

matrix Δ, = �� is added, where � ∈ R3×A and � ∈ RA×: . The rank A is a hyperparameter

that determines the number of trained parameters and is usually chosen to be much

smaller than the original dimensions 3 and : , e.g. A = 16. Additionally, Δ, is scaled by
U
A

using another hyperparameter U , which has a similar e�ect as the learning rate. Usually,

U is chosen to be equal to A and only used as a scaling factor when varying A , so that

other hyperparameters don’t need to be re-tuned [18]. For example, Llama 3-8B Instruct

contains 8,072,204,288 parameters. When adding adapters to all linear layers except for the

language modeling head, with a rank of A = 16 and U = 16, the model contains 41,943,040

parameters, which is only 0.52% of the original model size.

2.1.7. Model families used in this work

In this section, we introduce two model families that we are working with more closely

in this thesis, the Llama model family and the Phi model family. Both are models of the

fourth stage of language model development.

2.1.7.1. Llamamodel family

First, we describe the Llama model family, which is a series of open-weight models

developed by Meta
1
.

Original LLaMAmodel The Llama model family’s original LLaMA model by Touvron et al.

[49] is a foundation model developed to reach higher model performance by training with

more tokens than what has usually been performed due to proposed scaling laws [17],

which are formulated for �nding the best model given a particular training budget. How-

ever, in search for the best performance given an inference budget, which is a more relevant

target for serving LLMs at scale, Touvron et al. [49] �nd that model performance of a 7B

parameter model continues to improve even after 1T tokens. They train di�erent sizes of

models, from 1B to 70B parameters, on 1.0 to 1.4T tokens. Only publicly available data was

used in training. This means that, together with open source code for inference, the model

1https://llama.com/ (last accessed on 12/09/2024)

8

https://llama.com/


2.1. Evolution of Large Language Models

architecture, weights and training data are available to the public. LLaMA uses a modi�ed

Transformer architecture, in particular employing pre-normalization (normalizing the

input of Transformer sub-layers instead of the output for stability), SwiGLU activation

function [45] and rotary positional embeddings (RoPE) [47]. For tokenization, byte pair

encoding (BPE) is used (�rst proposed for tokenization by Sennrich et al. [44]). LLaMA-13B

has been found to outperform GPT-3 [4] on most benchmarks. Fine-tuning LLaMA on

speci�c tasks has been shown to further improve performance, for example on the MMLU

(Massive Multitask Language Understanding) benchmark [15, 49].

Llama 2 The second iteration of Llama models, Llama 2, is again a publicly available

model, additionally released as �ne-tuned variant for conversational tasks [48]. The model

is very similar to the original LLaMA model, the key architectural di�erences being the

increase of the context length to 4k tokens, which is double the size of the original model

(2k tokens) and the use of grouped-query attention (GQA) [2] (for the 34B and 70B model

only). Training data size for the model is 40% larger than for the original LLaMA model, a

mix of publicly available data and proprietary annotations. This data has been �ltered to

remove personal information. After pre-training, the model is trained using supervised

�ne-tuning (again, using public data), as well as further �ne-tuned using reinforcement

learning with human feedback (RLHF), in particular with proximal policy optimization

(PPO) [43] and rejection sampling. At the time of release, Llama 2 is leading in human

evaluation of helpfulness in comparison to Vicuna models (which are LLaMA models

�ne-tuned on ChatGPT dialogues [57]) of similar number of parameters.

Llama 3 The third iteration of the Llama model family, Llama 3 [13], is a further devel-

opment of the Llama 2 model that was released parallel to the work on this thesis. The

model is again publicly available and comes in di�erent sizes, for the �rst time also in

a 405B parameter version. Still, like the original LLaMA model, Llama 3 uses SwiGLU

activation functions and RoPE (with a di�erent base frequency hyperparameter for better

performance with long context). Again, the size and quality of training data has been

drastically improved and scaled, with a corpus of 15T tokens (which is an eight-fold in-

crease) and more preprocessing and �ltering steps, that include using LLama 2 as quality

classi�er, than the previous models. Llama 3 again delivers (at the time of release) leading

performance on many benchmarks and tasks. While this work was ongoing, Llama 3.1
2

and Llama 3.2
3

have been released, introducing additional functionality, in particular

multilinguality, multimodality, longer context and, for the instruct-tuned models, tool use.

2.1.7.2. Phi model family

Phi is another open-weight model family of smaller models developed by researchers at

Microsoft [14].

2https://ai.meta.com/blog/meta-llama-3-1/ (last accessed on 12/09/2024)

3https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/ (last accessed

on 12/09/2024)

9

https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/


2. Background and Related Work

Phi-1 The �rst Phi-1 model is a 1.3B Transformer model (using RoPE and FlashAttention)

for Python coding, trained on less than 7B tokens. The idea is to deliberately use less

training data, but to ensure higher quality of the data. Their training data comes from three

sources: Code-language data from The Stack [23] and StackOver�ow, �ltered by a random

forest model trained on annotations by GPT-4 [32] (around 6B tokens), synthetic textbook

data generated by GPT-3.5 (less than 1B tokens) and synthetic exercises, also generated by

GPT-3.5 (around 180M tokens). They �nd that phi-1, despite its size, outperforms almost

all open-source models on HumanEval and other coding benchmarks in Python coding.

Phi-1.5 As a follow-up, they published Phi-1.5, a model with the same architecture and

size of phi-1 on 30B tokens [25]. In addition to phi-1’s training data, they created a new

curated dataset of 20B tokens of synthetic textbook data geared towards common sense

reasoning in natural language. To test the e�ect of �ltering and curated data, they also

trained phi-1.5-web-only for comparison on 95B of �ltered web data (no synthetic data)

and phi-1.5-web model on a mix of curated and web data. They �nd that the web-only

model performs the worst of the three models, but still outperforms models of similar size

in common sense reasoning benchmarks like WinoGrande, ARC-Easy and others. The

best performance is achieved by phi-1.5-web, which is only slightly better than phi-1.5.

Phi-2 The next model in the family is Phi-2, a 2.7B parameter model trained on 1.4T tokens

of similarly �ltered and generated data (no technical report available, only mentioned in

the Phi-3 technical report [1] and Microsoft’s blog
4
).

Phi-3 Finally, Phi-3-mini is a 3.8B parameter language model trained on 3.3T tokens [1].

It uses the same block structure and tokenizer as Llama 2. There are also 7B small and 14B

medium versions that use a modi�ed architecture (tiktoken tokenizer
5
, GEGLU activation

function [45], GQA [2], and a di�erent block structure employing blocksparse attention)

and are trained on more data (4.8T tokens). Again, training data is a combination of heavily

�ltered publicly available data and synthetic LLM-generated data. Their goal is again,

to optimize training data for the size of model. They use a two-phase training approach

where the �rst phase teaches general knowledge and language understanding and the

second phase teaching logical reasoning and niche skills through more strongly �ltered

web data. Post-training is done to turn the model into a chat model using another two

stages: �rst, supervised �ne-tuning using a curated dataset and second, direct preference

optimization (DPO) [37] to align the model to chat format, elicit reasoning and reduce

unwanted behavior. Phi-3-mini is found to perform similarly or better in comparison to

Mistral-7B [21], Gemma-7B [29] and Llama3-8B-Instruct [13] on a range of benchmarks

like MMLU [15], HellaSwag [53], and others. Another model in the third version of the

family is Phi-3-vision, a 4.2B parameter model based on Phi-3-mini. Phi-3-vision uses

the CLIP [36] ViT-L/14 image encoder and Phi-3-mini as the text encoder. The model is

trained on 0.5T tokens of a mix of image-text documents, image-text pairs and synthetic

4https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-

language-models/ (last accessed on 12/09/2024)

5https://github.com/openai/tiktoken (last accessed on 12/09/2024)

10

https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://github.com/openai/tiktoken


2.2. Language-based guessing games

data. Similar two-stage post-training as Phi-3-mini is done with supervised �ne-tuning

using custom multimodal instruct-tuning datasets (15B tokens), �ne-tuned using another

custom dataset to align the model to act as a chat model. Phi-3-vision is found to perform

better than LLaVA-1.6 [26] in MMMU [52], ScienceQA [28] and other benchmarks.

2.2. Language-based guessing games

This work is centered around language-based guessing games, i.e. games that require no

physical components and can be played with speech or text only, where the task is to

guess a concept. Two of the most popular games in this category that we are referencing

are Twenty Questions and I Spy, which we will describe in the following sections.

2.2.1. Game description

Guessing games are games where one player has to guess a concept that the other player

has picked. In this work, we mainly focus on the Twenty Questions game, but also mention

I Spy. Both games are described in the following.

Twenty Questions Twenty Questions is a spoken guessing game between two players.

One of the players, which we call the answerer, (or “Alice” in case of the Twenty Questions

task inside of the BIG-bench benchmarking suite, see section 2.2.3), picks a concept. The

other player, which we call the questioner (or “Bob”), asks questions that can only be

answered with yes or no. Only based on the answers to these questions, the questioner

has to guess the concept within 20 questions at most, which is the origin of the game’s

name. It is not entirely clear where or when the game originated from, but it has been

played in various forms since the 19th century [19]. The game has been become popular

through a TV show with the same name in the 1950s
6

and has been put into consumer toy

form as seen in Figure 2.2. Variants of the game mainly di�er in the number of possible

answer options from the answerer. In human play, this may not be restricted. The task

from the BIG-bench benchmarking suite only allows binary yes/no answers [46] while

other instances allow an “unknown” option [19], or multiple answers (e.g. in some of the

datasets, see subsection 2.3.1).

Figure 2.2.: Handheld 20Q device for playing Twenty Questions by Radica (public domain
7
).

6https://www.imdb.com/title/tt0320997/ (last accessed on 12/09/2024)

7https://commons.wikimedia.org/wiki/File:20Q_red_(Radica)_front.png (last accessed on

12/09/2024)

11

https://www.imdb.com/title/tt0320997/
https://commons.wikimedia.org/wiki/File:20Q_red_(Radica)_front.png


2. Background and Related Work

I Spy I Spy is a similar guessing game that is popular among children. The key di�erence

is that the game is played with a visual component. Again, there are two participants,

the �rst being the answerer to pick an object or scenery item that both participants can

see in their �eld of vision. In the most widespread version, the answerer announces the

�rst letter of the object (“I spy with my little eye something beginnning with. . . ”. The

questioner then has to guess what the answerer has picked. Guesses can be simply listing

possible visible items or be categorical questions that would be used in a Twenty Questions

game or include questions about shape or spatial relations (“is it next to a tree?”). Usually,

the number of guesses is not limited. In other versions of the game, the color of the

object is speci�ed instead of the �rst letter. The game is one of the suggested activities by

educational research organization HighScope for preschool children to improve critical

thinking skills as well as the identi�cation of colors and shapes
8
.

2.2.2. Non-LLM approaches to playing guessing games

Guessing games are simple in their rules, but require a certain amount of reasoning

and deduction to be played e�ectively. This is why they are interesting to implement

computationally and why they have occurred repeatedly in AI research. In this section,

we will present non-LLM approaches to playing these games computationally. These

approaches are ways to play the game from the role of the questioner. Playing the

questioner does not necessarily require language understanding or generation, but can be

done by selecting the best possible next question from a set of possible questions or by

using a tree-based approach. In fact, for just playing the game itself, these approaches can

be more successful in game performance than using Large Language Models. We present

some of these approaches in the following.

Burgener’s 20Q algorithm An early popular approach for playing the questioner role in

Twenty Questions was built by Burgener in the form of a neural network decision algorithm

in 2005
9
. His algorithm is also what powers the 20Q series of consumer toys. The online

variant at http://www.20q.net/ (last accessed on 12/09/2024) actively learns from user

input and has been trained on millions of games. If the algorithm cannot guess the object, it

asks the user for the object and for a question that distinguishes the object from the guessed

object. Burgener’s algorithm uses a matrix of weights to represent relevance between

potential objects and questions. When the player responds, the algorithm adjusts the

weights between nodes, ranking possible objects and questions. The complete algorithm is

not public (target rank calculation is not known), but there are public reimplementations
10

.

The web version has di�erent themed games for categories like TV series, movies, people

or sports. There are also unconstrained versions that only di�er in the language of the

game.

8https://highscope.org/wp-content/uploads/2024/04/Preschool_Lets-Play-and-Learn_I-Spy.pdf

(last accessed on 12/09/2024)

9
U.S. Patent Application US20060230008A1, https://patents.google.com/patent/US20060230008A1 (last

accessed on 12/09/2024)

10https://github.com/chrisspen/asklet (last accessed on 12/09/2024)

12

http://www.20q.net/
https://highscope.org/wp-content/uploads/2024/04/Preschool_Lets-Play-and-Learn_I-Spy.pdf
https://patents.google.com/patent/US20060230008A1
https://github.com/chrisspen/asklet


2.2. Language-based guessing games

Reinforcement learning approach In 2018, Hu et al. [19] presented a policy-based rein-

forcement learning approach to play the game. They collected a dataset of 1,000 well-known

people and 500 questions answered for each person. In the dataset, noise is added to the

answers to simulate human error. They formulate the game as a �nite Markov decision

process and use a simple neural network that estimates reward for each time step as reward

signal. The policy network is trained using REINFORCE. Within their constrained domain

of 500 questions about well-known people, they achieve a win rate of over 90%.

Binary search in dictionary Parallel to this work, a Kaggle competition was hosted cen-

tered around playing Twenty Questions with small LLMs (1 Tesla T4 GPU was given as

compute resource)
11

. Kaggle is a platform for data science competitions and has been used

for various AI competitions in the past. The way the contest was set up, entrants found

out that it was possible to play the game without any LLM at all, but instead by using large

dictionaries of nouns and searching through them using binary search
12

. If the answerer

and questioner both have a dictionary that is big enough to cover all possible words, they

can simply ask whether a guessed word appears lexicographically before or after a certain

word in the dictionary. The competition is a good example of how the game can be played

computationally without language understanding.

2.2.3. LLMs playing guessing games

In the following, we present work related to playing guessing games with LLMs. As LLMs

are able to directly consume and generate text, they can directly be used to play both the

role of the answerer and the questioner in guessing games.

LLMs in the role of the answerer Bruyn et al. [5] used the Twenty Questions game to

analyze world knowledge of LLMs. They collected a dataset of 2,832 questions from

the Akinator game
13

, which is a web-based guessing game that is similar to Twenty

Questions [5]. In their setup, the Akinator game is supplying questions, humans are in

the role of the answerers. The dataset contains questions about objects only (Akinator

only supports characters, objects or animals), which are labeled with a binary answer

(yes/no). In total, the questions are answered for 126 di�erent objects. The dataset does

not contain full dialogue, only single questions and answers. At the time of this writing,

the dataset is not publicly available although stated in the paper (paper links to empty

Huggingface dataset
14

, personal communication with the authors ongoing). They evaluated

the performance of di�erent LLMs (T5 11B [38], T0pp 11B [41], GPT-3 175B [4], among

others) in the role of the answerer on their dataset and found that most LLMs are not able

to play the game e�ectively, with the exception of GPT-3, which reached an F1 score of

83% in a few-shot evaluation [5]. Augmenting the prompt with additional information

from Wikipedia articles improves the performance of T0pp by 10%. Adding content from

11https://www.kaggle.com/competitions/llm-20-questions/overview (last accessed on 12/09/2024)

12https://www.kaggle.com/competitions/llm-20-questions/discussion/511343#2866948 (last accessed

on 12/09/2024)

13https://akinator.com/ (last accessed on 12/09/2024)

14https://huggingface.co/datasets/maximedb/twentle (last accessed on 12/09/2024)

13

https://www.kaggle.com/competitions/llm-20-questions/overview
https://www.kaggle.com/competitions/llm-20-questions/discussion/511343#2866948
https://akinator.com/
https://huggingface.co/datasets/maximedb/twentle


2. Background and Related Work

Wikipedia to the prompt is also successfully tested in a course project by Parikh et al.

[34]. They additionally tested training a multilayer perceptron classi�er and an LLM, in

this case DistilBERT [40], on a dataset of questions and answers, namely BoolQ [8] with

inconclusive results for the lack of ground truth data.

LLMs in the role of the questioner LLMs have also been used to play the role of the ques-

tioner in Twenty Questions as well, mostly to evaluate their capabilities. For example,

BIG-bench [46] contains a Twenty Questions task
15

. BIG-bench (Beyond the Imitation

Game benchmark) is a benchmark suite for evaluating Large Language Models on a wide

range of tasks, aimed at better understanding and characterizing the capabilities of these

models [46]. The suite consists of 204 tasks at its publication date, with topics ranging from

linguistics, math, sciences, social bias, coding, and more. Tasks are deliberately chosen

to be outside of the current (at the time of publication) capabilities of Large Language

Models. The general �nding of the benchmark is that while performance generally scales

with model size, there seem to be tasks that improve gradually with scale, usually tasks

that require world knowledge, and tasks that improve sharply with scale, usually tasks

that require reasoning. Guessing games require both of these capabilities. Tasks are

benchmarked using GPT-3 [4] and BIG-G [46], in sizes ranging from 2M parameters to

137B parameters. Both benchmarked models attain pretty much the lowest possible score,

with only incidentally won games.

When trying to improve performance of the questioner in the Twenty Questions task,

there are two main approaches: supervised �ne-tuning and reinforcement learning. In the

previously mentioned Kaggle competition, many of the best scoring LLM-based entries

were �ne-tuned on model-generated dialogue. There are also hybrid approaches that begin

the game with a previously optimized �xed decision tree and then switch to a language

model after a certain number of questions
16

. Training on model generated dialogue is

also shown to be e�ective in playing Twenty Questions as the questioner by Zhang et al.

[55], who showed that Vicuna-7B [57] shows more than 70% improvement when trained

on dialogues generated by GPT-4 [32], reaching a success rate of 23% (when trained on

only successful dialogues). In their evaluations, they used GPT-3.5-turbo as answerer.

Reinforcement learning from game play is also performed by Zhang et al. [55], who use

proximal policy optimization to train a questioner model with a reward function derived

from the game’s score. They �nd that if the previously �ne-tuned Vicuna-7B with 23%

success rate is trained in this way, it can reach success rates of 26%. Additionally, they

collected a 145 human game play sessions for a subset of their “Things”-dataset, �nding a

win rate of 24%.

2.2.4. Guessing games in other applications

Playing guessing games computationally is not only interesting for the sake of playing the

game itself, but also for other applications. Other than benchmarking, we brie�y mention

15https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/twenty_questions

(last accessed on 12/09/2024)

16https://www.kaggle.com/competitions/llm-20-questions/discussion/532018 (last accessed on

12/09/2024)

14

https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/twenty_questions
https://www.kaggle.com/competitions/llm-20-questions/discussion/532018


2.3. Datasets

Figure 2.3.: Similarity of three di�erent tasks: user intent disambiguation, conversational

search and Twenty Questions game by Zhang et al. [55].

examples of how guessing games have been used in other applications: for knowledge

acquisition and disambiguation of user intent in dialogue systems.

Guessing games for knowledge acquisition In an e�ort to build a robust and accurate

knowledge base to power applications like question answering systems, Twenty Questions

has been used to gather knowledge by Chen et al. [6]. Their approach uses a reinforcement

learning agent to play Twenty Questions with a human player to gather knowledge, similar

to the game by Burgener (see subsection 2.2.2). It is essentially a two-step process, of

which the �rst is the identi�cation of the target entity. After the target entity is identi�ed,

the agent uses the remaining questions to gather new knowledge about the target entity.

Disambiguation of user intent in dialogue systems Disambiguation of user intent in dia-

logue systems is a similar task to playing a guessing game where the system has to ask

questions to narrow down the user’s intent as e�ciently as possible. Example dialogue by

Zhang et al. [55] displaying the parallels is shown in Figure 2.3.

2.3. Datasets

In this section, we introduce the datasets that we use in this work. We introduce several

datasets for the Twenty Questions game, WordNet and Visual Genome.

2.3.1. Twenty Questions datasets

In this section, we introduce the datasets that we use for the Twenty Questions game.

15



2. Background and Related Work

Collected questions and answers from human-played games Researchers from AllenAI

collected a dataset
17

using a web application for playing Twenty Questions on Mechanical

Turk, a service for crowdsourcing tasks like labeling data or answering questions by human

annotators
18

. The dataset was published in 2020
19

. It contains 78,890 individual questions

and answers (not full game dialogue) split into train, test and development sets. Each data

point has a subject, a question, an answer from the person who played the game. The

dataset allows for six di�erent possible answers to a question: always, usually, sometimes,

rarely, never or irrelevant. Some questions that were obtained outside of Twenty Questions

games were also included, which don’t include an answer. However, each data point was

additionally labelled by three di�erent annotators that each added an answer and a quality

label. For the three labelers, the dataset contains a majority vote of the labelers’ answers

as a simple binary yes/no answer. There is also an aggregated quality score as the sum of

all labelers that assessed the question as high quality. An example data point is shown in

Figure 2.4. We refer to this dataset in this work as the AllenAI TQ dataset.

{

"subject": "pretzel",

"question": "Is this food cooked?",

"answer": "always",

"quality_labels": ["good", "good", "good"],

"score": 3,

"high_quality": true,

"labels": ["always", "always", "always"],

"is_bad": false,

"true_votes": 3,

"majority": true,

"subject_split_index": 1,

"question_split_index": 1

}

Figure 2.4.: Example data point from the AllenAI TQ dataset where all labelers agree on

label and quality

Word lists for Guessing games We collect three word lists from di�erent sources to use in

the Twenty Questions game for evaluation and training.

As �rst list, we take the concepts from the AllenAI TQ dataset’s test set. There are

multiple questions per concepts, so we sort by the frequency of occurrence and sort by

the most frequent concepts. This list is referred to as “AllenAI TQ test concepts” in the

following. We created the analogous list for the train set of the AllenAI TQ dataset, which

17https://github.com/allenai/twentyquestions (last accessed on 12/09/2024)

18https://www.mturk.com/ (last accessed on 12/09/2024)

19https://github.com/allenai/twentyquestions/commit/48f0de26d2dca963cdae1263245d3b267ae7a771

(last accessed on 12/09/2024)

16

https://github.com/allenai/twentyquestions
https://www.mturk.com/
https://github.com/allenai/twentyquestions/commit/48f0de26d2dca963cdae1263245d3b267ae7a771


2.3. Datasets

is referred to as “AllenAI TQ train concepts” in the following. The AllenAI TQ concepts

are unconstrained, meaning that they can be any concept, not just things.

The second list is what Zhang et al. [55] used in their work for evaluation of LLMs in

playing Twenty Questions. Their list
20

contains 500 entities of commonly found things

such as common objects, animals, foods, plants, vehicles etc., split into 300 for training,

100 for testing and 100 for validation. The test list of this set is referred to as “Things

concepts” in the following.

As we are interested in playing the game with kids, we are also interested in words that

are within the vocabulary of a preschool child. For this, we use nouns from the Dolch

word list, which is a list of the most frequently used words in children’s books [12]. We

apply minor modi�cations to the list of 95 nouns: We remove words that are simply the

plural form of another word, as the game is about guessing a concept, not a word. To

create a list of 100 words, we add �ve nouns from the Fry word list (which follows a similar

approach
21

). Five exemplary concepts from the list are “apple”, “box”, “Christmas”, “eye”

and “garden”. This list is referred to as “Dolch concepts” in the following.

The three lists are summarized in Table 2.1. We also analyze the three lists for over-

lapping concepts and �nd that between Things and AllenAI TQ concepts, there are 5

overlapping concepts, between Dolch and AllenAI TQ concepts, there are 11 overlapping

concepts and between Things and Dolch, there are 4 overlapping concepts. This is shown

in Figure 2.5 and a full list of overlapping words is shown in A.2. We considered whether

to remove overlapping concepts from the lists, but decided against it, as the overlap is

small and it would change the semantics of the lists.

Name Size Description Five example entries

AllenAI TQ test 100 Most frequent concepts from

human-played games

“comma”, “widow”, “cucum-

ber”, “librarian”, “interview”

Things 100 Common objects, animals,

foods, plants, vehicles etc.

“egg”, “guitar”, “sloth”, “um-

brella”, “marble”

Dolch 100 Most frequently used words

in children’s books

“apple”, “box”, “Christmas”,

“eye”, “garden”

Table 2.1.: Word lists for the Twenty Questions game

Model-generated dialogues fromGPT-4o In the previously mentioned Kaggle competition,

entrants Madha et al. used GPT-4o [20] to generate dialogues for the Twenty Questions

game which they published
22

. It contains 9502 dialogues in total, generated from di�erent

word lists. One of the lists is the previously mentioned Things concepts. Another list is

the words from the Kaggle competition dataset as well as replays from the competition.

20https://github.com/apple/ml-entity-deduction-arena/tree/main/data/things (last accessed on

12/09/2024)

21https://www.readsters.com/wp-content/uploads/2013/03/ComparingDolchAndFryLists.pdf (last

accessed on 12/09/2024)

22https://www.kaggle.com/datasets/sambitmukherjee/gpt-4o-game-play-data-llm-20-questions

(last accessed on 12/09/2024)

17

https://github.com/apple/ml-entity-deduction-arena/tree/main/data/things
https://www.readsters.com/wp-content/uploads/2013/03/ComparingDolchAndFryLists.pdf
https://www.kaggle.com/datasets/sambitmukherjee/gpt-4o-game-play-data-llm-20-questions


2. Background and Related Work

85 8710

93

4 2
1

AllenAI TQ concepts Kids concepts

Things

Figure 2.5.: Overlap of the word lists for the Twenty Questions game

They also tasked GPT-4o to predict new similar words given words from the competition

dataset. We refer to this dataset in this work as the GPT-4o TQ dataset.

2.3.2. WordNet

WordNet is a large lexical database of the English language that was developed at Princeton

University [31]. It is freely available and can be used for various natural language process-

ing tasks. Words are organized as synonym sets, so-called synsets, which are connected by

di�erent types of relations. The dataset contains over 117,000 synsets. Relations between

words include synonymy (same meaning), antonymy (opposite meaning), hyponymy

(super-subordinate relation), meronymy (part-whole relation) and troponymy (relation

between verbs that expresses di�erent manner of action). Because the hyponymy relation

is transitive, it essentially forms a taxonomy of all synsets.

2.3.3. Visual Genome

Visual Genome is a large dataset containing over 108,000 images [24]. For each image, the

dataset contains object and attribute labels, region descriptions as noun phrases, answers to

visual questions, relationships between objects as well as region and scene graphs. Objects,

attributes, relationships and region descriptions are mapped to synsets from WordNet.

The dataset is publicly available
23

and can be used for various tasks in computer vision

and natural language processing. Main motivating factor behind the dataset is to provide

a basis for learning cognitive scene understanding. Containing images are collected to be

general purpose and not to be biased towards a speci�c task [24].

23https://homes.cs.washington.edu/~ranjay/visualgenome/index.html (last accessed on 12/09/2024)

18

https://homes.cs.washington.edu/~ranjay/visualgenome/index.html


3. Methodology

In this chapter, we describe the approach we take to answer the research questions we

have posed in section 1.2. We start by describing our metrics and the evaluation setup

for the initial evaluation as well as our adapted version of the Twenty Questions task for

subsequent evaluations. We then detail the prompt tuning and �ne-tuning approaches for

answerer and questioner that we explore to improve the models’ performance.

3.1. Metrics

There are two metrics that we can calculate to evaluate the task performance of the models,

which we describe in the following: Game score and answerer accuracy.

3.1.1. Game scores

The �rst is the measurement of the game scores, which requires playing the game with a

questioner and an answerer for a list of words and then evaluating the generated game

dialogues. This score measures both the ability of the questioner to ask good questions and

the ability of the answerer to answer them correctly. If either of them fails, the game is lost.

As scores, we use similar approaches as used in the BIG-bench [46] task and by Zhang et al.

[55] in their evaluation. Our �rst score (identical to Zhang et al.) is the success rate, which

is the percentage of games that the model wins, which we denote as “Win”. The second

score is the average number of questions asked in games that the model wins, which we

note as “Turns”. As the maximum number of questions is 20, that is the worst possible

score. To get a better understanding of the actual dialogue length for games that are won,

we also measure the average number of questions separately for only the games that are

won. We denote this score as “Ts. won”. A �nal score, denoted “Yes”, that is replicated

from Zhang et al. [55] is the average number of questions that have been answered with

a “Yes”. In their evaluation, they found that this metric is somewhat correlated with the

model’s performance. It can also be seen as a diagnostic metric for the answerer. For the

“Turns”, “Ts. won” and “Yes” scores, we also calculate the standard deviation (printed in

parentheses in the evaluation tables).

3.1.2. Answerer accuracy

The second score only concerns the answerer. Using the AllenAI TQ dataset, we can

measure the answerer’s accuracy in answering questions individually without playing a

game. For a set of binary yes/no questions and answers, we can calculate the F1 score,

19



3. Methodology

which is the harmonic mean of precision and recall:

�1 = 2 · precision · recall

precision + recall

(3.1)

For a set of multiple choice questions and answers, we can calculate the accuracy of the

answerer:

accuracy =
correct answers

all answers

(3.2)

Unfortunately, there is no analogous way to measure the questioner’s ability individually

to ask the right questions without playing the game in conjunction with an answerer

which is why we have to rely on the game score for the questioner.

3.2. Evaluation setup

Given these metrics, we can evaluate task performance in the Twenty Questions task

for foundation language models to answer research question RQ1. We begin with the

existing Twenty Questions task from BIG-bench for comparability and continue to develop

a custom evaluation task that seeks to minimize the shortcomings of the original task

to evaluate the models in a more precise way. These evaluations also provide a baseline

comparison point for later evaluations.

3.2.1. Evaluation using BIG-bench task

To ensure comparability with other work, we use the Twenty Questions task as it is

implemented in BIG-bench [46] (see section 2.2.3). At the time of this research, there are

a lot of newer, more powerful models of di�erent sizes that have no published scores in

this Twenty Questions task. We test a large number of open-weight models with di�erent

numbers of parameters. Model size is one of the factors that we want to investigate in

research question RQ2, but is also a leading question of the BIG-bench project [46]. Our

expectation is that the score will be better for larger models, but that the task is still

challenging for all models. Furthermore, the results of this evaluation are used to decide

which models to choose for �ne-tuning in the next step.

3.2.2. Evaluation using custom task

The initial implementation from BIG-Bench is problematic in three dimensions: The win

condition is not congruent with the game goal, the number of sample points is very low

and the prompt format is incorrect for �ne-tuned models. In the following, we will detail

each shortcoming and how we address it.

More precise win condition First, the win condition causes some games to be won that

shouldn’t be. In one preliminary example game, the concept is “car” and the questioner

is asking whether the concept is a carnivore, thereby winning the game, as “car” is a

substring of “carnivore”. We improve this by only counting games as won if the concept is

20



3.2. Evaluation setup

mentioned by the questioner as full word (not substring). On the other hand, some games

aren’t won that should be. In another game dialogue in preliminary tests, the questioner

is asking for “plane” and “airliner”, but not for the actual concept “airplane”. This causes

the answerer to con�rm each of the questions, but the game is not actually count as won.

For the Things concepts list which contains synonyms, we also count games as won if

the concept is a synonym of the answer. For the other lists, we considered checking for

synonyms of the concept, but decided against it as it increased the chance of false positives.

We also considered adding an option for the answerer to decide a game as won or to

employ another LLM as judge. However, we decided against this as it would introduce

more uncertainty to the results and increase the complexity of the evaluation. We are

aware of this shortcoming in our evaluation that in few cases may cause scores to be lower

than they could be.

Bigger word lists The original task only performs the game for 41 words, of which only

13 are so-called “coarse concepts”, the rest being harder to guess. This makes statements

from an already brittle metric even more unreliable. This is why we use the AllenAI TQ

test concepts for testing (see subsection 2.3.1). We chose 100 words from the test dataset

as a compromise between a higher number of concepts and the time it takes to evaluate

the models. We consider these to be suitable concepts for the task, as they are taken from

real Twenty Questions games played by humans. As the list is sorted by frequency, the

words at the top are easier to guess than the words at the bottom (the �rst �ve examples

from the list are “food”, “air”, “wall”, “pen”, “ocean”, the last �ve examples from the list are

“employee”, “lung”, “model”, “sweathouse”, “dumbwaiter”). As we are also interested in the

e�ect of constraining possible concepts, we run the evaluation on the Things concepts list

from Zhang et al. [55] and the Dolch concepts list.

Correct prompt format for fine-tunedmodels We ran the original task for comparability

reasons, but the lack of correct prompts will likely lead to worse performance for �ne-

tuned models. We adapt the task for instruction-tuned models by using the correct prompt

format that each model was �ne-tuned for.

3.2.3. Evaluation of answerer accuracy

To measure the answerer’s performance, we use the �ltered AllenAI TQ dataset using a

question answering prompt while allowing either a binary yes/no answer or a multiple

choice answer (the dataset contains both labels). This dataset is much bigger than what

Bruyn et al. [5] used, which allows us to get a more reliable score. Furthermore, the dataset

contains both binary yes/no answers and multiple choice answers, which we both use for

evaluation. We expect the answerer to perform well on this task, as question answering is

a more common task that is likely to appear in LLMs’ training data. We also expect larger

models to perform better, as they have more parameters and thus more capacity to learn

the required world knowledge to answer the questions.

21



3. Methodology

3.3. Prompt tuning

As we are asking in RQ2 about what impacts the game performance, our �rst and simplest

approach to improve the models’ performance is to tune the prompt. There are several

ways that we test, which we describe in the following.

Multiple choice answers First, we test the e�ect of allowing multiple choice answers

instead of only a binary yes/no answer. There are three di�erent sets of multiple choice

answers we are testing: The �rst is simply adding a “maybe” option as done by Zhang et al.

[55]. The second set is the set of six answer options from the AllenAI TQ dataset. The third

is the set of twelve answer options from Burgener’s 20Q game. The three sets of answer

options are shown in Table 3.1. These were chosen because they di�er in granularity and

Set Count Options

Yes/No 2 Yes, No

Yes/No/Maybe 3 Yes, No, Maybe

AllenAI TQ options 6 Always, Usually, Sometimes, Rarely, Never, Irrelevant

20Q options 12 Yes, No, Unknown, Irrelevant, Sometimes, Maybe,

Probably, Doubtful, Usually, Depends, Rarely, Partly

Table 3.1.: Di�erent sets of answer options used in evaluation.

number of options. As this allows the answerer to give more information, we expect the

models to be able to guess the concept faster.

Few-shot prompts As second prompt-tuning test, we are employing a few-shot approach

where the model is given two examples of dialogues from dialogues with Burgener’s 20Q

game to learn from. Again, we expect this to improve the models’ performance.

Single question answerer prompts As a third approach, we test using a single question

prompt for the answerer. Because each answer does not depend on previous answers,

we expect this to work well and because of the simpler task, it may improve the models’

performance.

Visual information Finally, we test the e�ect of adding visual information to the prompt,

e�ectively turning the game into I Spy. This reduces the number of possible concepts

drastically, so we anticipate much better performance from the models.

3.4. Model fine-tuning

In RQ3, we are asking about improving the models’ performance by �ne-tuning. We test

both supervised �ne-tuning and reinforcement learning to train our models.

22



3.4. Model �ne-tuning

3.4.1. Supervised fine-tuning

In supervised �ne-tuning, we train the two partners of the game separately because their

tasks di�er greatly. The answerer’s task can be seen as a form of sequence classi�cation

for truth value, which is a task that mainly requires world knowledge. On the other hand,

the questioner’s task is to predict questions that optimally reduce uncertainty, which

additionally requires some form of reasoning.

For the answerer, similar to the evaluation of answerer accuracy, we can work with

single questions as training dataset and don’t need full dialogues, because the answer of

each question does not depend on previous questions and answers. There are two possible

datasets that contain questions and labeled answers that we could use for training: The

AllenAI TQ dataset from AllenAI and the dataset from Bruyn et al. [5]. We prefer the

AllenAI dataset because the data is taken from real Twenty Questions games played by

humans. Furthermore, the dataset is much bigger (78,890 data points when un�ltered) than

the dataset from Bruyn et al. (2,832 data points). Moreover, the dataset contains multiple

labels for each data point, which further improves data quality. The dataset is also more

�exible, as it contains �ve di�erent answer options as well as a binary yes/no answer. We

train and test both with the �ve answer options as well as with the binary answer.

For the questioner, we need full dialogue, as the best possible next question in a game is

highly dependent on previous questions and answers. As there is no dataset with human

annotations publicly available, we will generate datasets using di�erent sources. In the

following, we describe the three di�erent ways of generating dialogue data.

20Q game For our �rst source for training dialogues, we are using a Burgener’s 20Q

algorithm online
1

to play Twenty Questions. We let an LLM play as the answerer against

20Q and generate a dialogue for each game. This is analogous to Bruyn et al. [5], who

used the Akinator game to generate dialogues. We decided to collect dialogues using 20Q

instead, as Akinator is only available for characters, animals and objects, not abstract

concepts like colors or emotions.

WordNet taxonomy Secondly, we use WordNet’s hypernym labels as a taxonomy of

concepts. For all concepts from the AllenAI TQ train dataset, we look at their hypernym

path to the root synset, (“entity.n.01”). For more plausible dialogues, we �lter nodes from

the paths that are not known to children using an LLM as judge. Taking all paths, we can

generate a tree that contains the shortest paths to enumerate each concept. We use this

tree to generate a game dialogue for each concept.

Model-generated dialogues Finally, we use a bigger model to generate dialogue to train

a smaller model, a process called distillation or behavior cloning. We are generating

dialogues with Mixtral-8x7B-Instruct-v0.1 [22] and use third-party dialogues generated

with GPT-4o [32].

1http://www.20q.net/ (last accessed on 12/09/2024)

23

http://www.20q.net/


3. Methodology

3.4.2. Reinforcement learning

In RQ3, we also ask whether reinforcement learning can be used to train the models, in

particular PPO [43]. Instead of training data, reinforcement learning needs a reward signal,

for which we use a scoring mechanism based on the game score. PPO is usually used

for RLHF to align language models, with a second model trained on human feedback to

generate rewards. In our case, we are using a hand-crafted reward function and therefore

don’t need a second model or dataset. We are interested to see whether the score as

training signal can improve performance for both untrained foundation models as well as

�ne-tuned models.

3.4.3. Joint evaluation

Finally, we are interested in the e�ect of evaluating both a trained answerer and trained

questioner together in game. So far, we only evaluate a trained questioner with an

untrained answerer and a trained answerer with an untrained questioner for comparability

reasons. We are interested to see whether the performance increases when both partners

are trained.

24



4. Experiments and results

In this chapter, we present the experiments conducted to answer the research questions,

following the methodology described in chapter 3. We also present and discuss our results.

4.1. Implementation

All experiments are implemented using the Huggingface Transformers library
1

and the

PyTorch library
2
. For faster attention calculation that more e�ciently uses GPU compute

and memory, we are using FlashAttention 2 [9]. Our setup is running inside Nvidia’s Py-

Torch docker container
3

to allow for simpler deployment of dependencies on the compute

nodes, especially the requirements for installing FlashAttention 2. We run most of our

experiments on the High Performance Computing cluster bwUniCluster2.0
4
. The cluster

o�ers three di�erent GPU types: V100 (32GB), A100 (80GB) and H100 (94GB), with di�erent

compute capabilities
5
. The custer uses the Slurm workload manager

6
for job scheduling.

In our experience, scheduling time increases exponentially with the number of requested

GPUs, from days to multiple weeks, so we try to use as little resources as possible. Some

tasks are run on a node of the cluster of the Institute for Anthropomatics and Robotics at

the Karlsruhe Institute of Technology featuring Nvidia RTX 6000 Ada GPUs. This cluster

does not use scheduling, but is shared with other researchers. Depending on memory

requirements and GPU availability, we use di�erent GPU types for di�erent tasks.

4.2. Dataset preprocessing

In this section, we describe preprocessing steps for the datasets we use.

FilteringAllenAI TQdataset To improve the data quality and to reduce noise for evaluation

and for training, we introduce a �ltering step to the dataset to only include questions that

all three labelers consider high quality and where all three labelers agree on the answer.

This was done because we expect data points with mismatching labels to be questions that

do not have a clear answer and thus, do not help the model to learn. This process reduces

the dataset to 37,122 data points which is around 47% of the original dataset. Around 12,000

1https://huggingface.co/docs/transformers/index (last accessed on 12/09/2024)

2https://pytorch.org/ (last accessed on 12/09/2024)

3https://ngc.nvidia.com/catalog/containers/nvidia:pytorch (last accessed on 12/09/2024)

4https://www.scc.kit.edu/dienste/bwUniCluster_2.0.php (last accessed on 12/09/2024)

5https://wiki.bwhpc.de/e/BwUniCluster2.0/Hardware_and_Architecture#Components_of_bwUniClus

ter (last accessed on 12/09/2024)

6https://slurm.schedmd.com/ (last accessed on 12/09/2024)

25

https://huggingface.co/docs/transformers/index
https://pytorch.org/
https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
https://www.scc.kit.edu/dienste/bwUniCluster_2.0.php
https://wiki.bwhpc.de/e/BwUniCluster2.0/Hardware_and_Architecture#Components_of_bwUniCluster
https://wiki.bwhpc.de/e/BwUniCluster2.0/Hardware_and_Architecture#Components_of_bwUniCluster
https://slurm.schedmd.com/


4. Experiments and results

always usually sometimes rarely never irrelevant
Label

0

5000

10000

15000

20000

Fr
eq

ue
nc

y

Distribution of labels

Figure 4.1.: Distribution of answer options

in �ltered AllenAI TQ dataset

(37,122 entries)

0 20 40 60 80 100 120 140
Length of question (characters)

0

2000

4000

6000

8000

10000

12000

14000

16000

Fr
eq

ue
nc

y

count    37122.000000
mean        20.191342

std          8.588068
min          4.000000

25%         14.000000
50%         18.000000
75%         25.000000
max        145.000000

dtype: float64

Distribution of question length

Figure 4.2.: Question length distribution of

�ltered AllenAI TQ dataset

questions have been removed because of their quality score, the rest has been removed

because of non-agreeing labels. We are using the existing train/test/validation split of

the dataset. After applying the �lter, the train set contains 21,832 data points, the test

set contains 8,035 data points and the validation set contains 7,255 data points, which is

approximately a 60/20/20 split.

In the dataset, the �ve possible answer options occur with highly varying frequency.

The distribution can be seen in Figure 4.1. There are much more questions labeled as

“never” than the other labels. This is likely due to the nature of the game, where the

answerer tries to �nd a concept that is hard to guess. As this is human annotated data, we

accept this as a natural bias of the dataset that is inherent to the game. In Figure 4.2, we

show the distribution of question length in characters. Most questions are rather short

with the upper quartile being 25 characters. We show the distributions for the un�ltered

dataset in Figure A.1 and Figure A.2. In comparison, the �ltered dataset contains less

questions that are labeled as “usually” and “rarely”. This is possibly due to the �ltering of

questions with non-agreeing labels, as we are left with questions that have a clear answer.

The distribution of question length is very similar between the �ltered and un�ltered

dataset.

Filtering GPT-4o generated dialogues For later training of questioner models, we �lter the

generated dialogues from the GPT-4o model to �lter out game dialogues whose answer

occur in one of our three word lists that we use for testing. The original dataset contains

9502 dialogues, of which 1791 are won games. After removing dialogues with answers

from the word lists, we are left with 9191 dialogues, of which 1634 are won games. This is

a reduction of around 3% of the total dialogues and around 9% of the won dialogues.

26



4.3. Hyperparameters

4.3. Hyperparameters

As we are limited on computational resources, we are not able to perform hyperparameter

optimization. Therefore, we use default values for most hyperparameters.

Inference For inference of the questioner, we use the models’ default generation con�g-

urations from their authors for temperature and sampling settings. E.g. for Llama-3-8B-

Instruct, we use a temperature of 0.6 and top-? sampling with a ? of 0.9. We decode a

maximum of 100 tokens for the questioner and stop generation at a question mark or end

of the sequence. For the answerer model, we choose a di�erent approach, as the answerer

model should only answer one of the possible answer options. The answerer model is

not decoded freely, but only probed for which of the tokens of the given answer options

is more likely given the input. This way, the answerer can only ever produce one of the

answer options.

LoRA parameters For �ne-tuning with LoRA, we use the following hyperparameters, if

not stated di�erently: We choose conventional default values for our LoRA parameters,

with a rank of 16, alpha of 16, and dropout of 0.05. We add adapters to all linear layers

of the model except for the language modeling head. As training parameters, we train

with a learning rate of 5.0 × 10−6 for 2 epochs and cosine learning rate scheduling with a

warmup ratio of 0.2. The batch size is usually set to 32, depending on sequence length and

memory requirements of the model. The maximum sequence length di�ers between tasks,

whether we train on single questions or whole dialogues.

4.4. Measuring task performance

In this section, we describe the evaluation of the models in the Twenty Questions task.

First, we run the original Twenty Questions task from BIG-Bench. Second, we run our

customized Twenty Questions task that we developed to address the shortcomings of the

original task. We also use this task for further evaluations. Third, we run measurement on

the answerer individually using the AllenAI TQ dataset. Finally, we discuss our results

and select models for further testing.

4.4.1. BIG-bench task

We implemented the necessary functionality to play the Twenty Questions task from

BIG-Bench [46] with Huggingface Transformers models. In the following, we describe the

original task format. The task uses prompts that are strings without any special begin, end

or role tokens, as the models that it was originally designed for are not �ne-tuned. The

dialogue is prepended with either “Alice” for the answerer or “Bob” for the questioner. To

initialize, the dialogue starts with a shared prompt explaining the game using a zero-shot

approach, which means there is no example dialogue in the prompt. Only in the answerer’s

perspective of the dialogue, the concept that they are thinking of is mentioned. Next, the

game starts with the questioner being prompted to ask a question. In turn, the answerer is

27



4. Experiments and results

Model Size Win (↑) Turns (↓) Ts. won (↓) Yes

Llama-3-70B-instruct 70.6B 0.38 15.8 (5.5) 3.5 (4.6) 10.4 (6.4)

Mixtral-8x7B-v0.1 46.7B 0.0 20.0 (0.0) 0.0 (0.0) 4.2 (4.4)

Mixtral-8x7B-instruct-v0.1 46.7B 0.0 20.0 (0.0) 0.0 (0.0) 0.0 (0.0)

Gemma-7B 8.5B 0.0 20.0 (0.0) 0.0 (0.0) 19.8 (0.5)

Gemma-7B-it 8.5B 0.0 20.0 (0.0) 0.0 (0.0) 14.1 (0.3)

Llama-3-8B-instruct 7.5B 0.15 18.0 (4.7) 1.1 (2.6) 14.6 (4.4)

Llama-3-8B 7.5B 0.0 20.0 (0.0) 0.0 (0.0) 20.0 (0.0)

Mistral-7B-instruct-v0.2 7.2B 0.0 20.0 (0.0) 0.0 (0.0) 4.6 (5.5)

Mistral-7B-v0.1 7.2B 0.0 20.0 (0.0) 0.0 (0.0) 18.0 (0.0)

Phi-3-mini-4k-instruct 3.8B 0.0 20.0 (0.0) 0.0 (0.0) 11.2 (3.6)

Gemma-2B 2.5B 0.0 20.0 (0.0) 0.0 (0.0) 19.2 (0.4)

Gemma-2B-it 2.5B 0.0 20.0 (0.0) 0.0 (0.0) 11.0 (0.0)

Tinyllama-1.1B-chat-v1.0 1.1B 0.0 20.0 (0.0) 0.0 (0.0) 20.0 (0.0)

Table 4.1.: Results of Twenty Questions task with original task format. Note that this task

is only run with 13 words. See subsection 3.1.1 for explanation of columns.

prompted with the question. The dialogue then continues with answerer and questioner

taking turns on each other’s output. Each time, the full dialogue up until the current

moment is given as prompt to both of the models. The game is considered won and

ends immediately if a question contains the concept. The game is considered failed if

the questioner has asked a maximum number questions without mentioning the correct

concept. The prompts are shown in full in the appendix in Figure A.3 for the answerer

and Figure A.4 for the questioner. Our list of evaluated models contains models from the

Llama [49] family (TinyLlama [54] and Llama 3 [13]), the Gemma [29] family, the Phi [1]

family as well as Mistral 7B [21] and Mixtral 8x7B [22]. We evaluated instruction-tuned

and non-instruction-tuned models. As largest model, we evaluate Llama-3-70B-Instruct

(we only ran the instruction-tuned model because of the high computational cost). This

original task only tests 13 concepts, however as we expected only very low scores and are

only looking for a qualitative measure of whether the models are able to play at all, this is

tolerated.

Our results are shown in Table 4.1. We can see that only Llama 3-70B-Instruct and

Llama 3-8B-Instruct are able to win any games. The low outcome is similar to the original

published results for the BIG-bench task. However, in BIG-bench, the only wins seem

accidental, in our case, it seems reasonable that the biggest models are able to win some

games. To determine whether the low performance is really due to the models or bad task

design (especially wrong prompt format), we run the evaluation using our improved task

in the following.

4.4.2. Custom game task

Our custom task is an updated version according to subsection 3.2.2 that uses the correct

chat template, stricter checking for the win condition and our AllenAI TQ test concepts

28



4.4. Measuring task performance

dataset containing 100 words for the evaluation. Concerning chat templates, models

di�er on whether their training includes an initial message from a system role or not

(e.g. Llama and Phi3 models are trained with a system role, Mistral and Gemma are not).

We use the system role for Phi-3-mini-4k-Instruct only, as otherwise model performance

is signi�cantly lower. For all other models, the system role is unused, as it is either not

available or worsens performance. Everything else is unchanged from the BIG-bench task.

The updated task is re-run for all of the instruct-tuned models and results are displayed in

Table 4.2. The results show some success for the larger models, especially Llama-3-70B-

Model Size Win (↑) Turns (↓) Ts. won (↓) Yes

Llama-3-70B-Instruct 70.55 B 0.23 17.5 (5.0) 9.0 (3.8) 7.8 (4.3)

Mixtral-8x7B-Instruct-v0.1 46.70 B 0.23 18.3 (3.7) 12.6 (4.2) 5.4 (2.4)

Gemma-7B-Instruct 8.53 B 0.00 20.0 (0.0) N/A 12.0 (6.2)

Llama-3-8B-Instruct 7.50 B 0.10 18.8 (3.6) 8.2 (2.7) 13.4 (3.9)

Mistral-7B-Instruct-v0.2 7.24 B 0.08 19.4 (2.5) 12.2 (4.8) 5.0 (2.3)

Phi-3-mini-4k-Instruct 3.82 B 0.10 18.9 (3.3) 9.3 (2.6) 10.1 (3.8)

Gemma-2B-Instruct 2.51 B 0.00 20.0 (0.0) N/A 19.0 (0.0)

TinyLlama-1.1B-Chat-v1.0 1.10 B 0.01 19.8 (1.8) 2.0 (0.0) 19.8 (1.9)

Table 4.2.: Results of Twenty Questions task with customized task. Models are sorted by

size. See subsection 3.1.1 for explanation of columns.

Instruct and Mixtral-8x7B-Instruct-v0.1. Some smaller models like Phi-3-mini-4k-Instruct

and Llama-3-8B-Instruct are also able to win some games. Model performance seems to

scale with model size, but there are exceptions. The Gemma models are still not able to

win any games.

Results for smaller models are much better than the so-far published BIG-bench results

for GPT-3 [4] and BIG-G [46], which barely showed any success. This is likely due to

enhanced model architectures, datasets and training procedures of the newer models we

tested. In comparison to Zhang et al. [55], our results show similar performance (they

used a di�erent word list for evaluation, which we use in the next section). Their best

model, GPT-4 [32] reaches a success rate of 0.31 on the Things dataset, which is still a

lot better than our best model. Regarding the number of questions answered as “Yes”,

our best models are also comparable to Zhang et al.’s results, with our best model Llama-

3-70B-Instruct getting 7.8% “Yes”-answers and GPT-4 getting 5.9% (however, they used

yes/no/maybe-options [55]).

4.4.3. Common failure modes

In the following, we want to describe common failure modes of models in both roles of

the Twenty Questions task.

29



4. Experiments and results

Nonsensical answers Many of the smaller and non-instruction-tuned models display

monotonous behaviour independent of the prompt and always output the same answer.

This is the case for TinyLlama, Gemma-2B and 7B non-instruction-tuned.

Wrong answers This problem occurs with the larger models as well that are able to

answer many questions correctly, but still go wrong in some places. Unfortunately, Twenty

Questions dialogue is quite sensitive to wrong answers; one wrong answer can mislead the

questioner completely and cause the game to be lost. In our evaluation, only the largest

Llama3-70B-Instruct model was able to answer most questions correctly in the role of

the answerer. Another form of this issue is that the answerer is seemingly forgetting

the original concept and then answering positively, as if the concept has been correctly

guessed even if it is not the correct concept. This occurs with many models, e.g. with

Llama3-8B.

Nonsensical questions The most common misbehavior from models in questioner role

is to ask for numbers, e.g. asking “Is the concept 10?”, then repeating the question with

rising numbers. This behavior was displayed by all models from the Gemma family and

all Mistral and Mixtral models. This misbehavior may be caused by the prompt asking

for a question about a “concept”, but it remains unclear. Some other forms of nonsensical

question generation occurs with smaller models like TinyLlama that always ask the same

question independent of the context.

Unhelpful questions For models that are able to generate questions, the questions are

often unhelpful in the sense that they do not reduce the uncertainty about the concept.

This is the issue we most want to address in �ne-tuning.

Questioner failing to constrain to game dialogue Some models in the questioner role do

not generate questions after a certain point of the dialogue. One example is the Llama

model family, which at some point generate dialogue about frustration and ask Alice for

the concept.

To summarize, we �nd from this initial evaluation that very small models fail entirely,

to the point of not generating any meaningful output. We �nd that non-instruction-tuned

models are unsuitable for the task, which is expected because it relies on following the

initial instruction. Small instruction-tuned models do generate meaningful output, but

still struggle to play the game e�ectively. The largest instruction-tuned models are able to

play the game with some success.

4.4.4. Analyzing domain restriction

To analyze the e�ect of restricting the domain, we use our same evaluation task, but with

the other words lists, namely the Things test concepts list and the Dolch concepts (see

Table 2.1). We perform this evaluation for Llama-3-8B-Instruct, Mistral-7B-Instruct-v0.2

30



4.4. Measuring task performance

and Phi-3-mini-4k-Instruct. Results for evaluation with the domain-speci�c word lists are

shown in Table 4.3.

Model Dataset Win (↑) Turns (↓) Ts. won (↓) Yes

Llama-3-8B-Instruct

AllenAI TQ 0.10 18.8 (3.6) 8.2 (2.7) 13.4 (3.9)

Things 0.10 19.0 (3.0) 10.3 (2.3) 13.4 (3.4)

Dolch 0.19 17.8 (4.7) 8.6 (3.4) 13.2 (4.9)

Mistral-7B-Instruct-v0.2

AllenAI TQ 0.08 19.4 (2.5) 12.2 (4.8) 5.0 (2.3)

Things 0.08 19.6 (1.6) 14.6 (2.5) 4.5 (2.2)

Dolch 0.18 18.3 (4.0) 10.7 (4.2) 4.8 (2.3)

Phi-3-mini-4k-Instruct

AllenAI TQ 0.10 18.9 (3.3) 9.3 (2.6) 10.1 (3.8)

Things 0.02 19.9 (1.1) 14.0 (5.0) 10.2 (3.4)

Dolch 0.08 19.3 (2.9) 11.4 (6.2) 11.2 (4.0)

Table 4.3.: Results of Twenty Questions task with domain-speci�c word lists.

We �nd that the Dolch concepts list is the most successful for all models, with the

Things dataset showing similar performance to the AllenAI TQ concepts. This is likely

due to the Dolch concepts being more common and easier to guess. The things list shows

identical performance for Llama-3-8B-Instruct and Mistral-7B-Instruct-v0.2, but worse

performance for Phi-3-mini-4k-Instruct. In comparison of all three lists, the 10% score of

Phi-3-mini-4k-Instruct on the AllenAI TQ concepts seems like an outlier, as performance

in the other lists is lower, although it seems like the most di�cult list of words. This is

possibly due to noise in the evaluation given a sample size of only 100 words per list.

4.4.5. Measuring answerer performance

We measure the performance of the answerer individually as described in subsection 3.2.3.

We use a prompt consisting of concept and question (full prompt shown in the appendix

in Figure A.9). Similar to the game dialogue generation, the answerer is probed for the

probability of the possible answer options to determine the answer. Because the cost of this

evaluation is low (only the calculation of one forward pass per model per question), we run

this evaluation on a bigger set of models. We run this evaluation using the multiple-choice

labels as well as a binary choice of “Yes” and “No”. For this, we use the majority vote

of the three labelers as the binary choice. In the dataset, labels “always”, “usually”, and

“sometimes” are mapped to “Yes” and the others are mapped to “No”. F1 and accuracy of the

answerer evaluation are shown in Figure 4.3. Additionally to the F1 scores and accuracies,

confusion matrices for both evaluations can be found in the appendix in Figure A.11 and

Figure A.12.

31



4. Experiments and results

ge
m

m
a-

7b
-it

ge
m

m
a-

2b
-it

ge
m

m
a-

7b

ge
m

m
a-

2b

M
et

a-
Lla

m
a-

3-
8B

-In
st

ru
ct

Lla
m

a-
2-

7b
-c

ha
t-h

f

M
et

a-
Lla

m
a-

3-
8B

Lla
m

a-
2-

7b
-h

f

Ph
i-3

-m
in

i-4
k-

in
st

ru
ct

M
ist

ra
l-7

B-
In

st
ru

ct
-v

0.
2

M
ist

ra
l-7

B-
v0

.1

Ti
ny

Lla
m

a-
1.

1B
-C

ha
t-v

1.
0

Al
wa

ys
 y

es

Al
wa

ys
 n

o

Model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Yes/No task - Accuracies - filtered dataset

ge
m

m
a-

2b

ge
m

m
a-

7b
-it

ge
m

m
a-

7b

ge
m

m
a-

2b
-it

M
et

a-
Lla

m
a-

3-
8B

-In
st

ru
ct

Lla
m

a-
2-

7b
-h

f

Lla
m

a-
2-

7b
-c

ha
t-h

f

M
et

a-
Lla

m
a-

3-
8B

Ph
i-3

-m
in

i-4
k-

in
st

ru
ct

M
ist

ra
l-7

B-
In

st
ru

ct
-v

0.
2

M
ist

ra
l-7

B-
v0

.1

Ti
ny

Lla
m

a-
1.

1B
-C

ha
t-v

1.
0

Model

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

Multiple choice task - Accuracies - filtered dataset

ge
m

m
a-

7b
-it

ge
m

m
a-

7b

ge
m

m
a-

2b
-it

ge
m

m
a-

2b

M
et

a-
Lla

m
a-

3-
8B

-In
st

ru
ct

Lla
m

a-
2-

7b
-c

ha
t-h

f

M
et

a-
Lla

m
a-

3-
8B

Lla
m

a-
2-

7b
-h

f

Ph
i-3

-m
in

i-4
k-

in
st

ru
ct

M
ist

ra
l-7

B-
In

st
ru

ct
-v

0.
2

M
ist

ra
l-7

B-
v0

.1

Ti
ny

Lla
m

a-
1.

1B
-C

ha
t-v

1.
0

Model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F1
 S

co
re

Yes/No task - F1 score - filtered dataset

0.0 0.2 0.4 0.6 0.8 1.0
Number of parameters 1e10

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

gemma-7b-it

gemma-7b

gemma-2b-it

gemma-2b

Meta-Llama-3-8B-Instruct

Llama-2-7b-chat-hf

Meta-Llama-3-8BLlama-2-7b-hf

Phi-3-mini-4k-instruct Mistral-7B-Instruct-v0.2

Mistral-7B-v0.1

TinyLlama-1.1B-Chat-v1.0

Yes/No task - F1 score vs. model size

Figure 4.3.: Results of the answerer’s performance. Top left: Accuracies of yes/no task.

Top right: Accuracies of multiple choice task. Bottom left: F1 score of yes/no

task. Bottom right: F1 score of yes/no task over model size. Model families are

in a common color with solid shades for instruction-tuned models and lighter

shades for non-instruction-tuned models. All evaluations are using the �ltered

dataset, evaluations on the un�ltered dataset can be found in Figure A.10

32



4.5. Prompt tuning

In the binary evaluation, the top scoring models are very close in scores to each other.

Llama3-8B-Instruct performs best, reaching an F1 score of 0.781 and an accuracy of

0.836, followed closely by Phi-3-mini-4k-Instruct (F1 score: 0.769, accuracy: 0.842) and

Mistral-7B-Instruct (F1 score: 0.763, accuracy: 0.840). Except for the Gemma family, the

instruction-tuned models perform better than the non-instruction-tuned models, which

makes sense as we used an instruction in the prompt. In the multiple choice evaluation,

Mistral-7B-Instruct performs best with an accuracy of 0.411, followed by Phi-3-mini-4k-

Instruct (accuracy: 0.407) and Llama3-8B-Instruct (accuracy: 0.276). In the confusion

matrices, we can see that Phi-3-mini-4k-Instruct and Mistral-7B-Instruct predict more

diverse labels, with most errors being the wrong prediction of “Sometimes”. Llama3-8B-

Instruct almost exclusively predicts “Usually” and “Never”. The multiple choice evaluation

shows lower scores, which could be explained with higher noise because of the higher

number of choices. In the un�ltered evaluation of the binary task, the F1 scores are slightly

lower for all models, but the ranking stays the same. In contrast, the accuracies in the

un�ltered binary evaluation are minimally higher for the top models. The multiple choice

evaluation shows a bigger increase in performance in using the �ltered data over the

un�ltered (Phi-3-mini-4k-Instruct: 0.407 vs. 0.336, Mistral-7B-Instruct: 0.411 vs. 0.322,

Llama3-8B-Instruct: 0.276 vs. 0.262). Again, this shows the impact of �ltering to reduce

noise especially in the multiple choice evaluation.

When regarding the relationship between model size and F1 score in the binary evalua-

tion, we see that the performance of the models increases with model size, however the

correlation is moderate (Pearson correlation of 0.5012). One outlier is the Phi-3-mini-4k-

Instruct model, which performs unusually well for its size.

Although our evaluation is not completely comparable to the evaluation by Bruyn et al.

[5] (di�erent prompt, di�erent dataset and di�erent models), we can see that the models

perform better in our evaluation. Their best F1 score was reached by T0pp [42] (an 11B

parameter model pre-trained on reading comprehension datasets) at 0.685 and an accuracy

of 0.819 [5], which is lower than our best performing models.

4.4.6. Model selection

Based on the initial evaluation in this section, we decide to focus on Phi-3-mini-4k (a 3.8B

parameter model) and Llama3-8B-Instruct in the following. We choose these two models

because they are small enough to be trained with a relatively low amount of compute

resources, but still large enough to be able to generate meaningful output. They are also

chosen because they are di�erent in size and training data. Both were able to generate at

least some meaningful questions and correct answers, so we test them whether they are

trainable to play the game more e�ectively.

4.5. Prompt tuning

As a �rst step to improve the game performance, we investigate di�erent prompts for the

Twenty Questions task. These evaluations are performed for the models Phi-3-mini-4k-

Instruct (in case of visual input, its counterpart Phi-3-vision-128k-instruct) and Llama3-8B-

33



4. Experiments and results

Instruct. There are several aspects that we are investigating: First, we are allowing more

answer options for the answerer to choose from instead of just “Yes” or “No”. Second, we

are using few-shot prompts by providing example dialogues from the 20Q dataset. Third,

we are changing the answerer prompt to only include a single question instead of the full

dialogue. Finally, we are adding visual input to the prompt, which turns the game into a

version of the I Spy game. We are using the AllenAI TQ questions for evaluation in this

section, except for the �nal task which uses Visual Genome as evaluation dataset.

4.5.1. Multiple choice answer options

This prompt tuning approach is to allow the answerer to choose from more than two

answer options. Other works have used di�erent sets of answer options of which we chose

three for our evaluation. The �rst is simply adding a “maybe” option as done by Zhang

et al. [55]. The second set is the set of six answer options from the AllenAI TQ dataset.

The third is the set of twelve answer options from Burgener’s 20Q game. The three sets of

answer options are shown in Table 3.1.

Other than that, we are using the same prompt for both sets of answer options. We ran

this evaluation with Phi-3-mini-4k-Instruct and Llama3-8B-Instruct. The game results are

shown in Table 4.4.

Model Answer options Win (↑) Turns (↓) Ts. won (↓)
Phi-3-mini-4k-Instruct

Yes/No 0.10 18.9 (3.3) 9.3 (2.6)

Yes/No/Maybe 0.02 19.8 (1.8) 7.5 (1.5)

AllenAI TQ options 0.04 19.5 (2.6) 8.5 (6.2)

20Q options 0.04 19.5 (2.6) 7.0 (0.7)

Llama3-8B-Instruct

Yes/No 0.10 18.8 (3.6) 8.2 (2.7)

Yes/No/Maybe 0.09 19.0 (3.4) 8.3 (2.2)

AllenAI TQ options 0.10 19.1 (3.0)3 10.6 (3.6)

20Q options 0.06 19.4 (2.6) 10.5 (5.2)

Table 4.4.: Results of Twenty Questions task with di�erent sets of answer options.

We �nd that the two models show di�erent results for the di�erent sets of answer

options. Phi-3-mini-4k-Instruct performs a lot worse with more answer options, while

the performance of Llama3-8B-Instruct stays mostly the same except for the 20Q options,

where it performs worse. We also analyze the frequency of answer options in the games in

Figure 4.4 and Figure A.7. Adding the “Maybe” option, we �nd very similar results for the

two models with the “Maybe” option being the least used by both models. In the other two

sets of answer options, the models di�er signi�cantly. We �nd that Llama3-8B-Instruct

uses “Usually” most of the time in both cases. Concerning the AllenAI TQ options, Llama3-

8B-Instruct practically only uses “Usually” and “Never”, very similar to a binary choice.

34



4.5. Prompt tuning

Yes

Usua
lly

Par
tly

Pro
ba

bly

So
meti

mes
May

be

Dou
btf

ul
Ra

rel
y No

Unk
no

wn

Irre
lev

an
t

Dep
en

ds

Answer option

0.0

0.1

0.2

0.3

0.4

0.5
Answer option usage (normalized), 20Q options

Phi3-mini-4k-instruct
Meta-Llama-3-8B-Instruct

alw
ay

s

usu
ally

som
eti

mes
rar

ely
ne

ve
r

irre
lev

an
t

Answer option

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Answer option usage (normalized), AllenAI TQ options
Phi3-mini-4k-instruct
Meta-Llama-3-8B-Instruct
AllenAI TQ dataset

Figure 4.4.: Usage of answer options in Twenty Questions task for 20Q options (left) and

AllenAI TQ options (right). For yes/no/maybe options, see Figure A.7

In the 20Q case, Llama3-8B-Instruct uses some of the other options as well. On the other

hand, Phi-3-mini-4k-Instruct uses “Probably” most of the time in the 20Q options case and

“Sometimes” or “Rarely” in the AllenAI TQ options case. For the 20Q options, we have

no data to compare to human baseline, but for the AllenAI TQ options, we can compare

to the frequency of responses from the dataset from real Twenty Questions games. The

comparison shows that human players are more concrete in their answers, with “Never”

and “Always” being the most common answers.

4.5.2. Few-shot prompts

In the next step, we are using few-shot prompts by including two example game dialogues

in the beginning prompt. They are two samples from the collected dialogues from 20Q
7

(see

subsection 4.7.2 for more detailed description of how they were collected). The �rst example

is a game where the concept is “elephant” and the second example is a game where the

concept is “the sun”. The full prompt system prompt from questioner perspective is shown

in Figure A.8. As the examples from 20Q use the 20Q answer options (see subsection 4.5.1),

we are testing both the original yes/no evaluation as well as the 20Q answer options for

this evaluation. Results for Phi-3-mini-4k-Instruct and Llama3-8B-Instruct are shown in

Table 4.5.

7http://20q.net (last accessed on 12/09/2024)

35

http://20q.net


4. Experiments and results

Model Prompt Win (↑) Turns (↓) Ts. won (↓) Yes

Phi-3-mini-4k-Instruct

Zero shot 0.10 18.9 (3.3) 9.3 (2.6) 10.1 (3.8)

Few shot Yes/No 0.03 19.7 (1.8) 9.7 (1.2) 11.1 (4.4)

Few shot 20Q 0.03 19.6 (2.2) 8.0 (4.5) 8.2 (3.5)

Llama3-8B-Instruct

Zero shot 0.10 18.8 (3.6) 8.2 (2.7) 13.4 (3.9)

Few shot Yes/No 0.06 19.4 (2.7) 10.0 (5.3) 16.8 (3.4)

Few shot 20Q 0.03 19.6 (2.1) 8.3 (3.9) 5.2 (2.2)

Table 4.5.: Results of Twenty Questions task with inclusion of few-shot prompt.

We �nd that again, performance decreases for both models. This is surprising, as

we expected the models to perform better with more examples. Performance does not

improve with the 20Q answer options either. Looking at the dialogues, we �nd that models

consistently copy the �rst question from the example dialogues, which is “Is it a living

thing?”. Unfortunately, in the yes/no task, the answerer often wrongly answers “Yes” to

this question for concepts where it is unclear, which causes the game to go o� track. In the

20Q answer options case, the answer option answers more often with “Unknown”. Still,

the models are not able to extract a strategy from the examples. Giving the two example

dialogues strongly steers the models in the direction of the concepts of the examples. As it

is only two examples, that is not representative for the whole space of possible concepts.

4.5.3. Single question answerer prompt

Another variation of the game is to change the answerer prompt to not include the full

dialogue, but instead only a single question. The prompt is shown in Figure A.9. This is a

simpli�cation of the task, as the answerer does not have to keep track of the full dialogue.

The results are shown in Table 4.6.

Model Answer options Win (↑) Turns (↓) Ts. won (↓) Yes

Phi-3-mini-4k-Instruct

Full dialogue 0.10 18.9 (3.3) 9.3 (2.6) 10.1 (3.8)

Single question 0.14 18.8 (3.6) 11.4 (5.2) 2.2 (1.4)

Llama3-8B-Instruct

Full dialogue 0.10 18.8 (3.6) 8.2 (2.7) 13.4 (3.9)

Single question 0.07 19.4 (2.4) 10.7 (2.1) 8.5 (2.5)

Table 4.6.: Results of Twenty Questions task with single question answerer prompt.

36



4.5. Prompt tuning

We �nd that the single question answerer prompt delivers di�erent results for both

models. For Phi-3-mini-4k, when supplying the whole dialogue to the answerer, it would

often start to answer wrongly after a few turns, seemingly forgetting the original concept.

In many cases, the answerer would start to agree with the questioner on a concept that is

not the original concept. This is e�ectively prevented by only asking a single question

each time. Llama-3-8B-Instruct does not show this behavior as much, but may not be

optimally adapted to the single question prompt.

4.5.4. Adding visual input

Our �nal approach to evaluating the impact of the prompt on the task is the addition of

visual input to the prompt. This requires a model that is �ne tuned on multimodal data,

which is why we only use Phi-3-vision-128k-instruct for this evaluation. As dataset, we are

using Visual Genome [24] (see also subsection 2.3.3). For each image from the dataset, we

are using the �rst object and its �rst label to play a guessing game. Our prompt is the same

to the previous tasks except for two changes: We are prepending the image to be beginning

of the prompt and include the �rst letter of the object in the announcement of the answerer

(as is common in I Spy games). Adding the information about the �rst letter and the

image introduces two new pieces of information. This is why we are evaluating model

performance with and without showing the image (with otherwise identical prompts).

The results are shown in Table 4.7.

Model Win (↑) Turns (↓) Ts. won (↓) Yes

Phi-3-vision-128k-instruct

First Letter / No image 0.14 17.2 (6.5) 2.2 (1.1) 2.3 (5.6)

First Letter / With image 0.26 15.0 (8.2) 1.5 (1.0) 0.7 (3.0)

Table 4.7.: Results of visual guessing game task with or without image for Phi-3-vision-

128k-instruct.

We �nd that just the mention of the �rst letter signi�cantly increases winning chances

and changes the model’s strategy to simple enumeration. For the won games, the model

only needed to guess less than 3 times on average. For the lost games, for many letters the

model seems to not be able to guess any concept or just repeatedly guess the same word.

For the letter “a”, it guesses “a skateboard”. This may be due to tokenization, as the letter

“a” is a di�erent token than the tokens of words beginning with “a”.

The addition of image data increases the winning chances, with a bit more than a

quarter of the games being won. Similarly, the average round count of won games is

reduced by almost a whole round with many games being won with just one guess. We

�nd that this game is a very di�erent task to the text-only Twenty Questions game and

that this task that is a lot easier. Both the addition of announcing the �rst letter and

providing an image as additional source of information are strong reductions in the space

of possible concepts. Furthermore, limiting the possible concepts to visible entities in

37



4. Experiments and results

general is a strong reduction in the space of possible concepts. Models do not display

a guessing strategy to the same extent as in the text-only game, but instead simply list

possible solutions. Because of the small solution space, this is an e�ective strategy. The

same strategy could be achieved using an object recognition model like YOLO [39] and

asking for the recognized objects in descending order of con�dence. As we are interested

in strategies that are beyond simple enumeration, we are not further investigating this

task in this work.

4.6. Fine-tuning the answerer

In this section, we describe our approach to �ne-tuning the answerer. We are using

the AllenAI TQ dataset for training and evaluation (see subsection 2.3.1). We evaluate

both the individual answerer performance in the question answering task as well as the

performance in the game together with a questioner model.

4.6.1. Supervised fine-tuning of multiple choice task

First, we run supervised �ne-tuning with the train set of the dataset on Phi-3-mini-4k-

Instruct and Llama3-8B-Instruct. We �rst train using the multiple choice labels of the

dataset. We are training single questions, so we use the single question answerer prompt.

All sequences were padded to a maximum length of 128 tokens (the questions in the dataset

are very short). We used a batch size to 32, which caused training to require close to the

limit of our GPU’s memory. This allowed us to train the models to 2 epochs in 1.5 hours.

Evaluation loss very quickly converged to a minimum (see appendix Figure A.13). To test

whether the model still learns after one epoch, we evaluated Phi-3-mini-4k-Instruct on

the test set after four di�erent points of training (0.5, 1, 1.5 and 2 epochs). The results

are shown in Table 4.8. We can see that training has not fully saturated after two

Epoch Train loss Eval loss Accuracy Accuracy �ltered

1.0 1.0

untrained N/A N/A 0.336 0.394

0.5 0.307 0.310 0.592 0.706

1.0 0.302 0.305 0.604 0.715

1.5 0.301 0.303 0.615 0.728

2.0 0.298 0.302 0.619 0.730

Table 4.8.: Evaluation of Phi-3-mini-4k-Instruct as answerer at di�erent stages of training.

Accuracy is measured on the un�ltered dataset and the �ltered test dataset.

epochs, but that it is close to saturation. One epoch of training already improves the

model signi�cantly. The �ltered evaluation shows a higher accuracy than the un�ltered

evaluation, which is expected as the �ltered dataset contains less noise (all labelers agree

on the answer and consider the question to be of high quality). The evaluation loss is very

close to the training loss, which indicates that the model is not over�tting.

38



4.6. Fine-tuning the answerer

After training both models, we evaluated each model’s performance on the multiple

choice task and the binary choice task. The results are shown in Table 4.9. For the multiple

Model Test Task Trained Acc. (↑) Acc. F. (↑) F1 (↑) F1 F. (↑)
Phi-3-mini-4k-Instruct

Multiple choice task

Untrained 0.336 0.394

Trained 0.619 0.730

Binary choice task

Untrained 0.813 0.842 0.799 0.769

Trained 0.821 0.869 0.797 0.797

Llama3-8B-Instruct

Multiple choice task

Untrained 0.262 0.302

Trained 0.631 0.745

Binary choice task

Untrained 0.834 0.836 0.836 0.781

Trained 0.860 0.848 0.873 0.814

Table 4.9.: Results of supervised �ne-tuning of multiple choice task. The test dataset

has 16921 entries, the �ltered test dataset has 8037 entries.

choice task, we �nd that the accuracy on the �ltered dataset for Phi-3-mini-4k-Instruct

increases by a factor of around 1.9 and for Llama for a factor of around 2.5. Again, the

�ltered evaluation yields higher results, which is expected as the �ltered dataset contains

questions with clearer answers. Applying these models to the binary task that they have

not been trained for, we �nd that the trained models perform slightly better overall than

the untrained models, which means that training on multi-choice questions also improves

the binary choice task. Overall, Llama3-8B performs slightly better than Phi-3-mini-4k

which may be due to the larger model size. In the following, we test training the binary

task directly.

4.6.2. Supervised fine-tuning of binary choice task

Analogous to the previous section, we perform �ne-tuning on the binary labels from the

dataset. All other settings are the same. Training and evaluation losses show a similar

pattern as the multiple-choice task. Charts are shown in the appendix in Figure A.14. Our

results are shown in Table 4.10.

39



4. Experiments and results

Model Test Task Trained Acc. (↑) Acc. F. (↑) F1 (↑) F1 F. (↑)
Phi-3-mini-4k-Instruct

Multiple choice task

Untrained 0.336 0.394

Trained 0.475 0.584

Binary choice task

Untrained 0.813 0.842 0.799 0.769

Trained 0.856 0.888 0.850 0.841

Llama3-8B-Instruct

Multiple choice task

Untrained 0.262 0.302

Trained 0.165 0.158

Binary choice task

Untrained 0.834 0.836 0.836 0.781

Trained 0.828 0.821 0.852 0.794

Table 4.10.: Results of supervised �ne-tuning of binary choice task. Accuracy is measured

on the un�ltered dataset and the �ltered test dataset (noted with F.).

We �nd that training on the binary choice only increases the F1 score on the �ltered

dataset of Phi-3-mini-4k-Instruct by a factor of 1.1 and for Llama3-8B-Instruct by a factor

of 1.02. Accuracy decreases slightly for Llama3-8B-Instruct, but increases for Phi-3-mini-

4k-Instruct. On the multiple choice task, where these models have not been �ne-tuned for,

Phi-3-mini-4k-Instruct gains performance while Llama3-8B-Instruct loses performance.

This indicates that generalizing from binary choice to multiple choice is not as easy as

the other way around. Intuitively, this makes sense, as going from a more diverse set of

answers to a more restricted set is a reduction of answer resolution. In the opposite case,

when training on only binary choice answers, the model may lose some of the nuance

needed to answer multiple choice questions.

4.6.3. Evaluation on game

With the trained models, we evaluate their performance as answerer in the game. As

questioner, we use the untrained models. We use the same evaluation setup as in the

original evaluation, however we ran both a multiple choice and a binary choice evaluation.

For the multiple choice evaluation, we used the models trained on multiple choice answers

and used the multiple choice prompt. We used the single question answerer prompt that

does not include full dialogue, as that is what the answerer models were trained on. We

perform this evaluation on all three word lists for more robust results. The results are

shown in Table 4.11 and Table 4.12.

40



4.6. Fine-tuning the answerer

Model Train set Test set Win (↑) Turns (↓) Ts. won (↓) Yes

Phi-3-mini-4k-Instruct

Untrained

AllenAI TQ 0.14 18.8 (3.6) 11.4 (5.2) 2.2 (1.4)

Things 0.12 19.1 (2.8) 12.6 (3.9) 3.1 (2.1)

Dolch 0.16 18.3 (4.5) 9.3 (5.5) 2.6 (1.7)

Multiple choice task

AllenAI TQ 0.15 18.6 (3.8) 10.7 (4.6) 1.9 (1.2)

Things 0.13 19.0 (3.0) 12.2 (4.0) 2.9 (2.0)

Dolch 0.17 18.2 (4.5) 9.5 (5.3) 2.2 (1.6)

Binary choice task

AllenAI TQ 0.15 18.6 (3.8) 10.8 (4.7) 1.9 (1.2)

Things 0.13 19.0 (3.0) 12.2 (4.0) 3.0 (2.1)

Dolch 0.16 18.2 (4.5) 9.0 (5.0) 2.3 (1.7)

Llama3-8B-Instruct

Untrained

AllenAI TQ 0.07 19.4 (2.4) 10.7 (2.1) 8.5 (2.5)

Things 0.03 19.8 (1.4) 12.3 (2.6) 9.2 (2.2)

Dolch 0.16 18.7 (3.4) 11.9 (4.4) 7.9 (2.6)

Multiple choice task

AllenAI TQ 0.21 18.0 (4.4) 10.4 (4.2) 6.8 (2.5)

Things 0.18 18.7 (3.4) 12.7 (4.5) 7.5 (2.6)

Dolch 0.29 17.3 (4.6) 10.7 (3.5) 6.3 (2.6)

Binary choice task

AllenAI TQ 0.02 19.8 (1.6) 9.0 (2.0) 11.0 (3.1)

Things 0.01 19.9 (1.1) 9.0 (0.0) 10.7 (2.9)

Dolch 0.02 19.9 (1.0) 13.0 (2.0) 11.7 (3.5)

Table 4.11.: Results of answerer evaluation in game, using single question answerer prompt

and binary choice yes/no answers in evaluation game. Shown for model trained on

the binary choice task and the multiple choice task.

41



4. Experiments and results

Model Train set Test set Win (↑) Turns (↓) Ts. won (↓)
Phi-3-mini-4k-Instruct

Untrained

AllenAI TQ 0.10 19.0 (3.3) 9.9 (4.0)

Things 0.03 19.7 (1.8) 10.3 (3.4)

Dolch 0.12 18.6 (4.1) 8.6 (4.9)

Multiple choice task

AllenAI TQ 0.10 18.8 (3.6) 8.3 (3.0)

Things 0.01 19.9 (1.3) 7.0 (0.0)

Dolch 0.10 18.7 (4.0) 7.2 (3.7)

Binary choice task

AllenAI TQ 0.09 19.0 (3.4) 8.7 (3.2)

Things 0.09 19.4 (2.3) 12.9 (3.6)

Dolch 0.11 18.8 (3.9) 8.9 (5.2)

Llama3-8B-Instruct

Untrained

AllenAI TQ 0.02 19.8 (1.9) 7.5 (5.5)

Things 0.0 20.0 (0.0) N/A

Dolch 0.03 19.7 (2.2) 9.0 (6.2)

Multiple choice task

AllenAI TQ 0.18 18.6 (3.4) 12.3 (4.2)

Things 0.16 19.3 (1.9) 15.5 (2.6)

Dolch 0.28 18.0 (4.2) 12.7 (4.9)

Binary choice task

AllenAI TQ 0.02 19.7 (2.2) 4.5 (2.5)

Things 0.01 19.9 (1.2) 8.0 (0.0)

Dolch 0.02 19.8 (1.9) 8.0 (6.0)

Table 4.12.: Results of answerer evaluation in game, using single question answerer

prompt and multiple choice (TQ options) answers in evaluation game. Shown for

model trained on the binary choice task and the multiple choice task. (This table does not

contain the count of Yes-answers as the TQ options do not contain a Yes-answer.)

42



4.7. Fine-tuning the questioner

Phi-3-mini-4k-Instruct seems to be only slightly a�ected by training. Its scores increase

in the binary choice evaluation but decrease in the multiple choice evaluation. Both

changes are only minor. Llama3-8B-Instruct, on the other hand, is a�ected much more

by training. The performance of the model trained on the multiple choice task strongly

outperforms the untrained model, especially in the multiple choice evaluation. This

suggests that the model has learned to use the six answer options better. In the binary

evaluations, Llama3-8B-Instruct performs worse after training in the case of the binary

choice task and similarly bad in the case of the multiple choice task. The poor performance

can be explained by looking at the dialogues: Llama3-8B-Instruct opens the game by

asking for a living thing, which the answerer too often wrongly answers with “Yes”, which

derails the game by not �nding objects or concepts. Another change in the successful

Llama3-8B-Instruct model is that the length of the won games increases, which may also

be due to more complex concepts being found after longer dialogues. It is important to

note that the result of this evaluation is also limited by the quality of the questioner, which

in this case is the untrained model. We perform joint evaluation later in section 4.8.

4.7. Fine-tuning the questioner

We are testing two di�erent training modalities for the questioner: supervised �ne-tuning

and reinforcement learning. For supervised �ne-tuning, we �rst need to collect a dataset of

meaningful game dialogues. We don’t just want to train the questioner on single questions,

but on full dialogues, to give examples on good questions in context that optimally reduce

uncertainty. Otherwise, the model may just ask good questions, but not in the right order

or in a way that is helpful. We have test three di�erent approaches to dialogue generation:

taxonomy-based, sourced from a di�erent algorithm and sourced from a bigger model to

train a smaller one. In the following, we describe the data sources, training setups and

evaluations for each approach.

4.7.1. Supervised fine-tuning with taxonomy fromWordNet

WordNet, as described in subsection 2.3.2, is a large lexical database of English. We are

interested in the hypernym relations, which form a taxonomy of concepts. This taxonomy

can be used to generate synthetic game dialogue. Taking all concepts from the train set of

the AllenAI TQ dataset, we �rst �lter for words that are tagged as nouns in WordNet. For

each concept, we follow the hypernym relations to the root concept, which is “entity”. We

collect all hypernyms of all concepts and �lter them for concepts that would be known

to a �ve-year-old by using an LLM as a judge. This �ltering is important, as otherwise

the taxonomy contains very abstract classes like “causal agent” that would not occur in a

game of Twenty Questions. The prompt for the judge can be seen in Figure A.15. Similarly

to the decoding of the answerer, we are only probing the probability of the tokens for

“Yes” and “No” to determine the answer. We ran the prompt on Phi-3-mini-4k-Instruct and

Llama3-8B-Instruct and selected the concepts that were estimated simple by both models.

From the list of remaining hypernyms, we build a graph by starting at the root node and

then recursively splitting the child nodes in two sets. Given a set of concepts, we check

43



4. Experiments and results

object.n.01

organism.n.01

vertebrate.n.01

mammal.n.01

carnivore.n.01

bird.n.01

plant.n.02

woody_plant.n.01

insect.n.01

device.n.01

instrument.n.01

magnifier.n.01

musical_instrument.n.01

structure.n.01

room.n.01

whole.n.02

person.n.01worker.n.01serviceman.n.01soldier.n.01

workman.n.01 adult.n.01

doctor.n.01

contestant.n.01

matter.n.03

substance.n.01

material.n.01

food.n.01

event.n.01

activity.n.01

communication.n.02

Figure 4.5.: WordNet taxonomy graph. Left: First 5 layers, green and red color indicates

whether the node is in the category of the parent node or not. Right: First 30

layers, blue color is for concepts, other colors are the same as on the left.

for all its child nodes, which of the nodes is parent to half the number of concepts. This

way, we split the tree as evenly as possible. This process is repeated until we reach a given

depth. If we limit the depth to 20, the constructed graph contains 2956 of the 6476 concepts

(45.6%) from the AllenAI TQ train dataset. This means that a guesser based on this �ltered

taxonomy could only �nd the correct concept in 45.6% of the cases. The concepts from the

test set are not in the graph, so the model has to generalize to unseen concepts. Although

the game usually ends after 20 questions, we set the depth to 30 to contain more concepts.

With a depth of 30, the constructed graph contains 3836 of the 6476 concepts (59.2%) from

the AllenAI TQ train dataset.

The �rst 5 layers of the graph are shown in the left of Figure 4.5. Colors of nodes indicate

whether the node is in the category of the parent node or not. For example, the root node

asks whether a concept is an object or not. If yes, the next question is whether it is an

organism. If not, the next question is whether it is a person. We can see from this example

that a hard taxonomy like WordNet may contain unintuitive relations, like considering an

organism an object. When looking at 30 layers, the graph has a di�erent form, shown in

Figure 4.5 on the right. The �rst six layers of the graph show a binary structure where

every node has two child nodes. After the sixth layer, nodes have less than two child nodes

on average and the graph resembles an urn. We also color the concepts from the AllenAI

TQ train dataset in blue, all other concepts are added to build the tree structure. We see

that most concepts in the tree, also the intermediate concepts, are part of the AllenAI TQ

train dataset.

The concepts from the graph are used to generate dialogues. All dialogues are considered

won, the average round count is 16.1 (standard deviation of 5.8) and the average number

of “Yes” tokens is 3.3 (standard deviation of 1.3). We run supervised �ne-tuning on the

generated dialogues with Phi-3-mini-4k-Instruct and Llama3-8B-Instruct for 2 and 4 epochs.

44



4.7. Fine-tuning the questioner

Afterwards, we run our usual evaluation on the test set of the AllenAI TQ dataset. The

results are shown in Table 4.13.

Model Train time Test set Win (↑) Turns (↓) Ts. won (↓) Yes

Phi-3-mini-4k-instruct

Untrained

AllenAI TQ 0.09 19.2 (2.8) 11.0 (3.7) 3.4 (2.2)

Things 0.09 19.4 (2.3) 13.2 (3.8) 3.2 (2.1)

Dolch 0.10 18.8 (4.0) 7.6 (4.3) 4.0 (2.3)

2 epochs

AllenAI TQ 0.13 19.0 (3.1) 12.5 (5.2) 3.3 (1.8)

Things 0.07 19.4 (2.4) 11.3 (2.9) 3.0 (1.0)

Dolch 0.16 18.0 (4.9) 7.7 (5.0) 3.3 (1.9)

4 epochs

AllenAI TQ 0.10 19.3 (2.4) 13.3 (4.0) 3.6 (1.9)

Things 0.09 19.3 (2.4) 12.4 (3.2) 3.5 (1.7)

Dolch 0.09 18.8 (4.0) 7.1 (4.9) 3.4 (2.0)

Llama-3-8B-Instruct

Untrained

AllenAI TQ 0.10 18.9 (3.4) 9.0 (2.9) 13.4 (3.7)

Things 0.09 19.2 (2.6) 11.4 (2.6) 13.0 (3.1)

Dolch 0.17 18.1 (4.4) 9.0 (3.6) 13.3 (4.3)

2 epochs

AllenAI TQ 0.08 19.3 (2.6) 11.5 (4.3) 12.0 (3.6)

Things 0.09 19.0 (3.4) 8.6 (2.5) 11.2 (3.9)

Dolch 0.17 18.0 (4.6) 8.1 (2.3) 11.1 (4.7)

4 epochs

AllenAI TQ 0.10 18.9 (3.7) 8.7 (4.7) 11.5 (4.0)

Things 0.11 18.8 (3.6) 9.3 (3.6) 11.5 (3.9)

Dolch 0.23 17.3 (5.2) 8.4 (3.7) 10.4 (4.8)

Table 4.13.: Results of training with dialogues generated using WordNet taxonomy.

We see inconclusive results. While Phi-3-mini-4k-instruct gains slight performance

after 2 epochs, original performance is reached after 4 epochs. Interestingly, the �rst

question that both untrained models ask (“Is it a living thing?”) is unchanged from the

untrained model, even though the �rst question in the dataset is “Is it an object?”. In the

case of Llama-3-8B-Instruct, performance is slightly worsened from the untrained model

after 2 epochs and slightly improved in comparison to the untrained model after 4 epochs.

At the same time, the number of “Yes” answers decreases to a value that is closer to the

trained dataset. This may indicate that the model is learning to ask better questions, but

the performance is not improving, which may be due to the untrained answerer. As the

45



4. Experiments and results

training has not strongly reduced performance, the generated dialogues are not of zero

quality, but our models may have had the same performance without training to begin

with.

4.7.2. Supervised fine-tuning with data from 20Q dialogues

The second approach to generating dialogue data is to use the “20Q” game by Burgener

(see subsection 2.2.2) to collect dialogues. As word list, we used AllenAI TQ train concepts,

sorted by frequency in the AllenAI TQ dataset. We collected 1073 dialogues from the

website
8

with a simple script that allows Phi-3-mini-4k-Instruct playing as answerer to

answer questions generated by “20Q”. The setup allows the model to run inside the HPC

cluster using a middle server that runs a web browser via Selenium
9

and the 20Q website,

as seen in Figure 4.6. We made sure to employ rate limiting to not overload the website

and to conform to terms of use.

We let the game run for a maximum of 35 rounds instead of the usual 20, to be able to

collect more won rounds. We were surprised to �nd that for our word list, the algorithm

only wins 11 of the 1073 games in 20 rounds (1%), but 114 in 35 rounds (10.6%). For the won

games, the average number of rounds is 27.5 rounds. We consider these dialogues to not

be of high quality, but we still test their use for training. Results are shown in Table 4.14.

LLM
(running on

bwUniCluster2)

Proxy running
Selenium on Chrome

20Q.net
(on the web)

Is it edible?No.

Figure 4.6.: Setup for allowing LLM to play as answerer with 20Q as questioner to collect

dialogues.

8http://20q.net (last accessed on 12/09/2024)

9https://www.selenium.dev/ (last accessed on 12/09/2024)

46

http://20q.net
https://www.selenium.dev/


4.7. Fine-tuning the questioner

Model Train time Test set Win (↑) Turns (↓) Ts. won (↓) Yes

Phi-3-mini-4k-instruct

Untrained

AllenAI TQ 0.09 19.2 (2.8) 11.0 (3.7) 3.4 (2.2)

Things 0.09 19.4 (2.3) 13.2 (3.8) 3.2 (2.1)

Dolch 0.10 18.8 (4.0) 7.6 (4.3) 4.0 (2.3)

2 epochs

AllenAI TQ 0.11 19.0 (3.1) 11.3 (4.7) 3.1 (1.9)

Things 0.02 19.8 (1.4) 10.5 (2.5) 4.0 (2.8)

Dolch 0.13 18.5 (4.2) 8.5 (4.3) 3.0 (2.0)

4 epochs

AllenAI TQ 0.08 19.3 (2.8) 10.9 (4.6) 4.2 (1.4)

Things 0.03 19.7 (1.9) 9.0 (0.8) 4.5 (2.3)

Dolch 0.12 18.6 (4.2) 8.1 (4.9) 4.0 (1.4)

Llama-3-8B-Instruct

Untrained

AllenAI TQ 0.10 18.9 (3.4) 9.0 (2.9) 13.4 (3.7)

Things 0.09 19.2 (2.6) 11.4 (2.6) 13.0 (3.1)

Dolch 0.17 18.1 (4.4) 9.0 (3.6) 13.3 (4.3)

2 epochs

AllenAI TQ 0.04 19.7 (1.9) 12.0 (4.9) 13.1 (2.9)

Things 0.04 19.9 (0.8) 16.8 (2.3) 13.3 (2.5)

Dolch 0.05 19.6 (2.0) 12.8 (5.4) 13.9 (3.2)

4 epochs

AllenAI TQ 0.02 19.8 (1.3) 10.5 (1.5) 13.9 (2.9)

Things 0.03 19.8 (1.3) 13.7 (4.6) 13.4 (2.7)

Dolch 0.03 19.8 (1.5) 13.3 (5.9) 14.0 (2.8)

Table 4.14.: Results of training with collected 20Q dialogues.

47



4. Experiments and results

We see that overall, the performance of the models, especially of Llama-3-8B-Instruct

is reduced by training on the collected dialogues, in a much stronger way than with the

WordNet taxonomy. Phi-3-mini-4k-Instruct loses the most performance on the Things

dataset. The reduce in performance is likely due to the low quality of training data, which

causes the model to learn worse strategies than what is does untrained. Looking at the

dialogues, we �nd that at the beginning of the dialogues, Llama-3-8B-Instruct is asking the

questions from the dataset: “Is it an animal?”, “Is it a vegetable?” Phi-3-mini-4k-Instruct is

still unchanged in the �rst question “Is it a living thing”, but the questions that appeared

early in the training games eventually occur later in the dialogues. Overall, learning

from the 20Q game is not successful, which is not surprising given that the dataset’s

performance on a 20 questions game would be 1%.

4.7.3. Supervised fine-tuning with model distillation

Our third approach for generating dialogue data is to use a bigger model to generate

dialogue to train a smaller model, a process known as distillation. As we see promising

performance in the untrained Mixtral-8x7B-Instruct-v0.1 (see Table 4.2), we initially at-

tempt to generate dialogue with this model, using the train set of the AllenAI TQ concepts.

However, Mixtral-8x7B-Instruct-v0.1 only wins 12.9% of games from the �rst 303 examples

of the training TQ concepts. As a separate source of model generated dialogue, we use the

�ltered GPT-4o TQ dataset with model-generated dialogues from the Kaggle competition.

This dataset contains 9191 dialogues, of which 1634 are won games.

Training setup We adapt the dialogues to our usual prompt format and train Phi-3-mini-

4k-Instruct and Llama-3-8-Instruct on the generated dialogues using the same training

setup as for the other questioner datasets. We train both on only the set of won dialogues

and on all dialogues. We train all dialogues for 2 epochs (evaluating at 0.5, 1 and 2 epochs)

and the won dialogues for 8 epochs (evaluating at 2, 4 and 8 epochs), as it is a much smaller

dataset (by a factor of 5.6). Our evaluation is shown on the following pages in Table 4.15

for Phi-3-mini-4k and Table 4.16 for Llama-3-8B-Instruct.

Results We �nd that Phi-3-mini-4k-Instruct gains performance (from an average of 0.09

to 0.15) after training for 2 epochs on all dialogues, but also slightly improves after 8

epochs on won dialogues (from 0.09 to 0.12) Llama-3-8B-Instruct �rst gains, then loses

performance (from an average of 0.9 to 0.8) after training for 2 epochs on all dialogues.

On won datasets, the Llama-3-8B-Instruct gains slight performance after 4 epochs, which

stays roughly constant after 8 epochs (from 0.9 to 0.11). Looking at the dialogues, we see

no obvious patterns or �aws. Because this is the most promising result so far, we perform

joint evaluation with a trained answerer in section 4.8.

48



4.7. Fine-tuning the questioner

Model Train set/time Test set Win (↑) Turns (↓) Ts. won (↓) Yes

Phi-3-mini-4k-instruct

Untrained

AllenAI TQ 0.09 19.2 (2.8) 11.0 (3.7) 3.4 (2.2)

Things 0.09 19.4 (2.3) 13.2 (3.8) 3.2 (2.1)

Dolch 0.10 18.8 (4.0) 7.6 (4.3) 4.0 (2.3)

All dialogues

0.5 epochs

AllenAI TQ 0.10 18.9 (3.6) 9.2 (4.9) 2.7 (1.9)

Things 0.12 19.1 (2.8) 12.6 (4.1) 3.2 (2.5)

Dolch 0.15 18.2 (4.8) 7.9 (5.1) 3.4 (2.0)

1 epoch

AllenAI TQ 0.11 19.0 (3.1) 11.2 (4.2) 5.4 (2.5)

Things 0.08 19.5 (2.0) 13.6 (3.2) 5.6 (2.2)

Dolch 0.20 18.1 (4.4) 10.4 (5.0) 5.4 (3.1)

2 epochs

AllenAI TQ 0.14 18.7 (3.6) 11.0 (4.7) 7.0 (3.1)

Things 0.13 19.3 (2.4) 14.3 (4.0) 7.2 (3.0)

Dolch 0.19 18.2 (4.3) 10.8 (5.2) 6.2 (2.7)

Won dialogues

2 epochs

AllenAI TQ 0.10 19.1 (3.1) 10.7 (4.1) 2.7 (1.1)

Things 0.05 19.7 (1.6) 14.0 (4.0) 3.7 (3.0)

Dolch 0.16 18.6 (3.9) 11.4 (5.9) 3.3 (2.1)

4 epoch

AllenAI TQ 0.08 19.4 (2.9) 11.9 (6.6) 3.1 (2.2)

Things 0.07 19.5 (1.9) 13.4 (3.1) 4.1 (2.9)

Dolch 0.13 18.7 (3.8) 9.8 (4.8) 3.2 (3.0)

8 epochs

AllenAI TQ 0.08 19.2 (3.1) 9.5 (4.3) 5.0 (2.3)

Things 0.12 19.2 (2.4) 13.0 (2.2) 5.4 (2.2)

Dolch 0.17 18.2 (4.4) 9.6 (4.8) 4.2 (2.0)

Table 4.15.: Results of �ne-tuning Phi-3-mini-4k-Instruct using dialogue generated by

GPT-4o.

49



4. Experiments and results

Model Train set/time Test set Win (↑) Turns (↓) Ts. won (↓) Yes

Llama-3-8B-Instruct

Untrained

AllenAI TQ 0.10 18.9 (3.4) 9.0 (2.9) 13.4 (3.7)

Things 0.09 19.2 (2.6) 11.4 (2.6) 13.0 (3.1)

Dolch 0.17 18.1 (4.4) 9.0 (3.6) 13.3 (4.3)

All dialogues

0.5 epochs

AllenAI TQ 0.15 18.5 (3.9) 9.9 (3.8) 12.2 (4.2)

Things 0.08 19.3 (2.5) 11.2 (3.1) 12.8 (3.4)

Dolch 0.24 17.2 (5.3) 8.1 (3.1) 12.1 (5.2)

1 epoch

AllenAI TQ 0.07 19.5 (2.0) 13.0 (3.0) 13.2 (2.8)

Things 0.13 18.5 (3.9) 8.8 (2.9) 12.7 (4.1)

Dolch 0.10 19.0 (3.3) 9.5 (3.4) 12.7 (3.8)

2 epochs

AllenAI TQ 0.06 19.3 (2.8) 8.3 (1.6) 14.4 (3.7)

Things 0.06 19.5 (2.1) 11.8 (3.1) 13.7 (3.4)

Dolch 0.13 18.5 (4.0) 8.5 (3.0) 13.8 (4.6)

Won dialogues

2 epochs

AllenAI TQ 0.10 19.1 (3.1) 10.7 (4.1) 2.7 (1.1)

Things 0.10 19.3 (2.3) 13.1 (3.4) 12.8 (3.1)

Dolch 0.16 18.6 (3.9) 11.4 (5.9) 3.3 (2.1)

4 epochs

AllenAI TQ 0.12 18.7 (3.7) 8.8 (2.1) 12.8 (4.1)

Things 0.07 19.3 (2.5) 10.6 (2.8) 12.7 (3.5)

Dolch 0.14 18.5 (4.1) 9.1 (4.4) 13.2 (4.2)

8 epochs

AllenAI TQ 0.12 18.8 (3.4) 10.0 (3.1) 13.4 (3.8)

Things 0.07 19.4 (2.3) 11.9 (3.4) 13.1 (3.4)

Dolch 0.10 18.8 (3.7) 8.1 (2.8) 13.7 (3.9)

Table 4.16.: Results of �ne-tuning Llama-3-8B-Instruct using dialogue generated by

GPT-4o.

50



4.8. Joint evaluation of trained questioner and answerer

4.7.4. Reinforcement learning

We set up a reinforcement learning environment for the questioner to play the Twenty

Questions game using the PPOTrainer from the trl library
10

. Our reward modeling for

PPO [43] is based on the game score: If the game is won, the reward is proportional to

the count of rounds, the shortest possible game scoring a reward of 3 and the longest

possible game scoring a reward of 1. If the game is lost, the reward is −1. The version of

PPO we are using requires all activations for all dialogues in a minibatch to be stored in

memory, so we can only use a minibatch size of 16 and 1 gradient accumulation step. We

are training with a learning rate of 1.0 × 10−5 Because of the high memory usage, we are

only able to train Phi-3-mini-4k-Instruct, which still requires 4 GPUs to train. For both

the untrained and �ne-tuned model, we �nd that because of the low initial win rate and

the low batch size, there is not enough won games that the model can learn from using

the reward signal. The reward signal is mostly −1 except for few won games. After 25

steps, loss begins to increase and the score begins to decrease, as seen in Figure 4.7. There

Figure 4.7.: Reinforcement learning training of untrained Phi-3-mini-4k-Instruct. Left:

Total Loss over training steps. Right: Mean score over training steps.

is a multitude of possible reasons why the reinforcement learning setup does not work as

expected. The most likely reason is that the model is not able to learn from the reward

signal, as the reward signal is too sparse and too random. Another reason could be that our

reward modeling was not well suited for the PPO algorithm. Zhang et al. [55] successfully

uses the trlx library
11

which we also attempted to use instead without success. We were

not able to perform tests within the time frame of this thesis.

4.8. Joint evaluation of trained questioner and answerer

So far, we have only evaluated a trained answerer with an untrained questioner and vice

versa. We are interested in the performance of a trained questioner and answerer together.

For this reason, we evaluate the answerer �ne-tuned on AllenAI TQ and the questioner

trained with model distillation. As we can’t evaluate every combination of questioner

and answerer, we choose the best-performing questioner and answerer for each task. We

evaluate this for the original yes/no-task and using the single question answerer prompt (as

that is what the answerer models are �ne-tuned for). Our results are shown in Table 4.17.

10https://huggingface.co/docs/trl/ppo_trainer (last accessed on 12/09/2024)

11https://github.com/CarperAI/trlx (last accessed on 12/09/2024)

51

https://huggingface.co/docs/trl/ppo_trainer
https://github.com/CarperAI/trlx


4. Experiments and results

Model Ans. Ques. Test set Win (↑) Turns (↓) Ts. won (↓) Yes

Phi-3-mini-4k-Instruct

Binary choice Task

All GPT-4o dialogues

AllenAI TQ 0.14 19.0 (2.9) 13.2 (4.4) 3.0 (2.8)

Things 0.18 18.9 (2.9) 13.7 (3.9) 4.5 (3.2)

Dolch 0.3 17.5 (4.7) 11.6 (4.9) 3.2 (2.2)

Won GPT-4o dialogues

AllenAI TQ 0.23 18.2 (4.0) 12.1 (4.6) 5.6 (3.2)

Things 0.2 18.9 (2.8) 14.6 (3.9) 5.9 (3.0)

Dolch 0.29 17.5 (4.5) 11.5 (4.4) 4.7 (2.6)

Multiple choice task

All GPT-4o dialogues

AllenAI TQ 0.16 18.9 (3.0) 13.2 (4.4) 2.8 (2.4)

Things 0.15 19.0 (2.8) 13.3 (3.6) 4.4 (3.1)

Dolch 0.31 17.5 (4.7) 11.8 (5.0) 3.2 (2.5)

Won GPT-4o dialogues

AllenAI TQ 0.23 18.2 (4.0) 12.3 (4.7) 5.4 (3.2)

Things 0.19 19.0 (2.7) 14.8 (4.1) 5.9 (3.1)

Dolch 0.31 17.5 (4.5) 12.1 (4.6) 4.6 (2.3)

Llama-3-8B-Instruct

Binary choice task

All GPT-4o dialogues

AllenAI TQ 0.05 19.5 (2.4) 9.4 (3.5) 11.0 (4.1)

Things 0.01 19.9 (1.0) 10.0 (0.0) 10.9 (4.1)

Dolch 0.07 19.3 (2.9) 9.6 (4.1) 11.2 (4.8)

Won GPT-4o dialogues

AllenAI TQ 0.02 19.9 (0.4) 17.0 (1.0) 10.2 (4.2)

Things 0.03 19.8 (1.4) 12.3 (2.6) 10.2 (3.9)

Dolch 0.09 19.2 (2.9) 10.8 (4.1) 10.3 (4.6)

Multiple choice task

All GPT-4o dialogues

AllenAI TQ 0.26 17.8 (4.3) 11.7 (4.7) 6.6 (3.2)

Things 0.2 18.7 (3.3) 13.4 (4.3) 7.1 (3.0)

Dolch 0.36 16.9 (4.9) 11.3 (4.4) 6.8 (3.3)

Won GPT-4o dialogues

AllenAI TQ 0.25 18.3 (3.8) 13.2 (4.7) 5.9 (3.0)

Things 0.18 18.8 (2.8) 13.6 (3.3) 6.7 (2.1)

Dolch 0.33 17.1 (4.9) 11.1 (4.3) 5.4 (2.6)

Table 4.17.: Joint evaluation of trained questioner (Ques.) and answerer (Ans.) using the

binary task.

52



4.8. Joint evaluation of trained questioner and answerer

We �nd that the best performing setup for the trained Phi-3-mini-4k-Instruct is the

answerer trained on the multiple choice task with the questioner �ne-tuned on the won

dialogues which reaches an average win rate of 0.243. The binary choice task is very close

however, with an average win rate of 0.240. For Llama-3-8B-Instruct, the answerer trained

on the binary choice task still causes a low win rate due to errors in the �rst question

which are not recoverable. However, the Llama-3-8B-Instruct answerer trained on multiple

choice task with the questioner �ne-tuned on all dialogues reaches an average win rate of

0.273. This evaluation has yielded the highest scores we’ve seen so far, especially on the

Dolch word list. In comparison to Zhang et al. [55], who found a human win rate of 24%

on the Things dataset, our models can both reach 20% at maximum on the same dataset. In

comparison to the untrained models running the single question answerer prompt on the

AllenAI TQ questions (see Table 4.6), Phi-3-mini-4k-Instruct improves by a factor of 1.6

(from 0.14 to 0.23), while Llama-3-8B-Instruct improves by a factor of 3.7 (from 0.07 to 0.26,

note that the untrained Llama-3-8B-Instruct performed worse using this prompt template

in comparison to the original evaluation). Comparing the scores from the joint evaluation

to the untrained models running the original evaluation, where the models attained an

average win rate of 0.067 for Phi-3-mini-4k-Instruct and 0.130 for Llama3-8B-Instruct (see

Table 4.3), the trained models improve by a factor of around 3.6 and 2.1, respectively. This

shows that the game score is strongly dependent on both the questioner and the answerer,

and that training both models can lead to a signi�cant improvement in win rate.

53





5. Conclusion

In this chapter, we summarize our �ndings and answer the research questions. We also

discuss what limitations apply to our work and suggest directions for future work.

5.1. Answering Research Questions

In this work, we set out to answer three research questions about the ability of foundation

language models to play language-based guessing games. In this section, we summarize

our �ndings and answer the research questions.

RQ1: Can language-based guessing games be played by foundation languagemodels?

In this work, we �nd that foundation language models can play Twenty Questions to some

extent, but that it is a challenging task, especially for smaller models. In the role of the

answerer, foundation models like Llama3-8B-Instruct and Phi-3-mini-4k-Instruct (that

have not been �ne-tuned for question answering speci�cally) reach an F1 score of almost

0.8 on the AllenAI TQ dataset in the binary choice task. In the role of the questioner, these

models can also generate questions, but the game scores are relatively low with around

10% success rate for smaller models like Phi-3-mini-4k-Instruct and Llama3-8B-Instruct.

Larger instruction-tuned models like Llama3-70B-Instruct perform better at around 23%.

RQ2: What factors are relevant for game performance? How can they bemeasured?

We �nd that model size is correlated with both individual answerer performance and game

performance, with larger models performing better. Also, we �nd that the prompt is a

sensitive factor for game performance. In our tests, a zero-shot prompt with binary-choice

questions perform best. Another important factor is the answerer accuracy, as a single

wrong answer can lead to the game being lost. The domain and di�culty of the words

in the game are also decisive factors for the models’ performance, with simpler words

performing better. Constraining the domain by adding additional input like visual input

or the �rst letter of the word make the game much easier. The “I spy” game can be played

by the unmodi�ed small multimodal Phi-3-vision-128k-Instruct model at a win rate of 26%.

With these constraints, the model’s strategy is no longer trying to reduce uncertainty in

the game, but to simply list possible guesses, which is an e�ective strategy.

RQ3: Can themodel’s playing performance be improved by fine-tuning?

We �nd that supervised �ne-tuning of the both questioner and answerer can improve

the model’s performance, but the quality of the data is crucial. Training the answerer

55



5. Conclusion

on the AllenAI TQ dataset improves the model’s answering accuracy. This accuracy is

not directly correlated with the game performance (which depends on questioner and

answerer), but it is a necessary condition for the game to be played. The performance on

the game especially bene�ts from answerer training if there are multiple answer options.

Generating dialogues from a strict taxonomy like WordNet shows inconclusive results,

but is not detrimental to performance. Training the questioner on collected dialogues

from 20Q does not improve performance because of the low quality of the data. Model

distillation using GPT-4o-generated dialogues is the best performing �ne-tuning method

for the questioner, which is why we use it in joint evaluation. In joint evaluation of both

trained models, we �nd that our models can both reach much higher win rates. On the

things dataset, both reach 20%, in comparison to proposed human win rates of 24% [55].

Averaging the results for the three word lists, the best score of Phi-3-mini-4k-Instruct is

an average win rate of 24.3%, while Llama-3-8B-Instruct scores 27.3%.

5.2. Limitations and Future Work

The main limitation of our work is the computational resources available, that limits what

experiments can be done. With more resources, hyperparameter optimization could have

been done to improve results. Furthermore, larger models could have been trained which

may be more capable. Another limitation is data quality, which is the main bottleneck

for supervised �ne-tuning. We did not have access to human-generated dialogues for

supervised �ne-tuning, which could have improved the results.

Other possible changes to the game include game length, as the taxonomy based ap-

proach and the 20Q collected data shows that a game that is continued after 20 questions

can cause more games to be won. It would be interesting to see how the models perform

in a longer game. Concerning the answerer, it would be interesting to compare training

with AllenAI TQ dataset to training with other QA datasets like BoolQ [8] and whether

this improves the model’s playing performance. Concerning the training of the questioner,

continuing on working on reinforcement learning could be an interesting avenue for

future work, as others have shown that it can improve model performance without the

need for human-generated data [55]. Future work could also include more experiments

with di�erent games, such as Taboo (which also appears in BIG-bench
1
).

Finally, development of LLMs is a very active �eld and new models are released fre-

quently. During the course of this work, updated versions of the models we evaluate have

been released (Phi3.5 was released in August 2024
2

with a new Mixture-of-Experts variant,

Llama was updated to version 3.1 in July
3

and 3.2 in September
4
), which may reach better

performance in the game.

1https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/taboo (last accessed

on 12/09/2024)

2https://techcommunity.microsoft.com/blog/azure-ai-services-blog/discover-the-new-multi-

lingual-high-quality-phi-3-5-slms/4225280 (last accessed on 12/09/2024)

3https://ai.meta.com/blog/meta-llama-3-1/ (last accessed on 12/09/2024)

4https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/ (last accessed

on 12/09/2024)

56

https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/taboo
https://techcommunity.microsoft.com/blog/azure-ai-services-blog/discover-the-new-multi-lingual-high-quality-phi-3-5-slms/4225280
https://techcommunity.microsoft.com/blog/azure-ai-services-blog/discover-the-new-multi-lingual-high-quality-phi-3-5-slms/4225280
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/


Bibliography

[1] Marah I. Abdin et al. “Phi-3 Technical Report: A Highly Capable Language Model

Locally on Your Phone”. In: CoRR abs/2404.14219 (2024). doi: 10.48550/ARXIV.240

4.14219. arXiv: 2404.14219. url: https://doi.org/10.48550/arXiv.2404.14219

(visited on 12/09/2024).

[2] Joshua Ainslie et al. “GQA: Training Generalized Multi-Query Transformer Models

from Multi-Head Checkpoints”. In: Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023.

Ed. by Houda Bouamor, Juan Pino, and Kalika Bali. Association for Computational

Linguistics, 2023, pp. 4895–4901. doi: 10.18653/V1/2023.EMNLP-MAIN.298. url:

https://doi.org/10.18653/v1/2023.emnlp-main.298 (visited on 12/09/2024).

[3] Yoshua Bengio et al. “A Neural Probabilistic Language Model”. In: J. Mach. Learn.
Res. 3 (2003), pp. 1137–1155. url: https://jmlr.org/papers/v3/bengio03a.html

(visited on 12/10/2024).

[4] Tom B. Brown et al. “Language Models Are Few-Shot Learners”. In: Advances in
Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, Virtual. Ed. by Hugo

Larochelle et al. 2020. url: https://proceedings.neurips.cc/paper/2020/hash/1

457c0d6bfcb4967418bfb8ac142f64a-Abstract.html (visited on 12/09/2024).

[5] Maxime De Bruyn et al. “Is It Smaller Than a Tennis Ball? Language Models Play the

Game of Twenty Questions”. In: Proceedings of the Fifth BlackboxNLP Workshop on
Analyzing and Interpreting Neural Networks for NLP, BlackboxNLP@EMNLP 2022, Abu
Dhabi, United Arab Emirates (Hybrid), December 8, 2022. Ed. by Jasmijn Bastings et al.

Association for Computational Linguistics, 2022, pp. 80–90. doi: 10.18653/V1/202

2.BLACKBOXNLP-1.7. url: https://doi.org/10.18653/v1/2022.blackboxnlp-1.7

(visited on 12/09/2024).

[6] Yihong Chen et al. “Learning-to-Ask: Knowledge Acquisition via 20 Questions”.

In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD 2018, London, UK, August 19-23, 2018. Ed. by Yike

Guo and Faisal Farooq. ACM, 2018, pp. 1216–1225. doi: 10.1145/3219819.3220047.

[7] Junyoung Chung et al. “Empirical Evaluation of Gated Recurrent Neural Networks

on Sequence Modeling”. In: CoRR abs/1412.3555 (2014). arXiv: 1412.3555. url:

http://arxiv.org/abs/1412.3555 (visited on 12/09/2024).

57

https://doi.org/10.48550/ARXIV.2404.14219
https://doi.org/10.48550/ARXIV.2404.14219
https://arxiv.org/abs/2404.14219
https://doi.org/10.48550/arXiv.2404.14219
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.298
https://doi.org/10.18653/v1/2023.emnlp-main.298
https://jmlr.org/papers/v3/bengio03a.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/V1/2022.BLACKBOXNLP-1.7
https://doi.org/10.18653/V1/2022.BLACKBOXNLP-1.7
https://doi.org/10.18653/v1/2022.blackboxnlp-1.7
https://doi.org/10.1145/3219819.3220047
https://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555


Bibliography

[8] Christopher Clark et al. “BoolQ: Exploring the Surprising Di�culty of Natural

Yes/No Questions”. In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and
Short Papers). Ed. by Jill Burstein, Christy Doran, and Thamar Solorio. Association

for Computational Linguistics, 2019, pp. 2924–2936. doi: 10.18653/V1/N19-1300.

url: https://doi.org/10.18653/v1/n19-1300.

[9] Tri Dao. “FlashAttention-2: Faster Attention with Better Parallelism and Work

Partitioning”. In: The Twelfth International Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. url: https://op

enreview.net/forum?id=mZn2Xyh9Ec (visited on 12/09/2024).

[10] Tri Dao et al. “FlashAttention: Fast and Memory-E�cient Exact Attention with

IO-Awareness”. In: Advances in Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans,
LA, USA, November 28 - December 9, 2022. Ed. by Sanmi Koyejo et al. 2022. url:

https://proceedings.neurips.cc//paper_files/paper/2022/hash/67d57c32e20

fd0a7a302cb81d36e40d5-Abstract-Conference.html (visited on 12/09/2024).

[11] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Lan-

guage Understanding”. In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and
Short Papers). Ed. by Jill Burstein, Christy Doran, and Thamar Solorio. Association

for Computational Linguistics, 2019, pp. 4171–4186. doi: 10.18653/V1/N19-1423.

url: https://doi.org/10.18653/v1/n19-1423 (visited on 12/10/2024).

[12] Edward William Dolch. Problems in Reading. Garrard Press, 1948.

[13] Abhimanyu Dubey et al. “The Llama 3 Herd of Models”. In: CoRR abs/2407.21783

(2024). doi: 10.48550/ARXIV.2407.21783. arXiv: 2407.21783. url: https://doi.or

g/10.48550/arXiv.2407.21783 (visited on 12/09/2024).

[14] Suriya Gunasekar et al. “Textbooks Are All You Need”. In: CoRR abs/2306.11644

(2023). doi: 10.48550/ARXIV.2306.11644. arXiv: 2306.11644. url: https://doi.or

g/10.48550/arXiv.2306.11644 (visited on 12/09/2024).

[15] Dan Hendrycks et al. “Measuring Massive Multitask Language Understanding”. In:

9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021. url: https://openreview.net/foru

m?id=d7KBjmI3GmQ (visited on 12/09/2024).

[16] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural
Comput. 9.8 (1997), pp. 1735–1780. doi: 10 . 1162 / NECO . 1997 . 9 . 8 . 1735. url:

https://doi.org/10.1162/neco.1997.9.8.1735 (visited on 12/09/2024).

[17] Jordan Ho�mann et al. “Training Compute-Optimal Large Language Models”. In:

CoRR abs/2203.15556 (2022). doi: 10.48550/ARXIV.2203.15556. arXiv: 2203.15556.

url: https://doi.org/10.48550/arXiv.2203.15556 (visited on 12/09/2024).

58

https://doi.org/10.18653/V1/N19-1300
https://doi.org/10.18653/v1/n19-1300
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec
https://proceedings.neurips.cc//paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
https://proceedings.neurips.cc//paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.48550/ARXIV.2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/ARXIV.2306.11644
https://arxiv.org/abs/2306.11644
https://doi.org/10.48550/arXiv.2306.11644
https://doi.org/10.48550/arXiv.2306.11644
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://doi.org/10.1162/NECO.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.48550/ARXIV.2203.15556
https://arxiv.org/abs/2203.15556
https://doi.org/10.48550/arXiv.2203.15556


[18] Edward J. Hu et al. “LoRA: Low-Rank Adaptation of Large Language Models”. In:

The Tenth International Conference on Learning Representations, ICLR 2022, Virtual
Event, April 25-29, 2022. OpenReview.net, 2022. url: https://openreview.net/for

um?id=nZeVKeeFYf9 (visited on 12/09/2024).

[19] Huang Hu et al. “Playing 20 Question Game with Policy-Based Reinforcement

Learning”. In: Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, Brussels, Belgium, October 31 - November 4, 2018. Ed. by Ellen

Rilo� et al. Association for Computational Linguistics, 2018, pp. 3233–3242. doi:

10.18653/V1/D18-1361. url: https://doi.org/10.18653/v1/d18-1361 (visited on

12/09/2024).

[20] Aaron Hurst et al. “GPT-4o System Card”. In: CoRR abs/2410.21276 (2024). doi:

10.48550/ARXIV.2410.21276. arXiv: 2410.21276. url: https://doi.org/10.48550

/arXiv.2410.21276.

[21] Albert Q. Jiang et al. “Mistral 7B”. In: CoRR abs/2310.06825 (2023). doi: 10.48550

/ARXIV.2310.06825. arXiv: 2310.06825. url: https://doi.org/10.48550/arXiv.2

310.06825 (visited on 12/09/2024).

[22] Albert Q. Jiang et al. “Mixtral of Experts”. In: CoRR abs/2401.04088 (2024). doi:

10.48550/ARXIV.2401.04088. arXiv: 2401.04088. url: https://doi.org/10.48550

/arXiv.2401.04088 (visited on 12/09/2024).

[23] Denis Kocetkov et al. “The Stack: 3 TB of Permissively Licensed Source Code”. In:

Trans. Mach. Learn. Res. 2023 (2023). url: https://openreview.net/forum?id=pxp

bTdUEpD (visited on 12/09/2024).

[24] Ranjay Krishna et al. “Visual Genome: Connecting Language and Vision Using

Crowdsourced Dense Image Annotations”. In: Int. J. Comput. Vis. 123.1 (2017),

pp. 32–73. doi: 10.1007/S11263-016-0981-7. url: https://doi.org/10.1007/s11

263-016-0981-7 (visited on 12/09/2024).

[25] Yuanzhi Li et al. “Textbooks Are All You Need II: Phi-1.5 Technical Report”. In: CoRR
abs/2309.05463 (2023). doi: 10.48550/ARXIV.2309.05463. arXiv: 2309.05463. url:

https://doi.org/10.48550/arXiv.2309.05463 (visited on 12/09/2024).

[26] Haotian Liu et al. “Visual Instruction Tuning”. In: Advances in Neural Information
Processing Systems 36: Annual Conference on Neural Information Processing Systems
2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023. Ed. by Alice Oh

et al. 2023. url: https://proceedings.neurips.cc//paper_files/paper/2023/h

ash/6dcf277ea32ce3288914faf369fe6de0-Abstract-Conference.html (visited on

12/09/2024).

[27] Xiaoyong Liu and W. Bruce Croft. “Statistical Language Modeling for Information

Retrieval”. In: Annu. Rev. Inf. Sci. Technol. 39.1 (2005), pp. 1–31. doi: 10.1002/A

RIS.1440390108. url: https://doi.org/10.1002/aris.1440390108 (visited on

12/10/2024).

59

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/V1/D18-1361
https://doi.org/10.18653/v1/d18-1361
https://doi.org/10.48550/ARXIV.2410.21276
https://arxiv.org/abs/2410.21276
https://doi.org/10.48550/arXiv.2410.21276
https://doi.org/10.48550/arXiv.2410.21276
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://arxiv.org/abs/2310.06825
https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.48550/ARXIV.2401.04088
https://arxiv.org/abs/2401.04088
https://doi.org/10.48550/arXiv.2401.04088
https://doi.org/10.48550/arXiv.2401.04088
https://openreview.net/forum?id=pxpbTdUEpD
https://openreview.net/forum?id=pxpbTdUEpD
https://doi.org/10.1007/S11263-016-0981-7
https://doi.org/10.1007/s11263-016-0981-7
https://doi.org/10.1007/s11263-016-0981-7
https://doi.org/10.48550/ARXIV.2309.05463
https://arxiv.org/abs/2309.05463
https://doi.org/10.48550/arXiv.2309.05463
https://proceedings.neurips.cc//paper_files/paper/2023/hash/6dcf277ea32ce3288914faf369fe6de0-Abstract-Conference.html
https://proceedings.neurips.cc//paper_files/paper/2023/hash/6dcf277ea32ce3288914faf369fe6de0-Abstract-Conference.html
https://doi.org/10.1002/ARIS.1440390108
https://doi.org/10.1002/ARIS.1440390108
https://doi.org/10.1002/aris.1440390108


Bibliography

[28] Pan Lu et al. “Learn to Explain: Multimodal Reasoning via Thought Chains for

Science Question Answering”. In: Advances in Neural Information Processing Systems
35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022,
New Orleans, LA, USA, November 28 - December 9, 2022. Ed. by Sanmi Koyejo et al.

2022. url: http://papers.nips.cc/paper_files/paper/2022/hash/11332b6b6cf4

485b84afadb1352d3a9a-Abstract-Conference.html.

[29] Thomas Mesnard et al. “Gemma: Open Models Based on Gemini Research and

Technology”. In: CoRR abs/2403.08295 (2024). doi: 10.48550/ARXIV.2403.08295.

arXiv: 2403.08295. url: https://doi.org/10.48550/arXiv.2403.08295 (visited

on 12/09/2024).

[30] Tomás Mikolov et al. “E�cient Estimation of Word Representations in Vector Space”.

In: 1st International Conference on Learning Representations, ICLR 2013, Scottsdale,
Arizona, USA, May 2-4, 2013, Workshop Track Proceedings. Ed. by Yoshua Bengio and

Yann LeCun. 2013. url: http://arxiv.org/abs/1301.3781 (visited on 12/09/2024).

[31] George A. Miller. “WordNet: A Lexical Database for English”. In: Commun. ACM
38.11 (1995), pp. 39–41. doi: 10.1145/219717.219748.

[32] OpenAI. “GPT-4 Technical Report”. In: CoRR abs/2303.08774 (2023). doi: 10.48550

/ARXIV.2303.08774. arXiv: 2303.08774. url: https://doi.org/10.48550/arXiv.2

303.08774 (visited on 12/09/2024).

[33] Long Ouyang et al. “Training Language Models to Follow Instructions with Human

Feedback”. In: Advances in Neural Information Processing Systems 35: Annual Con-
ference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans,
LA, USA, November 28 - December 9, 2022. Ed. by Sanmi Koyejo et al. 2022. url:

http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f5

8805a001731-Abstract-Conference.html (visited on 12/09/2024).

[34] Parth Parikh and Anisha Gupta. “Reversing The Twenty Questions Game”. In: CoRR
abs/2301.08718 (2023). doi: 10.48550/ARXIV.2301.08718. arXiv: 2301.08718. url:

https://doi.org/10.48550/arXiv.2301.08718 (visited on 12/09/2024).

[35] Razvan Pascanu, Tomás Mikolov, and Yoshua Bengio. “On the Di�culty of Training

Recurrent Neural Networks”. In: Proceedings of the 30th International Conference
on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013. Vol. 28. JMLR

Workshop and Conference Proceedings. JMLR.org, 2013, pp. 1310–1318. url: http:

//proceedings.mlr.press/v28/pascanu13.html (visited on 12/09/2024).

[36] Alec Radford et al. “Learning Transferable Visual Models From Natural Language

Supervision”. In: Proceedings of the 38th International Conference onMachine Learning,
ICML 2021, 18-24 July 2021, Virtual Event. Ed. by Marina Meila and Tong Zhang.

Vol. 139. Proceedings of Machine Learning Research. PMLR, 2021, pp. 8748–8763. url:

http://proceedings.mlr.press/v139/radford21a.html (visited on 12/09/2024).

60

http://papers.nips.cc/paper_files/paper/2022/hash/11332b6b6cf4485b84afadb1352d3a9a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/11332b6b6cf4485b84afadb1352d3a9a-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2403.08295
https://arxiv.org/abs/2403.08295
https://doi.org/10.48550/arXiv.2403.08295
http://arxiv.org/abs/1301.3781
https://doi.org/10.1145/219717.219748
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/ARXIV.2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2301.08718
https://arxiv.org/abs/2301.08718
https://doi.org/10.48550/arXiv.2301.08718
http://proceedings.mlr.press/v28/pascanu13.html
http://proceedings.mlr.press/v28/pascanu13.html
http://proceedings.mlr.press/v139/radford21a.html


[37] Rafael Rafailov et al. “Direct Preference Optimization: Your Language Model Is

Secretly a Reward Model”. In: Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023. Ed. by Alice Oh et al. 2023. url:

http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8

302b5e06ce7-Abstract-Conference.html.

[38] Colin Ra�el et al. “Exploring the Limits of Transfer Learning with a Uni�ed Text-to-

Text Transformer”. In: Journal of Machine Learning Research 21 (2020), 140:1–140:67.

url: https://jmlr.org/papers/v21/20-074.html.

[39] Joseph Redmon et al. “You Only Look Once: Uni�ed, Real-Time Object Detection”.

In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las
Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society, 2016, pp. 779–788. doi:

10.1109/CVPR.2016.91.

[40] Victor Sanh et al. “DistilBERT, a Distilled Version of BERT: Smaller, Faster, Cheaper

and Lighter”. In: CoRR abs/1910.01108 (2019). arXiv: 1910.01108. url: http://arxi

v.org/abs/1910.01108.

[41] Victor Sanh et al. “Multitask Prompted Training Enables Zero-Shot Task General-

ization”. In: The Tenth International Conference on Learning Representations, ICLR
2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. url: https://openrev

iew.net/forum?id=9Vrb9D0WI4.

[42] Victor Sanh et al. “Multitask Prompted Training Enables Zero-Shot Task General-

ization”. In: The Tenth International Conference on Learning Representations, ICLR
2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. url: https://openrev

iew.net/forum?id=9Vrb9D0WI4 (visited on 12/12/2024).

[43] John Schulman et al. “Proximal Policy Optimization Algorithms”. In: CoRR abs/

1707.06347 (2017). arXiv: 1707.06347. url: http://arxiv.org/abs/1707.06347

(visited on 12/09/2024).

[44] Rico Sennrich, Barry Haddow, and Alexandra Birch. “Neural Machine Translation

of Rare Words with Subword Units”. In: Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin,
Germany, Volume 1: Long Papers. The Association for Computer Linguistics, 2016.

doi: 10.18653/V1/P16-1162. url: https://doi.org/10.18653/v1/p16-1162

(visited on 12/09/2024).

[45] Noam Shazeer. “GLU Variants Improve Transformer”. In: CoRR abs/2002.05202

(2020). arXiv: 2002.05202. url: https://arxiv.org/abs/2002.05202 (visited on

12/09/2024).

[46] Aarohi Srivastava et al. “Beyond the Imitation Game: Quantifying and Extrapolating

the Capabilities of Language Models”. In: Trans. Mach. Learn. Res. 2023 (2023). url:

https://openreview.net/forum?id=uyTL5Bvosj (visited on 12/09/2024).

[47] Jianlin Su et al. “RoFormer: Enhanced Transformer with Rotary Position Embedding”.

In: Neurocomputing 568 (2024), p. 127063. doi: 10.1016/J.NEUCOM.2023.127063.

url: https://doi.org/10.1016/j.neucom.2023.127063 (visited on 12/09/2024).

61

http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
https://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1109/CVPR.2016.91
https://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.18653/V1/P16-1162
https://doi.org/10.18653/v1/p16-1162
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://openreview.net/forum?id=uyTL5Bvosj
https://doi.org/10.1016/J.NEUCOM.2023.127063
https://doi.org/10.1016/j.neucom.2023.127063


Bibliography

[48] Hugo Touvron et al. “Llama 2: Open Foundation and Fine-Tuned Chat Models”. In:

CoRR abs/2307.09288 (2023). doi: 10.48550/ARXIV.2307.09288. arXiv: 2307.09288.

url: https://doi.org/10.48550/arXiv.2307.09288 (visited on 12/09/2024).

[49] Hugo Touvron et al. “LLaMA: Open and E�cient Foundation Language Models”. In:

CoRR abs/2302.13971 (2023). doi: 10.48550/ARXIV.2302.13971. arXiv: 2302.13971.

url: https://doi.org/10.48550/arXiv.2302.13971 (visited on 12/09/2024).

[50] Ashish Vaswani et al. “Attention Is All You Need”. In: Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA. Ed. by Isabelle Guyon et al. 2017,

pp. 5998–6008. url: https://proceedings.neurips.cc/paper/2017/hash/3f5ee24

3547dee91fbd053c1c4a845aa-Abstract.html (visited on 12/09/2024).

[51] Jason Wei et al. “Finetuned Language Models Are Zero-Shot Learners”. In: The Tenth
International Conference on Learning Representations, ICLR 2022, Virtual Event, April
25-29, 2022. OpenReview.net, 2022. url: https://openreview.net/forum?id=gEZr

GCozdqR (visited on 12/09/2024).

[52] Xiang Yue et al. “MMMU: A Massive Multi-Discipline Multimodal Understanding

and Reasoning Benchmark for Expert AGI”. In: IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024. IEEE,

2024, pp. 9556–9567. doi: 10.1109/CVPR52733.2024.00913. url: https://doi.org

/10.1109/CVPR52733.2024.00913.

[53] Rowan Zellers et al. “HellaSwag: Can a Machine Really Finish Your Sentence?” In:

Proceedings of the 57th Conference of the Association for Computational Linguistics,
ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers. Ed. by Anna

Korhonen, David R. Traum, and Lluís Màrquez. Association for Computational

Linguistics, 2019, pp. 4791–4800. doi: 10.18653/V1/P19-1472. url: https://doi.o

rg/10.18653/v1/p19-1472 (visited on 12/09/2024).

[54] Peiyuan Zhang et al. “TinyLlama: An Open-Source Small Language Model”. In:

CoRR abs/2401.02385 (2024). doi: 10.48550/ARXIV.2401.02385. arXiv: 2401.02385.

url: https://doi.org/10.48550/arXiv.2401.02385 (visited on 12/09/2024).

[55] Yizhe Zhang, Jiarui Lu, and Navdeep Jaitly. “Probing the Multi-turn Planning Capa-

bilities of LLMs via 20 Question Games”. In: Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024,
Bangkok, Thailand, August 11-16, 2024. Ed. by Lun-Wei Ku, Andre Martins, and

Vivek Srikumar. Association for Computational Linguistics, 2024, pp. 1495–1516.

doi: 10.18653/V1/2024.ACL-LONG.82. url: https://doi.org/10.18653/v1/2024

.acl-long.82 (visited on 12/09/2024).

[56] Wayne Xin Zhao et al. “A Survey of Large Language Models”. In:CoRR abs/2303.18223

(2023). doi: 10.48550/ARXIV.2303.18223. arXiv: 2303.18223. url: https://doi.or

g/10.48550/arXiv.2303.18223 (visited on 12/09/2024).

62

https://doi.org/10.48550/ARXIV.2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/ARXIV.2302.13971
https://arxiv.org/abs/2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://doi.org/10.1109/CVPR52733.2024.00913
https://doi.org/10.1109/CVPR52733.2024.00913
https://doi.org/10.1109/CVPR52733.2024.00913
https://doi.org/10.18653/V1/P19-1472
https://doi.org/10.18653/v1/p19-1472
https://doi.org/10.18653/v1/p19-1472
https://doi.org/10.48550/ARXIV.2401.02385
https://arxiv.org/abs/2401.02385
https://doi.org/10.48550/arXiv.2401.02385
https://doi.org/10.18653/V1/2024.ACL-LONG.82
https://doi.org/10.18653/v1/2024.acl-long.82
https://doi.org/10.18653/v1/2024.acl-long.82
https://doi.org/10.48550/ARXIV.2303.18223
https://arxiv.org/abs/2303.18223
https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.48550/arXiv.2303.18223


[57] Lianmin Zheng et al. “Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena”.

In: Advances in Neural Information Processing Systems 36: Annual Conference on
Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023. Ed. by Alice Oh et al. 2023. url: https://proceedings.neur

ips.cc//paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Ab

stract-Datasets_and_Benchmarks.html (visited on 12/09/2024).

63

https://proceedings.neurips.cc//paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc//paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc//paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html




A. Appendix

A.1. Datasets

always usually sometimes rarely never irrelevant
Label

0

5000

10000

15000

20000

25000

30000

35000

Fr
eq

ue
nc

y

Distribution of labels

Figure A.1.: Distribution of answer op-

tions in un�ltered AllenAI TQ

dataset (37,122 entries)

0 20 40 60 80 100 120 140
Length of question (characters)

0

5000

10000

15000

20000

25000

30000

Fr
eq

ue
nc

y

count    78890.000000
mean        20.766143

std          9.030772
min          3.000000

25%         14.000000
50%         19.000000
75%         25.000000
max        145.000000

dtype: float64

Distribution of question length

Figure A.2.: Question length distribution of

un�ltered AllenAI TQ dataset

65



A. Appendix

A.2. Evaluation

Alice and Bob are playing a game of Twenty Questions with each other. Bob

will ask a series of questions, and Alice will respond to each question

with a ’Yes’ or ’No’, until Bob is able to guess the concept that Alice

is thinking of.

The concept Alice is thinking of and wants to communicate to Bob is ’car’.

This is Alice and Bob’s conversation, starting with Bob’s first question.

Bob: Is the concept you’re thinking of a living thing?

Alice: No

Bob: Is the concept you’re thinking of man-made?

Alice: Yes

Bob: Does the concept you’re thinking of have wheels?

Alice: Yes

Bob: Is the concept you’re thinking of used for transportation?

Alice: Yes

Bob: Does the concept you’re thinking of have a motor?

Alice: Yes

Bob: Is the concept you’re thinking of a type of car?

Figure A.3.: Example dialogue from the answerer’s perspective for Twenty Questions

game in original BIG-bench [46] game. Blue text is what the answerer model

generated, everything else is part of the prompt.

66



A.2. Evaluation

Alice and Bob are playing a game of Twenty Questions with each other. Bob

will ask a series of questions, and Alice will respond to each question

with a ’Yes’ or ’No’, until Bob is able to guess the concept that Alice

is thinking of.

This is Alice and Bob’s conversation, starting with Bob’s first question.

Bob: Is the concept you’re thinking of a living thing?

Alice: No

Bob: Is the concept you’re thinking of man-made?

Alice: Yes

Bob: Does the concept you’re thinking of have wheels?

Alice: Yes

Bob: Is the concept you’re thinking of used for transportation?

Alice: Yes

Bob: Does the concept you’re thinking of have a motor?

Alice: Yes

Bob: Is the concept you’re thinking of a type of car?

Figure A.4.: Abbreviated example dialogue from the questioner’s perspective for Twenty

Questions game in original BIG-bench [46] game. The original dialogue

contained ten questions. Teal text is what the questioner model generated,

everything else is part of the prompt.

coarse objects: "apple", "television", "dinosaur", "airplane", "house",

"tree", "coat", "shoes", "car", "train", "shower", "frisbee", "cow"

refined objects: "cosmic crisp apple", "giganotosaurus", "siberian huskey",

"glass micropipette"

verbs: "jog", "catch", "defenestrate", "eat", "apologize", "operate",

"pretend"

emotions: "anger", "love", "hate", "contentment", "jealousy", "surprise",

"disgust", "hopefulness"

abstract concepts: "global poverty", "phase transition", "positive sum game",

"beauty", "representative democracy", "tall", "mauve", "perspicacious"

Figure A.5.: List of concepts in original Twenty Questions task from BIG-Bench [46], see

repository at https://github.com/google/BIG-bench/tree/main/bigbench

/benchmark_tasks/twenty_questions (last accessed on 12/09/2024)

67

https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/twenty_questions
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/twenty_questions


A. Appendix

<|system|>

Alice and Bob are playing a game of Twenty Questions with each other. Bob

will ask a series of questions, and Alice will respond to each question

with a ’Yes’ or ’No’, until Bob is able to guess the concept that Alice

is thinking of.

The concept Alice is thinking of and wants to communicate to Bob is ’apple’.

This is Alice and Bob’s conversation, starting with Bob’s first question.<|

end|>

<|user|>

Bob: Is the concept a living thing?<|end|>

<|assistant|>

Alice: No<|end|>

<|user|>

Bob: Is it found on Earth?<|end|>

<|assistant|>

Alice: Yes<|end|>

<|user|>

Bob: Is it man-made?<|end|>

<|assistant|>

Alice: No<|end|>

<|user|>

[...]

Bob: Is it a plant?<|end|>

<|assistant|>

Alice: Yes<|end|>

<|user|>

Bob: Is it a tree?<|end|>

<|assistant|>

Alice: No<|end|>

<|user|>

Bob: Is it a flowering plant?<|end|>

<|assistant|>

Alice: Yes<|end|>

<|user|>

Bob: Is it a fruit-bearing tree?<|end|>

<|assistant|>

Alice: Yes<|end|>

<|user|>

Bob: Is it an apple tree?<|end|>

Figure A.6.: Example dialogue from the answerer’s perspective for Twenty Questions game

in updated game with correct prompt format for Phi-3-mini-4k-instruct. Teal

text is what the questioner model generated, blue text is what the answerer

model generated, everything else is part of the prompt. Abbreviated.

68



A.2. Evaluation

Overlap between Things concepts / AllenAI TQ concepts:

Apple

Continent

Drink

Guitar

Spider

Overlap between AllenAI TQ concepts / Dolch concepts:

Air

Apple

Car

Cat

Dog

Father

Picture

School

Snow

Tree

Wind

Overlap between Dolch concepts / Things concepts:

Apple

Boat

Egg

Watch

69



A. Appendix

A.3. Experiments

Yes
May

be No

Answer option

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Answer option usage (normalized), yes/no/maybe options

Phi3-mini-4k-instruct
Meta-Llama-3-8B-Instruct

Figure A.7.: Usage of answer options in Twenty Questions task for yes/no/maybe options

70



A.3. Experiments

<|system|>

Alice and Bob are playing a game of Twenty Questions with each other. Bob

will ask a series of questions, and Alice will respond to each question

with Yes, No, Unknown, Irrelevant, Sometimes, Maybe, Probably, Doubtful,

Usually, Depends, Rarely or Partly, until Bob is able to guess the

concept that Alice is thinking of.

Here is the first of two example dialogues:

---

Bob: Is it a living thing?

Alice: Yes

Bob: Is it an Animal?

Alice: Yes

Bob: Is it small?

Alice: No

[...]

Bob: Does it live in large populations?

Alice: Yes

Bob: I am guessing that it is an elephant?

Alice: Yes

---

Here is the second example dialogue:

---

Bob: Is it a living thing?

Alice: No

Bob: Is it a plant?

Alice: No

Bob: Is it a mineral?

Alice: Partly

[...]

Bob: Is it found on a desk?

Alice: No

Bob: Does it make noise?

Alice: No

Bob: I am guessing that it is the Sun?

Alice: Yes

---

Now it is your turn to play.

This is Alice and Bob’s conversation, starting with Bob’s first question.

<|end|>

Figure A.8.: System prompt from questioner’s perspective for few-shot approach con-

taining two example dialogues and correct prompt format for Phi-3-mini-4k-

instruct. Abbreviated dialogue, the system prompt contains the full dialogue
71



A. Appendix

<|system|>

You are thinking of the concept ’{concept}’.

Your friend is trying to guess what you are thinking of by asking questions.

Answer the following question by only answering {answer_options}:<|end|>

<|user|>

Question: {question}<|end|>

<|assistant|>Answer:

Figure A.9.: Single question answerer prompt for measuring the answerer’s performance

for each entry of the AllenAI TQ test dataset (Prompt format is for Phi-3-

mini-4k-Instruct). The same format is used for training of the answerer on

the AllenAI TQ train dataset.

72



A.3. Experiments

ge
m

m
a-

7b
-it

ge
m

m
a-

7b

ge
m

m
a-

2b
-it

ge
m

m
a-

2b

M
et

a-
Lla

m
a-

3-
8B

-In
st

ru
ct

Lla
m

a-
2-

7b
-c

ha
t-h

f

M
et

a-
Lla

m
a-

3-
8B

Lla
m

a-
2-

7b
-h

f

Ph
i-3

-m
in

i-4
k-

in
st

ru
ct

M
ist

ra
l-7

B-
In

st
ru

ct
-v

0.
2

M
ist

ra
l-7

B-
v0

.1

Ti
ny

Lla
m

a-
1.

1B
-C

ha
t-v

1.
0

Al
wa

ys
 y

es

Al
wa

ys
 n

o

Model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Yes/No task - Accuracies

ge
m

m
a-

2b

ge
m

m
a-

7b
-it

ge
m

m
a-

7b

ge
m

m
a-

2b
-it

M
et

a-
Lla

m
a-

3-
8B

-In
st

ru
ct

Lla
m

a-
2-

7b
-h

f

Lla
m

a-
2-

7b
-c

ha
t-h

f

M
et

a-
Lla

m
a-

3-
8B

Ph
i-3

-m
in

i-4
k-

in
st

ru
ct

M
ist

ra
l-7

B-
In

st
ru

ct
-v

0.
2

M
ist

ra
l-7

B-
v0

.1

Ti
ny

Lla
m

a-
1.

1B
-C

ha
t-v

1.
0

Model

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ac
cu

ra
cy

Multiple choice task - Accuracies
ge

m
m

a-
7b

ge
m

m
a-

2b

ge
m

m
a-

7b
-it

ge
m

m
a-

2b
-it

M
et

a-
Lla

m
a-

3-
8B

-In
st

ru
ct

Lla
m

a-
2-

7b
-c

ha
t-h

f

M
et

a-
Lla

m
a-

3-
8B

Lla
m

a-
2-

7b
-h

f

Ph
i-3

-m
in

i-4
k-

in
st

ru
ct

M
ist

ra
l-7

B-
In

st
ru

ct
-v

0.
2

M
ist

ra
l-7

B-
v0

.1

Ti
ny

Lla
m

a-
1.

1B
-C

ha
t-v

1.
0

Model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F1
 S

co
re

Yes/No task - F1 score

Figure A.10.: Results of the answerer’s performance. Top left: Accuracies of yes/no task.

Top right: Accuracies of multiple choice task. Bottom left: F1 score of yes/no

task. Model families are in a common color with solid shades for instruction-

tuned models and lighter shades for non-instruction-tuned models. All

evaluations are using the un�ltered dataset, evaluations on the un�ltered

dataset can be found in Figure 4.3

73



A. Appendix

No Yes
Predicted label

No
Ye

s
Tr

ue
 la

be
l

117 8305

21 8478

Precision: 0.51, Recall: 1.00, F1: 0.67

gemma-2b

1000

2000

3000

4000

5000

6000

7000

8000

No Yes
Predicted label

No
Ye

s
Tr

ue
 la

be
l

6413 2009

3750 4749

Precision: 0.70, Recall: 0.56, F1: 0.62

gemma-2b-it

2500

3000

3500

4000

4500

5000

5500

6000

No Yes
Predicted label

No
Ye

s
Tr

ue
 la

be
l

3303 5119

274 8225

Precision: 0.62, Recall: 0.97, F1: 0.75

gemma-7b

1000

2000

3000

4000

5000

6000

7000

8000

No Yes
Predicted label

No
Ye

s
Tr

ue
 la

be
l

7864 558

4041 4458

Precision: 0.89, Recall: 0.52, F1: 0.66

gemma-7b-it

1000

2000

3000

4000

5000

6000

7000

No Yes
Predicted label

No
Ye

s
Tr

ue
 la

be
l

24 8398

10 8489

Precision: 0.50, Recall: 1.00, F1: 0.67

Llama-2-7b-hf

1000

2000

3000

4000

5000

6000

7000

8000

No Yes
Predicted label

No
Ye

s
Tr

ue
 la

be
l

4433 3989

932 7567

Precision: 0.65, Recall: 0.89, F1: 0.75

Llama-2-7b-chat-hf

1000

2000

3000

4000

5000

6000

7000

No Yes
Predicted label

No
Ye

s
Tr

ue
 la

be
l

97 8325

4 8495

Precision: 0.51, Recall: 1.00, F1: 0.67

Meta-Llama-3-8B

1000

2000

3000

4000

5000

6000

7000

8000

No Yes
Predicted label

No
Ye

s
Tr

ue
 la

be
l

6902 1520

1296 7203

Precision: 0.83, Recall: 0.85, F1: 0.84

Meta-Llama-3-8B-Instruct

2000

3000

4000

5000

6000

7000

No Yes
Predicted label

No
Ye

s
Tr

ue
 la

be
l

7478 944

2217 6282

Precision: 0.87, Recall: 0.74, F1: 0.80

Phi-3-mini-4k-instruct

1000

2000

3000

4000

5000

6000

7000

No Yes
Predicted label

No
Ye

s
Tr

ue
 la

be
l

5784 2638

5108 3391

Precision: 0.56, Recall: 0.40, F1: 0.47

TinyLlama-1.1B-Chat-v1.0

3000

3500

4000

4500

5000

5500

No Yes
Predicted label

No
Ye

s
Tr

ue
 la

be
l

3944 4478

798 7701

Precision: 0.63, Recall: 0.91, F1: 0.74

Mistral-7B-v0.1

1000

2000

3000

4000

5000

6000

7000

No Yes
Predicted label

No
Ye

s
Tr

ue
 la

be
l

7496 926

2254 6245

Precision: 0.87, Recall: 0.73, F1: 0.80

Mistral-7B-Instruct-v0.2

1000

2000

3000

4000

5000

6000

7000

Figure A.11.: Confusion matrices for binary answerer evaluation using the AllenAI TQ

dataset.

74



A.3. Experiments

always usually sometimes irrelevant rarely never
Predicted label

al
wa

ys
us

ua
lly

so
m

et
im

es
irr

el
ev

an
t

ra
re

ly
ne

ve
r

Tr
ue

 la
be

l

1 0 2321 29 4 0

0 1 1008 3 1 0

0 0 1199 9 0 0

0 0 501 4 1 0

0 0 681 3 1 0

1 1 4744 22 3 0

gemma-2b

0

1000

2000

3000

4000

always usually sometimes irrelevant rarely never
Predicted label

al
wa

ys
us

ua
lly

so
m

et
im

es
irr

el
ev

an
t

ra
re

ly
ne

ve
r

Tr
ue

 la
be

l

0 0 471 0 1884 0

0 0 138 0 875 0

0 0 130 0 1078 0

0 0 58 0 447 1

0 0 74 0 611 0

0 0 340 1 4429 1

gemma-2b-it

0

500

1000

1500

2000

2500

3000

3500

4000

always usually sometimes irrelevant rarely never
Predicted label

al
wa

ys
us

ua
lly

so
m

et
im

es
irr

el
ev

an
t

ra
re

ly
ne

ve
r

Tr
ue

 la
be

l

3 1780 0 572 0 0

1 778 0 234 0 0

0 840 0 368 0 0

1 291 0 213 1 0

0 454 0 230 1 0

9 2119 0 2643 0 0

gemma-7b

0

500

1000

1500

2000

2500

always usually sometimes irrelevant rarely never
Predicted label

al
wa

ys
us

ua
lly

so
m

et
im

es
irr

el
ev

an
t

ra
re

ly
ne

ve
r

Tr
ue

 la
be

l

101 658 423 1170 0 3

13 300 205 495 0 0

11 253 199 740 4 1

10 41 33 421 1 0

6 126 106 446 1 0

61 249 295 4157 8 1

gemma-7b-it

0

500

1000

1500

2000

2500

3000

3500

4000

always usually sometimes irrelevant rarely never
Predicted label

al
wa

ys
us

ua
lly

so
m

et
im

es
irr

el
ev

an
t

ra
re

ly
ne

ve
r

Tr
ue

 la
be

l

2340 0 15 0 0 0

1008 0 5 0 0 0

1200 0 8 0 0 0

503 0 3 0 0 0

684 0 1 0 0 0

4740 0 31 0 0 0

Llama-2-7b-hf

0

1000

2000

3000

4000

always usually sometimes irrelevant rarely never
Predicted label

al
wa

ys
us

ua
lly

so
m

et
im

es
irr

el
ev

an
t

ra
re

ly
ne

ve
r

Tr
ue

 la
be

l

0 0 2349 1 5 0

0 0 1006 1 6 0

0 0 1202 1 5 0

0 0 500 2 4 0

0 0 680 0 5 0

0 0 4720 5 45 1

Llama-2-7b-chat-hf

0

1000

2000

3000

4000

always usually sometimes irrelevant rarely never
Predicted label

al
wa

ys
us

ua
lly

so
m

et
im

es
irr

el
ev

an
t

ra
re

ly
ne

ve
r

Tr
ue

 la
be

l

0 2245 0 110 0 0

0 956 0 57 0 0

0 1117 0 91 0 0

0 406 0 100 0 0

0 586 0 99 0 0

0 3351 0 1420 0 0

Meta-Llama-3-8B

0

500

1000

1500

2000

2500

3000

always usually sometimes irrelevant rarely never
Predicted label

al
wa

ys
us

ua
lly

so
m

et
im

es
irr

el
ev

an
t

ra
re

ly
ne

ve
r

Tr
ue

 la
be

l

9 2265 8 0 0 73

1 965 16 0 0 31

4 1116 33 2 0 53

1 369 5 3 0 128

2 602 18 1 0 62

21 2946 41 10 0 1753

Meta-Llama-3-8B-Instruct

0

500

1000

1500

2000

2500

always usually sometimes irrelevant rarely never
Predicted label

al
wa

ys
us

ua
lly

so
m

et
im

es
irr

el
ev

an
t

ra
re

ly
ne

ve
r

Tr
ue

 la
be

l

482 592 933 33 216 99

37 187 570 17 172 30

25 72 700 68 305 38

24 12 173 67 150 80

7 20 277 39 283 59

105 50 735 448 1606 1827

Phi-3-mini-4k-instruct

250

500

750

1000

1250

1500

1750

always usually sometimes irrelevant rarely never
Predicted label

al
wa

ys
us

ua
lly

so
m

et
im

es
irr

el
ev

an
t

ra
re

ly
ne

ve
r

Tr
ue

 la
be

l

0 526 1034 163 14 618

1 275 480 76 11 170

1 317 564 104 10 212

0 97 232 54 5 118

0 173 311 67 10 124

0 964 2008 527 16 1256

TinyLlama-1.1B-Chat-v1.0

0

250

500

750

1000

1250

1500

1750

2000

always usually sometimes irrelevant rarely never
Predicted label

al
wa

ys
us

ua
lly

so
m

et
im

es
irr

el
ev

an
t

ra
re

ly
ne

ve
r

Tr
ue

 la
be

l

82 275 424 366 1208 0

15 75 96 187 640 0

9 50 88 237 824 0

10 25 28 128 315 0

4 19 38 132 492 0

49 120 316 1134 3151 1

Mistral-7B-v0.1

0

500

1000

1500

2000

2500

3000

always usually sometimes irrelevant rarely never
Predicted label

al
wa

ys
us

ua
lly

so
m

et
im

es
irr

el
ev

an
t

ra
re

ly
ne

ve
r

Tr
ue

 la
be

l

611 398 1095 172 18 61

65 156 631 104 14 43

31 125 716 239 53 44

23 31 163 176 24 89

13 73 335 138 59 67

102 367 1153 1014 458 1677

Mistral-7B-Instruct-v0.2

200

400

600

800

1000

1200

1400

1600

Figure A.12.: Confusion matrices for multiple choice answerer evaluation using the AllenAI

TQ dataset.

Figure A.13.: Training and evaluation loss for multi-choice answerer.

75



A. Appendix

Figure A.14.: Training and evaluation loss for multi-choice answerer.

<|system|>

Your job is to decide whether a given concept is known to a 5-year-old. You

reply with only saying ’Yes’ or ’No’.

Example: Is ’tree’ is known to a 5-year-old?

Answer: Yes.

Counterexample: Is ’hyperbolic paraboloid’ known to a 5-year-old?

Answer: No.<|end|>

<|user|>

Is ’table’ known to a 5-year-old?"<|end|>

<|assistant|>

Answer: Yes

Figure A.15.: Prompt for �ltering WordNet concepts for supervised �ne-tuning formatted

for Phi-3-mini-4k-instruct.

76


	Abstract
	Zusammenfassung
	Acknowledgments
	Introduction
	Motivation
	Research Questions
	Outline

	Background and Related Work
	Evolution of Large Language Models
	Language modeling
	Statistical language models
	Neural language models
	Pre-trained language models
	Large Language Models
	Optimizing model training and inference efficiency
	Model families used in this work

	Language-based guessing games
	Game description
	Non-LLM approaches to playing guessing games
	LLMs playing guessing games
	Guessing games in other applications

	Datasets
	Twenty Questions datasets
	WordNet
	Visual Genome


	Methodology
	Metrics
	Game scores
	Answerer accuracy

	Evaluation setup
	Evaluation using BIG-bench task
	Evaluation using custom task
	Evaluation of answerer accuracy

	Prompt tuning
	Model fine-tuning
	Supervised fine-tuning
	Reinforcement learning
	Joint evaluation


	Experiments and results
	Implementation
	Dataset preprocessing
	Hyperparameters
	Measuring task performance
	BIG-bench task
	Custom game task
	Common failure modes
	Analyzing domain restriction
	Measuring answerer performance
	Model selection

	Prompt tuning
	Multiple choice answer options
	Few-shot prompts
	Single question answerer prompt
	Adding visual input

	Fine-tuning the answerer
	Supervised fine-tuning of multiple choice task
	Supervised fine-tuning of binary choice task
	Evaluation on game

	Fine-tuning the questioner
	Supervised fine-tuning with taxonomy from WordNet
	Supervised fine-tuning with data from 20Q dialogues
	Supervised fine-tuning with model distillation
	Reinforcement learning

	Joint evaluation of trained questioner and answerer

	Conclusion
	Answering Research Questions
	Limitations and Future Work

	Bibliography
	Appendix
	Datasets
	Evaluation
	Experiments


